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Abstract

Automated profiling of cell morphology is a powerful tool for inferring cell function. However,

this technique retains a high barrier to entry. In particular, configuring image processing

parameters for optimal cell profiling is susceptible to cognitive biases and dependent on

user experience. Here, we use interactive machine learning to identify the optimum cell

profiling configuration that maximises quality of the cell profiling outcome. The process

is guided by the user, from whom a rating of the quality of a cell profiling configuration is

obtained. We use Bayesian optimisation, an established machine learning algorithm, to

learn from this information and automatically recommend the next configuration to examine

with the aim of maximising the quality of the processing or analysis. Compared to existing

interactive machine learning tools that require domain expertise for per-class or per-pixel

annotations, we rely on users’ explicit assessment of output quality of the cell profiling task

at hand. We validated our interactive approach against the standard human trial-and-error

scheme to optimise an object segmentation task using the standard software CellProfiler.

Our toolkit enabled rapid optimisation of an object segmentation pipeline, increasing the

quality of object segmentation over a pipeline optimised through trial-and-error. Users also

attested to the ease of use and reduced cognitive load enabled by our machine learning

strategy over the standard approach. We envision that our interactive machine learning

approach can enhance the quality and efficiency of pipeline optimisation to democratise

image-based cell profiling.

Introduction

Image-based cell profiling is a powerful tool to capture the intricacies of cell phenotype. The

resolution and rapidity stemming from image-based cell profiling has enabled study of mecha-

nisms of and cellular responses to disease [1], drugs [2], or materials [3]. Together with the

explosion of automated and high-throughput microscopy techniques, image-based cell

profiling is increasingly relied on as a biological toolkit. Central to image-based profiling are
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software tools devoted to ease the burden of processing large volumes of images by making

detection, segmentation and feature extraction automated [4].

To optimise a cell profiling process or pipeline for a particular image set, users configure

the optimal values for various image processing parameters (e.g. image correction, object seg-

mentation and feature extraction) in a trial and error process. The standard tool CellProfiler

already reduces this task by carefully curating the most pertinent and widely-used parameters

in cell profiling [5]. Yet selecting an optimum set of cell profiling pipeline parameters (or a

pipeline ‘configuration’) from the available parameter space is still an onerous task and prone

to biases. Optimising an image processing pipeline is biased against those with limited knowl-

edge in biology, microscopy or image analysis. The high cognitive load of pipeline optimisa-

tion can inadvertently lead to decision-making biases that deteriorate the quality of the cell

profiling result. Testing of pipelines on small datasets can also induce an availability bias,

where positive results from small subsets are incorrectly assumed to generalise to the entire

dataset. Furthermore, novice users may be susceptible to default bias, where default settings

are selected over the true optimal ones. While incredibly informative and powerful for biology,

cell profiling is hindered by users’ capability to process images robustly and reproducibly.

Here, we present a new approach that integrates user input with machine learning to opti-

mise the configuration of a cell profiling pipeline based on high-level quality assessments. We

obtain from the user the quality score (QS), a metric to describe the performance of a pipeline

configuration. We use Bayesian optimisation (BO) [6, 7], a machine learning technique to rap-

idly learn the optimal pipeline configuration by maximising the QS in an iterative fashion.

Effectively, we present a process that applies machine learning to divert the burden of pipeline

optimisation from the user by automating and accelerating optimisation of pipeline hyper-

parameters. By using quality maximisation as the explicit target of our optimisation approach,

user input bypasses labeling of images at the pixel or object level, which is currently required

by prevailing image analysis toolkits [8–10]. Through our interactive machine learning

approach, we reduce cognitive load and bias against new users and thus improve the rapidity

and quality of cell profiling.

We created new modules on the standard biological toolbox CellProfiler (CP) to implement

our interactive machine learning approach. The new modules can be easily integrated within

the existing CP software infrastructure. We created two types of modules: evaluation modules

to obtain QS from users; and, a BO module to define parameters that will be automatically

optimised. Our approach in optimising pipeline configuration uses the evaluation and BO

modules together to obtain QS and automatically change pipeline settings towards maximisa-

tion of the QS. We then tested our BO based approach to optimise a pipeline configuration for

object segmentation. Users with varying levels of expertise obtained more accurate object seg-

mentation using our approach compared to the conventional trial and error scheme. Users

also attested to the ease of use of our interactive machine learning approach, with a majority

electing to incorporate the process into their own pipeline optimisation process.

The rest of paper is organized as follows. First, we describe the conceptual framework

behind our interactive machine learning approach to pipeline optimisation. Next, we present

the results of user experiments comparing our approach to the conventional method of pipe-

line optimisation. Finally, we discuss the implications of our work for scientifically reliable,

high quality, and rapid image-based cell profiling for all.

Semi-automated pipeline optimisation using interactive machine learning

We propose to utilise a semi-automated, machine learning approach to optimise a cell profil-

ing pipeline configuration (Fig 1). Critical to this approach is the explicit definition of the level
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of performance of each cell profiling configuration. We thus define the QS as a metric of the

quality of a pipeline configuration. We also created a highly customisable BO module that

allows the user to define the image processing parameters to be optimised. The QS is then

exploited by a BO algorithm to automatically change all user specified image processing

parameters simultaneously. The BO process uses the evaluation and BO modules together to

iteratively obtain the QS then automatically change pipeline parameters with the goal of QS

maximisation. Our approach has been implemented as a collection of stand-alone CP modules

Fig 1. Optimising pipeline configuration through an interactive machine learning approach. The conventional approach to optimising a set of cell

profiling parameters (or ‘configuration’) requires the user to change multiple settings in a trial and error manner. This is a slow and tedious process,

with quality of the image processing pipelines usually only measured after analysis of the entire dataset. Our proposed approach combines machine

learning with explicit definition of quality of a pipeline configuration (or the quality score (QS)) obtained in real time. The burden of choosing a

pipeline configuration is then placed on a machine learning algorithm called Bayesian optimisation (BO), which learns the optimum pipeline settings

that maximises the QS. Through this interactive machine learning approach, cell profiling can be rapidly optimised, reduce cognitive load on users and

ensure high quality outcomes.

https://doi.org/10.1371/journal.pone.0237972.g001
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which can be used as plugins to the existing software: ManualEvaluation, AutomatedEvalua-
tion and BayesianOptimisation modules. The implementation, module plugins, CP pipelines,

training and testing datasets, and results can be found on https://github.com/uofg-cellprofiler-

modules/bayesopt4cellprofiler.

Evaluation modules. The evaluation modules were created to obtain three key pieces of

information at each iteration: the target object requiring optimisation, the minimum accept-

able QS required by the user (referred to as the ‘target QS’), and the QS from the latest pipeline

configuration (referred to as the ‘current QS’). Definition of the target and current QS depend

on whether the user will provide a QS at each iteration (‘manual’) or set a criteria that defines

robust processing of the target object (‘automated’). To provide a concrete example, we discuss

the application of our evaluation modules for object segmentation, a common bottleneck in

pipeline optimisation and image analysis.

AutomatedEvaluation. The AutomatedEvaluation module automatically evaluates the

quality of a pipeline configuration based on user-prescribed criteria that characterise an opti-

mally segmented object (the target QS) (S1 Fig). Thus, AutomatedEvaluation requires prior

knowledge of the optimally segmented object. For instance, an optimally segmented nucleus

rarely contains any concavities, allowing us to define the target QS from high measurements of

solidity. At least one target object with its measured characteristics (e.g. shape, texture, inten-

sity) needs to be placed before AutomatedEvaluation in the pipeline. When multiple measure-

ments of a segmented object are used, an aggregate is calculated to obtain a target QS. At each

iteration of BO, AutomatedEvaluation calculates the current QS of the segmented object using

the same object measurements as defined in the target QS. If the current QS falls below the tar-

get QS, the BO process continues. When the current QS meets or exceeds the target QS, the

BO process stops and the segmented object resulting from the optimised pipeline configura-

tion is displayed. If the user deems segmentation to be poor, the user will be prompted to rede-

fine the target QS.

ManualEvaluation module. The ManualEvaluation module relies on the user’s subjective

rating of a segmented object (S2 Fig). First, the user is required to define the minimum accept-

able segmentation quality or target QS on a scale of 1 (poor quality) to 10 (excellent quality).

During pipeline execution, ManualEvaluation temporarily interrupts the pipeline to display

the segmented object from the current pipeline configuration. The user is required to rate the

quality of the segmented object using the same rating scale of 1 to 10 to provide the current

QS. The BO process will continue to iterate until the target QS is met or exceeded. Both Auto-
matedEvaluation and ManualEvaluation allows the user to customise objects and images to be

displayed to the user at each iteration of BO.

BayesianOptimisation module. The BayesianOptimisation module implements a BO

algorithm to automatically optimise pipeline configuration by maximising the QS (S3 Fig).

To do this, we created the highly customisable BayesianOptimisation module. BayesianOpti-
misation requires at least one evaluation module placed upstream from which the current

QS can be obtained. BayesianOptimisation allows the combination of the two evaluation

modules, with weighting of contribution to the joint current QS explicitly defined by the

user. The BayesianOptimisation module also provides full customization of the image pro-

cessing modules and settings to be optimised using the BO algorithm. For example, even

settings within object identification modules (e.g. IdentifySecondaryObject (e.g. threshold

correction factor or adaptive window value) can be optimised by the BO process. In princi-

ple, any parameters or settings with integer and float values in modules upstream of the

BayesianOptimisation module can be optimised by the BO process. BayesianOptimisation
also gives the user control over the BO process, including the maximum permitted number

of iterations of BO.
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Together, the evaluation and BayesianOptimisation modules aim to minimise the quality

gap between the current QS and target QS by automatically changing pipeline configuration.

A pop-up window shows the deviance of current from target QS at every iteration of the BO

process (Fig 2). The BO process iterates until the current QS matches the target QS (i.e. quality

gap = 0) or the maximum number of iterations specified by the user has been attained. At each

iteration, the pipeline settings being queried and considered are also shown (Table 1).

Bayesian Optimisation algorithm. At the core of the BayesianOptimisation module is a

custom version of a BO algorithm [6, 7, 11]. BO relies on a surrogate function/model that rep-

resents and provides calibrated predictive distributions for the QS, y, for a given pipeline con-

figuration, x. We define the surrogate model, f(x), mapping from configuration to QS as a

Bayesian regression model with a Gaussian likelihood, N ðyjf ðxÞ; snÞ, with a Gaussian process

(GP) prior on f such that f � GPðmðxÞ; kðx; x0Þ j yGPÞ [12]. The GP is defined by the effective

mean function, m(x) = 0, and chosen covariance function kðx; x0Þ ¼ sf expð� 1

2s‘
jjx � x0jj2Þ

where the hyperparameters are collected in θ = {σn, σf, σℓ}. Given the GP and a training set,

D ¼ fðx; yÞ1:N
g, containing a certain pipeline configuration and its corresponding QS, the pre-

dictive distribution for any pipeline configuration, x�, is directly available as p(y�|x�, D, θ). This

allows us to estimate both the expected QS and its uncertainty for all unseen configurations.

For simplicity, we have defined the model without priors on the hyperparameters and we do

marginal likelihood optimisation of the hyperparameters (after an initial bootstrap phase).

However, some BO algorithm hyperparameters and GP parameters (e.g. the length scale of the

covariance function and the assumed noise level) can be customised in the BayesianOptimisa-
tion module.

Fig 2. Visualisation of the BO process at every iteration. Scatterplot showing the progress of reducing the quality gap

between the current QS and target QS (y axis) across increasing number of BO iterations (x axis). The optimum

pipeline configuration is achieved when the quality gap reaches 0 or when the current QS matches or exceeds the target

QS.

https://doi.org/10.1371/journal.pone.0237972.g002

Table 1. Parameter settings updated with each BO iteration. Table showing the parameter settings (column 1) that

are currently known to minimise the deviance between current and target QS (column 2), were tested in the previous

BO iteration (column 3), and are being tested in the current BO iteration (column 4). The table updates at every itera-

tion of the BO process.

Setting name Best value so far Old value New value

Size of adaptive window 348.0 240.0 295.7

Threshold correction factor I 1.4 0.9 1.0

Typical artifact diameter 9.0 3.0 9.0

Threshold correction factor II 1.4 1.2 1.299

https://doi.org/10.1371/journal.pone.0237972.t001
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The BO process exploits the predictive distribution at any point in the optimisation process

to sequentially choose the next set of image processing parameters or pipeline configuration to

evaluate. It does so by trading-off the desire to optimise the current QS with the implicit need

to learn the surrogate model. To do so, here we applied Expected Improvement [6, 7]. At the

end of each iteration, the current QS from the newly chosen pipeline configuration is subse-

quently included in the training set and the model re-estimated before repetition of the BO

process. A summary of the BO process is given in (S4 Fig).

User experiments

Methods

User based experiments in pipeline optimisation for object segmentation were performed.

These experiments were conducted to test our interactive machine learning approach

against the trial and error (here referred to as ‘conventional’) method of optimising a pipeline

configuration. Experiments involving human subjects were performed with approval from the

Ethics committee of the College of Science and Engineering, University of Glasgow (case no.

300180170).

Participants segmented fluorescence images of pre-osteoblast cells [13] seeded on texturised

polystyrene [3, 14]. Participants were randomly assigned the objective of segmenting either

cells or focal adhesions. Pipelines for both objectives were designed to have interdependent

modules, where segmentation of cells and focal adhesions were dependent on nuclei and cell

segmentation, respectively. Each participant was required to optimise 1 pipeline using the

conventional approach, and 3 pipelines using our interactive machine learning approach. Par-

ticipants were given 20 minutes to optimise each pipeline. In the conventional approach, par-

ticipants were required to optimise settings across prescribed modules in a trial and error

manner. Using the BO approach, participants were required to use BayesianOptimisation in

conjunction with either AutomatedEvaluation, ManualEvaluation or both evaluation modules

(called ‘Composite Evaluation’). A summary of the pipeline configuration automatically opti-

mised by BayesianOptimisation is found in S1 and S2 Tables for cell and focal adhesion seg-

mentation, respectively. A summary of all tasks performed by each participant is summarised

in Table 2. All tasks were conducted on the same computer running CellProfiler v3.1.8. CP

pipelines and image sets used in both tasks are included in S1–S3 Files.

Each pipeline optimisation task used identical image sets for training and testing. At the

end of each task, 10 images were used to test the quality of the resulting pipeline configuration.

At the end of each task, participants rated the QS of 10 images run through the resulting pipe-

line configuration. To provide a baseline measurement, participants also rated the QS of test

images segmented using a pipeline optimised by a CP expert. Participants also rated the diffi-

culty of each completed optimisation task using a Likert scale. The task sheet used to instruct

and survey users is provided in S4 File.

Table 2. Tasks in user-based testing of the interactive machine learning approach. All users were asked to optimise cell or focal adhesion segmentation using an interac-

tive machine learning or the conventional (trial and error) approach. All tasks used the same image sets for training and testing.

Task Pipeline parameter setting Quality Evaluation

Conventional User based None

Automated Evaluation BayesianOptimisation module AutomaticEvaluation module

Manual Evaluation ManualEvaluation module

Composite Evaluation AutomaticEvaluation and ManualEvaluation modules

https://doi.org/10.1371/journal.pone.0237972.t002
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To provide a quantitative measure of segmentation accuracy, we calculated the pixel-wise

intersection over union (IoU) score of test images segmented by users, Muser, against the

ground truth (binary) segmentation mask, Mgroundtruth. Ground truth segmentation masks

were obtained manually in ImageJ [15]. For each mask, we calculated the IoU score for indi-

vidual images as follows [16]:

IoU ¼
jIntersectionj
jUnionj

¼
jMgroundtruth \Muserj

jMgroundtruth [Muserj
;

By normalising the number of pixels common to both masks by the total number of pixels

in both masks, the IoU metric detects how well the user-obtained mask encompasses the

ground truth without regard to actual (x, y) coordinates of the masks. An IoU score of 1.0

thus typically indicates excellent segmentation, and an IoU score less than 0.5 denotes poor

segmentation.

IoU scores for cell segmentation were pooled from users assigned to both the cell and focal

adhesion segmentation tasks. A one-way ANOVA with Tukey’s post-hoc test for pairwise

comparison was used to test statistical significance in IoU between different optimisation

approaches. Masks and IoU scores measured from test images segmented by each user are

given in S5 File.

A detailed description of methods (including cell preparation, image acquisition, and par-

ticipant recruitment) are provided in S1 Method.

Results

Here, we tested the performance of our interactive machine learning approach. We com-

pared the quality of resulting segmentation, ease of use, and speed of optimisation between

our approach and the conventional method of pipeline optimisation. First, we showed that

our approach significantly enhanced segmentation over the conventional method. Immedi-

ately after each task, users rated the QS of images segmented by the interactive machine

learning approach at an overwhelmingly higher level the conventional approach (S5 Fig).

Quantitative measurement of segmentation quality using the IoU score reinforce this (Fig 3).

In particular, providing QS of cell segmentation in real time through the use of ManualEva-
luation significantly improved the consistency and magnitude of the IoU score compared to

the conventional approach. Use of either ManualEvaluation (mean ± standard deviation

0.75 ± 0.14) or the composite (0.69 ± 0.24) evaluation mode yielded IoU scores for cell seg-

mentation similar to what was achieved by a CP expert (0.74 ± 0.20), indicating excellent seg-

mentation quality.

In contrast to cell segmentation, all 3 modes of the interactive machine learning approach

outperformed the conventional approach in segmenting focal adhesions. IoU scores for focal

adhesion segmentation using the AutomatedEvaluation, ManualEvaluation and Composite

evaluation modes produced IoU score with mean ± standard deviation of 0.11 ± 0.05,

0.13 ± 0.04, and 0.12 ± 0.05, respectively. The conventional approach only yielded an IoU

score of 0.08 ± 0.04, while a CP expert reached a score of 0.24 ± 0.07. We noted that none of

the evaluation modes yielded segmentation quality similar to what a CP expert can achieve.

Furthermore, none of the 5 segmentation approaches resulted in adequate segmentation of

focal adhesions compared to the ground truth. The difficulty of focal adhesion segmentation is

a well established issue and is caused by variability in intensity and size of these structures. The

difficulty of this task is evidenced by the fact that even recent tools developed to improve focal

adhesion segmentation are limited in throughput and requires high resolution microscopy

(such as total internal reflection microscopy) [17, 18].
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Though it failed to show a benefit for cell segmentation, AutomatedEvaluation improved

focal adhesion segmentation. Presumably, measurements in the ratio scale that easily define

focal adhesions (e.g. ellipticity and solidity) were easier to intuit and exploit compared to mea-

surements in the interval scale (e.g. cell area). Under certain circumstances or for users with

some experience, AutomatedEvaluation presents advantages for pipeline optimisation.

We noted that the use of ManualEvaluation (by itself or compositely with AutomatedEva-
luation) was advantageous for object segmentation. Indeed, despite having different character-

istics, both cells and focal adhesions were accurately segmented when using

ManualEvaluation. Presenting visual evidence (Fig 4) allowed users to easily evaluate the con-

formity of outlines to the edges of target objects. This is a critically simpler task than setting

criteria to define optimal object segmentation, which may be unknown a priori, as required by

AutomatedEvaluation.

Next, we assessed the ease of use of the interactive machine learning approach (Fig 5).

When asked to use AutomatedEvaluation, the number of users who found pipeline optimisa-

tion to be easy doubled in number. Feedback on ManualEvaluation was even more positive, as

all participants considered pipeline optimisation to be easy when using this evaluation mode.

Participants also overwhelmingly (15 out of 16 or 93.8%) elected to adopt our approach for

future pipeline optimisation, indicating broad support interactive machine learning to opti-

mise cell profiling. In line with poorer IoU scores compared to our approach, only a minority

Fig 3. Improved object segmentation using an interactive machine learning approach. To optimise cell profiling pipeline configuration,

BayesianOptimisation was tested together with AutomatedEvaluation, ManualEvaluation or both evaluation types (Composite Evaluation).

Additionally, we measured segmentation of objects from a pipeline optimised by a CP expert. We calculated the intersection over union

(IoU) score of each user-segmented against the corresponding ground truth image to measure quality of segmentation. An IoU score of 1

indicates user-based segmentation equivalent to the ground truth. Each point represents the IoU score calculated from one image segmented

by one user. We denote statistical significance of � at p<0.05, �� at p<0.01, ��� at p<0.005, ���� at p<0.0001. (A) n = 160 image sets from

16 participants and (B) n = 80 image sets from 8 participants.

https://doi.org/10.1371/journal.pone.0237972.g003
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Fig 4. The interactive machine learning approach results in high quality segmentation. Representative images of segmented cells

and focal adhesions selected from random users.

https://doi.org/10.1371/journal.pone.0237972.g004
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(3 out of 16 or 18.8%) of users found it easy to optimise pipeline configuration using the con-

ventional method.

Finally, we demonstrated the efficiency of our approach over the conventional method

for pipeline optimisation. Prior to user based experiments, we tested our approach against a

method that randomly selected parameters of pipeline modules (S6 Fig). The random selection

process approximated the conventional trial and error method. On average, our approach

required less iterations to optimise nucleus, cell and focal adhesion segmentation compared to

the conventional approach. User based experiments supported these findings, where 10 out of

16 (62.5%) users required more than 20 minutes to sufficiently optimise a pipeline using the

conventional method (Fig 5). A large number (13 out of 16 or 81.3%) of users found 20 min-

utes insufficient for pipeline optimisation using AutomatedEvaluation. Meanwhile, a majority

of users (12 out of 16 or 75%) found that 20 minutes was sufficient to optimise a pipeline using

ManualEvaluation, regardless of prior experience in cell profiling. We showed here that our

approach empowers robust and rapid cell profiling without compromising on ease of use, cog-

nitive burden, or bias against novice users.

Discussion

Robust and reproducible image-based cell profiling depends on the optimal configuration of

the image processing pipeline. The conventional method of optimising an image processing

pipeline is effectively a trial and error process, and is thus time consuming, tedious and pro-

hibitive to those with minimal experience in image analysis or biology. Here, we propose a

semi-automated approach that relies on machine learning with minimal user intervention to

accelerate pipeline optimisation and enhance the quality of cell profiling.

Fig 5. Ease of use of the interactive machine learning approach for pipeline optimisation. Survey data were

accumulated from all participants from both experiments (n = 16).

https://doi.org/10.1371/journal.pone.0237972.g005
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A key component in our proposed approach is the iterative acquisition of the QS from the

user. By obtaining a QS corresponding to a certain pipeline configuration, we were able to

effectively incorporate learning into the process of pipeline parameter optimisation. This was

performed using a BO algorithm. Importantly, the BO algorithm is ideal for optimising broad

parameter spaces such as in synthetic gene design [19], hyperparameter tuning [7] or crystal

structure prediction [20]. Here, we also showed that the BO algorithm optimised the broad

combinatorial space for image processing parameters across multiple segmentation objectives.

This is especially important for users with little to no experience in image analysis, where the

BO algorithm can reduce default bias in pipeline optimisation.

The BO algorithm is also an effective remedy to memory bias, which increases in propensity

with longer and more complex pipelines. Because the conventional method relies on a user

to remember outcomes corresponding to an image processing configuration, the process is

highly susceptible to memory and cognitive biases. Not only do these biases severely narrow

the setting space being tested, they prevent users from obtaining the optimum processing pipe-

line that is crucial to accurate cell profiling. Diverting the user’s focus towards providing the

QS is also an essential feature of our method that reduces cognitive load on users without

compromising on the quality of pipeline outcomes.

Though intended for completely autonomous optimisation [21], here we modified BO to

incorporate a human-in-the-loop [22, 23]. By relying on the user instead of absolute limits to

determine QS, we have created a more generalised and flexible approach to assess and optimise

pipeline performance. Without predefined limits on quality (as is most apparent with the Man-
ualEvaluation module), our approach can optimise pipelines for segmentation of objects with

complex geometric properties (e.g. the mitochondria). We can even extend the pipeline opti-

misation process for tasks with undefined quality metrics (e.g. illumination and background

correction [24] or for curation of images for quality control [25]).

The flexibility of our approach for pipeline optimisation is also extended to the imple-

mented modules, where users have control over: 1) the task; 2) the target QS; 3) modules and

settings; 4) weighting between automatic and manual evaluation into a composite evaluation

score; and 5) BO hyperparameters. The modularity of the CP also permits multiple BO runs

throughout a single pipeline to optimise various tasks. Complex tasks such as focal adhesion

segmentation undoubtedly benefit from this scenario, where there are interdependencies

between segmented objects.

A few established tools for cell profiling utilise a similar flavor of machine learning (user

supervised, interactive machine learning) to aid object segmentation by requiring the user to

provide input. For instance, the ilastik and weka toolkits rely on user-annotated training data

at the pixel (pixel classification) or object level (image segmentation) [8, 9]. To ensure high

quality output using these tools, there is a requirement for an adequately sized training dataset.

Over time, it is inevitable that user fatigue caused by prolonged user-machine interaction [26]

will creep in to deteriorate segmentation quality. To some extent, the expense from low-level

annotation can be overcome by using an active learning approach that carefully selects the

most informative datasets to require user-based annotation [27]. Nonetheless, in all these

toolkits, the main aim is to identify and classify objects. As a consequence of this primary goal,

these toolkits thus need the input of a domain expert to generate high quality training data.

In contrast, our approach only requires the user to provide input on a higher level of

abstraction—quality. With the real time visualisation of an output that is related to an image

processing task, our approach dismisses the requirement for high quality annotation of data-

sets for training. By focusing on optimising the configuration and hyperparameters of a pipe-

line (rather than labelling of training data for individual elements in the pipeline), the user

based quality rating is relevant to the aim of the image analysis task and unconstrained to
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segmentation or classification. Indeed, improved accuracy in focal adhesion segmentation (a

difficult task) supports our claim that our approach reduces the bias against users with little

to no knowledge in the task at hand (i.e. in cell biology). We have also shown that the data

expense required to train a machine learning algorithm is considerably reduced using our

method, further diminishing user effort without sacrificing output quality. Our dedicated

approach in generating high quality training data with reduced user load can complement the

existing infrastructure to improve classification and biological inference.

The rapidity by which we collect data calls for fully or semi-automatic methods of cell

profiling that is adaptable to different experimental designs, biological systems and imaging

modalities. Many are developing machine and deep learning methods to eliminate human

intervention in the data analysis process. However, it is difficult and often counter productive

to eliminate the user, who has expertise to validate, configure, fine-tune parameters and label

data under novel conditions. Here, we show that allowing the user to interactively provide

feedback to a machine learning algorithm improves both automation and quality of analysis.

Our pipeline using an interactive machine learning approach presents a new paradigm

wherein human decision-making and oversight is required for robust scientific discovery.

Supporting information

S1 File. Pipelines and raw images for the various tasks carried out in user experiments.

(ZIP)

S2 File. Pipelines and raw images for the various tasks carried out in user experiments.

(Z02)

S3 File. Pipelines and raw images for the various tasks carried out in user experiments.

(Z01)

S4 File. Participant information sheet, consent form and task sheet used for user-based

experiments.

(ZIP)

S5 File. Image masks obtained from participants used to score quality of segmentation

using the intersection over union score.

(ZIP)

S6 File. Survey based results on quality score of image segmentation and difficulty of pipe-

line optimisation.

(ZIP)

S1 Method.

(PDF)

S1 Fig. The AutomatedEvaluation module. A representation of the AutomatedEvaluation
module shows the settings that need to be defined by the user. Values placed inside parenthesis

show examples of possible input in each module setting. (A) The module allows the user to

define an image for visualisation of the segmented object. The segmented object to be opti-

mised is specified in the first level of objects to display. Optionally, other objects that require

visualisation can be added to the same image. The module requires tolerance ranges or limits

for at least one object measurement (e.g. Area, Perimeter) that define optimal segmentation.

The user can define a maximum of 4 different object measurements, which are aggregated to

calculate the target QS. (B) At every iteration, the AutomatedEvaluation module displays the

segmented object resulting from the current pipeline configuration. (C) At the end of the BO
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procedure (i.e. when current QS meets or exceeds the target QS), the segmented object

obtained from the optimum pipeline settings is displayed.

(EPS)

S2 Fig. The ManualEvaluation module. A representation of the ManualEvaluation module

shows the settings that need to be defined by the user. Values placed inside parenthesis show

examples of possible input in each module setting. (A) The target QS is defined by the user

using a scale of 1 (poor quality) to 10 (excellent quality). For visualisation, the image on which

to overlay segmentation outlines, the name of the output image and the type of object outline

needs to be defined by the user. The segmented object to be optimised is specified in the first

level of objects to display. Optionally, other objects that require visualisation can be added to

the same image. (B) At each iteration of the BO process, a pop-up window displays the seg-

mented object from the current recent pipeline configuration. (F) The user is required to rate

the segmented object to provide the current QS.

(EPS)

S3 Fig. The BayesianOptimisation module. A representation of the BayesianOptimisation mod-

ule shows the settings that need to be defined by the user. Values placed inside parenthesis show

examples of possible input in each module setting. (A) The target object and the number of eval-

uation modules to be used are first specified. The evaluation modes to be used will automatically

propagate values for evaluation, depending on the available evaluation modules placed upstream

of BayesianOptimisation. When using both ManualEvaluation and AutomatedEvaluation mod-

ules, the weighted contribution of the current QS from each evaluation module can be explicitly

defined. (B) Parameters of the BO algorithm, such as the maximum number of iterations and

covariance function hyperparameters, can be tuned by the user. (C) The pipeline parameters to

be optimised by the BO process is easily customised by the user. A minimum of one pipeline

parameter needs to be optimised for the BO algorithm to proceed. The specific parameters

requiring optimisation is defined individually and explicitly (including minimum, maximum,

and interval). All evaluated pipeline parameters and its corresponding QS are saved in .txt files.

(EPS)

S4 Fig. Flowchart of the specific incarnation of the BO algorithm used in the experiments.

The BO algorithm is first initialised with two randomly generated settings for pipeline configu-

rations. A Gaussian process (GP) is estimated from all evaluated pipeline configurations and

its corresponding QS (acquired from the evaluation modules at each iteration as the current

QS). The GP generates a predictive distribution for all pipeline configurations, each with an

expected QS and uncertainty. To choose the next pipeline configuration to evaluate, the BO

algorithm uses an Expected Improvement function to trade off maximisation of QS with the

need to fully learn the GP. From the chosen pipeline configuration, a current QS is obtained

from the user. This two-step process of (i) estimating the GP using all evaluated pipeline con-

figurations and corresponding QS, and (ii) selecting the pipeline configuration to evaluate is

repeated until the deviation of the current from the target QS is minimised or the user-defined

maximum number of iterations have been reached.

(EPS)

S5 Fig. Improved QS using an interactive machine learning approach. To optimise cell pro-

filing pipeline configuration, BayesianOptimisation was tested together with AutomatedEva-
luation, ManualEvaluation or both evaluation types (Composite Evaluation). QS of an image

obtained from the indicated optimisation mode was normalized against QS of the same image

processed by a CP expert (‘Normalised QS’). For segmentation of (A) cells and (B) focal adhe-

sions, normalized QS increased by using our interactive machine learning approach. Statistical
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analysis was performed on raw QS of each image across different optimisation modes using

Friedman test for rank based analysis of paired samples with Dunn’s post-hoc test for pairwise

comparison. We denote statistical significance of � at p<0.05, �� at p<0.01, ��� at p<0.005,
���� at p<0.0001. (A) n = 72 image sets from 8 participants and (B) n = 80 image sets from 8

participants.

(EPS)

S6 Fig. Efficiently optimising a pipeline for object segmentation using an interactive

machine learning approach. Segmentation of (A) nuclei, (B) the cell body, and (C) adhesions

were tested. Our BO-based approach was used to rapidly minimise the segmentation deviation

between the target (black) and the current QS (blue). Random selection (orange) of pipeline

parameters was used as a comparison. Data are presented as mean ± standard deviation/2

from (A) n = 50 and (B)(C) n = 100 repetitions.

(EPS)

S1 Table. Pipeline parameters automatically optimised in cell segmentation using the

interactive machine learning approach.

(PDF)

S2 Table. Pipeline parameters automatically optimised for focal adhesion segmentation

using the interactive machine learning approach.

(PDF)
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