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Abstract
Objective  Familial hypercholesterolemia (FH) is an auto-
somal dominant inherited disorder caused by mutations in 
the low density lipoprotein receptor (LDLR) gene. FH is 
characterized by elevated plasma LDL cholesterol, prema-
ture atherosclerosis, and a high risk of premature myocar-
dial infarction. In general, mutations within LDLR gene 
can cause five different classes of defects, namely: class I 
defect: no LDLR synthesis; class II defect: no LDLR trans-
port; class III defect: no low density lipoprotein (LDL) to 
LDLR binding; class IV defect: no LDLR/LDL internaliza-
tion; and class V defect: no LDLR recycling. One might 
expect that both the class of LDLR defect as well as the 
precise mutation influences the severity of hypercholeste-
rolemia on one hand and the response on drug treatment 
on the other. To clarify this question we studied the ef-
fect of the LDLR mutation p.W556R in two heterozygote 
subjects.
Results  We found that two heterozygote FH patients with 
the LDLR mutation p.W556R causing a class II LDLR de-
fect (transport defective LDLR) respond exceedingly well 
to the treatment with simvastatin 40 mg/ezetimibe 10 mg. 
There was a LDL cholesterol decrease of 55 and 64%, re-

spectively. In contrast, two affected homozygote p.W556R 
FH patients, in the mean time undergoing LDL apheresis, 
had no response to statin but a 15% LDL cholesterol de-
crease on ezetimibe monotherapy.
Conclusions  The LDLR mutation p.W556R is a frequent 
and severe class II defect for FH. The affected homozygote 
FH patients have a total loss of the functional LDLR and—
as expected—do not respond on statin therapy and require 
LDL apheresis. In contrast, heterozygote FH patients with 
the same LDLR defect respond exceedingly well to stand-
ard lipid-lowering therapy, illustrating that the knowledge 
of the primary LDLR defect enables us to foresee the ex-
pected drug effects.
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Introduction

The LDL receptor (LDLR) is an essential receptor for the 
uptake of low density lipoprotein (LDL) and accounts for 
the clearance of 70% of all plasma-circulating LDL [1]. 
LDLR/LDL complexes are internalized by endocytosis, 
mainly in hepatocytes and ligand dischargement in the aci-
dic environment of the endosome enables the recycling of 
LDL receptors for another round of LDL binding [1–3].

The term “familial hypercholesterolemia” (FH) is gene-
rally used for LDLR deficiency which is inherited as an 
autosomal dominant trait. Homozygous LDLR deficiency is 
rare, with a frequency of 1 per million in the general popu-
lation [4, 5]. It is characterized by severely elevated LDL 
cholesterol (> 15.5  mmol/L; > 600  mg/dL). The clinical 
symptoms are xanthomas, thickened achilles tendons, caro-

Clin Res Cardiol Suppl (2012) 7:2–6
DOI 10.1007/s11789-012-0041-y

Pharmacogenetic aspects in familial hypercholesterolemia  
with the special focus on FHMarburg (FH p.W556R)

Juergen R. Schaefer · Bilgen Kurt · Alexander Sattler · 
Günter Klaus · Muhidien Soufi

J. R. Schaefer ()
Department of Internal Medicine, Cardiology,  
Philipps-University, Baldingerstr.1, 35033 Marburg,  
Germany
e-mail: juergen.schaefer@uni-marburg.de

B. Kurt · A. Sattler · M. Soufi
Department of Internal Medicine, Cardiology,  
Philipps-University, Marburg, Germany

G. Klaus
Department of General Pediatrics, Philipps-University, Marburg, 
Germany

Published online: 28 February 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com



1 3

3Pharmacogenetic aspects in familial hypercholesterolemia with the special focus on FHMarburg (FH p.W556R)

tis and coronary artery stenosis, and aortic valve stenosis 
that develop in the first decade of life, leading to prema-
ture death from stroke or myocardial infarction in child-
hood. The molecular basis of FH has been elucidated by 
the fundamental work of Goldstein and Brown and Rader 
et al. [6, 7]. They revealed that defects of the LDL receptor 
are caused by mutations within the LDL receptor gene. The 
LDLR is located on chromosome 19 [8]. Worldwide, more 
than 1,000 FH causing LDLR gene mutations ranging from 
single nucleotide substitutions to extended deletions had 
been identified in different ethnic groups [9–11].

According to the nature and location of the mutations 
within the LDLR gene, five different classes of FH-cau-
sing mutations have been defined. Class I mutations include 
null alleles with no detectable LDL receptor protein. Class 
II mutations produce transport-defective LDLR proteins 
that are either completely (class II a) or partially blocked 
(class II b or leaky LDLRs) in their transport from the endo-
plasmic reticulum to the Golgi apparatus due to impaired 
glycosylation [12]. Class III mutations encode LDL recep-
tors with normal intracellular transport but defective LDL 

binding. Class IV mutations produce LDL receptors with 
normal transport and cell surface LDL binding but defective 
clustering in clathrin-coated pits for internalization. Finally, 
class V mutations produce recycling defective receptors that 
internalize normally, but are unable to release bound ligand 
within the acidic environment of the endosome, and thus do 
not recycle to the cell surface [12] (Fig. 1a).

Methods

Lipid profiles

Lipid analysis was performed from plasma drawn under fas-
ting conditions (fasting period of at least 12 h) without any 
lipid-lowering medication and was repeated after 6 weeks 
treatment with simvastatin 40 mg and ezetimibe 10 mg as a 
single tablet given once daily. Total cholesterol and trigly-
cerides were measured enzymatically (Roche Diagnostics, 
Mannheim, Germany). High-density lipoprotein (HDL) was 
measured after the precipitation of apoB-containing lipo-

Fig. 1  a Illustrates the five different classes for defects of LDL 
receptor function and the consequences of the different defects on the 
cell surface for class I and II defects b or class III defects c. Class I 
mutations include null alleles with no detectable LDL receptor protein. 
Class II mutations produce transport-defective LDLR proteins that are 
either completely (class II a) or partially blocked (class II b or leaky 
LDLRs) in their transport from the endoplasmic reticulum to the Golgi 
apparatus due to impaired glycosylation. Class III mutations encode 

LDL receptors with normal intracellular transport but defective LDL 
binding. Class IV mutations produce LDL receptors with normal trans-
port and cell surface LDL binding but defective clustering in clathrin-
coated pits for internalization. Class V mutations produce recycling 
defective receptors that internalize normally, but are unable to release 
bound ligand within the acidic environment of the endosome, and thus 
do not recycle to the cell surface
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proteins. LDL was calculated using the Friedewald equation 
[13]. ApoE phenotyping was performed by isoelectric focu-
sing and immunofixation as described previously [14].

Mutation scanning of the LDLR and apoB-100 genes

Genomic DNA was isolated from whole blood by standard 
procedures. Oligonucleotides and PCR reaction conditions 
for the amplification of the promoter region and 18 exons 
of the LDLR and the apoB gene sequence encoding the 
carboxyterminal modulator element of apoB-100 (residues 
3448–3561) were exactly as previously described [15, 16]. 
Denaturing gradient gel electrophoresis (DGGE) screening 
for mutations in the LDLR and apoB genes were performed 
in a Protean II electrophoresis system (Bio-Rad, Munich, 
Germany). PCR products of LDLR exons with aberrant 
DGGE patterns were sequenced in forward and reverse 
directions with the BigDyeTM terminator cycle sequencing 
ready reaction kit (Applied Biosystems, Warrington, UK) 
on an ABI 3730 DNA sequencer.

Results

The index family is a Turkish family with two identi-
cal male twins, who are homozygote for the p.W556R 
LDLR mutation. Their parents are both heterozygote for 
the p.W556R LDLR defect. The ApoE phenotype was 3/3 
and by this normal in all patients. At the age of 2 years, 
the twins showed multiple tuberoeruptive xanthomas over 
the extensor surface of the elbows, knees, subcutaneous 
nodules in the extensor tendons of the hands and xanthe-
lasma palpebrarum. The parents have none of these signs. 
Lipid studies were carried out in all family members. The 
two boys had extremely high levels of total cholesterol and 
LDL cholesterol above 25.8 mmol/L (> 1000 mg/dL). By 
this the twins meet the diagnostic criteria for homozygous 
FH which was confirmed by identifying the primary LDLR 
defect [17]. The boys were initially treated with statins, 
however, there was no measureable decrease in LDL cho-
lesterol (< 5%). Interestingly, the treatment with ezetimibe 
resulted in a decrease in LDL cholesterol of roughly 15% 

which is remarkable considering the total lack of any func-
tioning LDLR. The twins were clinically stable and under-
went weekly LDL apheresis for more than 10 years . In this 
report, we would like to focus mainly on the heterozygote 
parents of these two boys. Both subjects were free of any 
signs for coronary artery disease (CAD); however, there 
was a strong family history of CAD. The male subject had 
untreated a total cholesterol of 9.8 mmol/L (= 379 mg/dL) 
and LDL cholesterol of 7.7 mmol/L (= 298 mg/dL), whe-
reas the female subject with the identical genetic defect had 
initially a total cholesterol of 7.6 mmol/L (= 296 mg/dL) 
and LDL cholesterol of 5.9 mmol/L (= 203 mg/dL). After 
6 weeks treatment with simvastatin 40 mg in combination 
with ezetimibe 10 mg once daily, the LDL levels dropped by 
55 and 64% respectively. The medication was well tolera-
ted. The total lipid profile prior to and under lipid-lowering 
treatment is summarized in Table 1.

Discussion

We identified the molecular basis of LDLR deficiency in 
some of the most severely affected patients with the hig-
hest LDL cholesterol levels reported so far in humans. The 
disease was found to be due to a p.W556R mutation of the 
LDL receptor resulting in class II defect with total loss of 
function [18]. Sozen et al. [19] revealed this mutation to be 
rather frequent in the Turkish population . Most recently we 
reported the kinetic consequences of this mutation by stu-
dying the in vivo kinetics in the heterozygote father of our 
twins. The heterozygote p.W556R subject had both a slow-
fractional catabolic rate (FCR) for LDL Apo B-100 (FCR in 
FHMarburg: 0.19/day versus FCR in controls: 0.35 ± 0.1/day) 
and a high LDL production rate (PR; FHMarburg: 13.0 mg/kg/
day versus PR in controls: 10.3 ± 1.9 mg/kg/day) resulting in 
an increase in LDL cholesterol [20].

In FH, two thirds of all known mutations are located 
in the epidermal growth factor-like (EGF) domain of the 
LDLR. Among these, one third affects the YWTD repeats of 
the LDL receptor and alter conserved scaffolding residues 
of the β-propeller that disrupt its structure. These results in 
inefficient LDL receptor transport to the cell surface—a so-

Table 1  Lipid levels before and after 6 weeks of treatment in two heterozygote patients with the p.W556R LDL receptor mutation
Patients Sex Age (years) TC (mmol/L) TG (mmol/L) LDL-C (mmol/L) HDL-C (mmol/L) LDLR (p.W556R)
No lipid-lowering therapy M 36 9.8 1.7 7.7 1.2 Heteroz
Simvastatin 40 mg/ezetimibe 10 mg 5.2 1.1 3.5 1.1
No lipid-lowering therapy F 30 7.6 1.3 5.2 1.8 Heteroz
Simvastatin 40 mg/ezetimibe 10 mg 3.5 0.6 1.9 1.4
Age refers to years of age at blood sampling. Lipid values are given in millimoles/litre
F female; M male; TC total cholesterol; TG triglycerides; LDL-C LDL cholesterol; HDL-C HDL cholesterol; LDLR LDL receptor
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called class II defect of the LDLR as those in the patients 
described here [21]. There are several interesting findings 
we would like to share from our studies in the heterozygote 
FHMarburg (p.W556R) patients:

1.  �The LDL cholesterol levels of the female subject is 
remarkably lower compared with those of her (in terms 
of identical LDLR defect) male counterpart (LDL in the 
female subject: 5.9 mmol/L (= 203 mg/dL) versus LDL 
in the male subject: 7.7 mmol/L (= 298 mg/dL). This fin-
ding is of special interest since both subjects have the 
identical genetic defect leading to FH; however, simply 
the gender seems to influence the LDL cholesterol levels 
for up to one third of their individual LDL cholesterol 
levels. Since this finding is seen in other FH subjects as 
well, we assume that understanding the gender-specific 
mechanisms might open a new and promising approach 
to lower LDL cholesterol.

2.  �The LDL cholesterol-lowering potency of simvastatin 
40 mg/ezetimibe 10 mg was impressive in both subjects. 
However, despite the identical mutation the effect of 
simvastatin 40 mg/ezetimibe 10 mg was greater in the 
female subject compared with the male subject (64 ver-
sus 55%). This finding is in contrast to the data reported 
recently by Abramson et al. [22]. Abramson et al. analy-
zed the data of more than 22,000 hyperlipidemic patients 
from 27 studies. They found that men treated with statin 
and ezetimibe experienced significantly greater changes 
in LDL cholesterol (p = 0.0066) compared with women. 
This underlines the heterogeneity in hyperlipidemic 
patients and the need of appropriate knowledge of the 
primary defects.

The rather strong LDL-lowering effect of simvastatin 
40  mg/ezetimibe 10  mg in both heterozygote subjects is 
remarkable, even more so since the homozygote children 
showed none (statin) to only moderate (ezetimibe) LDL- 
lowering effects. A more than 60% LDL cholesterol-lowe-
ring effect, as seen in the female FH subject, has been repor-
ted by Goldberg et al. [23] in a lipid-lowering trial for the 
highest simvastatin 80 mg/ezetimibe 10 mg doses (− 61%) 
whereas simvastatin 40  mg/ezetimibe 10  mg provides a 
decrease in LDL cholesterol of − 55%.

How it comes that the same genetic defect is totally 
disastrous in its homozygote state and easy to be treated in 
its heterozygote state? Most likely, that the class of defect 
is crucial and accountable for its treatability. Once—like in 
our case with the p.W556R mutation as a class II defect—
we have a defect resulting in the lack of LDLR transport. 
In the homozygote state we see no LDLR at all on the cell 
surface, making this defect to be one of the worst LDLR 
mutations known so far. However, in the heterozygote state 
we see only fully functional LDLR’s on the cell surface, 
since the LDLR defect is not coming through the LDLR 

pathway (see Fig. 1b). Once the LDLR system is stimulated 
by statin treatment we expect to see more (and only fully 
functional) LDLR on the cell surface, resulting in a clear 
LDL decrease as seen in both of our patients. In contrast, 
a class III or class IV LDLR defect would produce (maybe 
still partially functional) LDLR which show up on the cell 
surface. In the homozygote state, these defects (depending 
on the location of the mutation) increase LDL cholesterol 
more or less severely. However, in its heterozygote state 
we will see—different from class I or II defects—always 
a mixture of functional and non functional LDLR on the 
cell surface. This mixture of functional and non functional 
LDLR will increase under statin therapy. Different from 
heterozygote LDLR class I or II mutations, the non func-
tional LDLR class III or IV will compete with functional 
LDLR on the cell surface and by this interact with an appro-
priate LDL-lowering effect (see Fig.  1c). Of course, our 
study is highly limited by the exceedingly small number of 
patients involved. However, these subjects were well defi-
ned and our findings might explain why some heterozygote 
FH patients respond extremely well to statin therapy whe-
reas others fail. For example, it is known that FH patients 
with xanthomas have significantly higher LDL cholesterol 
levels than those without and are less likely to achieve LDL 
cholesterol target levels under lipid-lowering therapy [24]. 
Differences between the classes of LDLR mutations had 
been described by Miltiadous et al. [25]. However, different 
from our observations, they found only moderate decrease 
of LDL cholesterol (− 34 ± 9%) in 28 patients with a class II 
LDLR defect (G1646A, C858A) with statin treatment (ator-
vastatin 20 mg) compared with 21 patients with a class V 
LDLR mutation (G1775A) with a higher decrease in LDL 
cholesterol (− 49 ± 9%).

In the near future, thanks to the worldwide efforts and 
upcoming screening procedures, we should be able to pre-
dict the potential and benefit of any given lipid-lowering 
drug and the need of LDL apheresis, once we know the 
precise genetic defects leading to hypercholesterolemia and 
its disastrous consequences [26–30]. Till then, we should 
be careful in future study designs of lipid-lowering drugs, 
in which certain genetic backgrounds could easily over- or 
underestimate the treatment benefits of the drugs under trial.
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