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Simple Summary: Targeted therapy against epidermal growth factor (EGFR) mutations has become
the standard of care for non-small cell lung cancer, and there has not been an efficient genetic test
for non-small cell lung cancer patients. The present study aims to find a novel data-driven genetic
testing method that can effectively predict the mutation status of EGFR based on a prediction model
combining clinical features. The results of this study provide a powerful theoretical basis for the
establishment of an effective mutation prediction model. The prediction model can provide a high
reference value aiding in EGFR mutation diagnosis and subsequent treatment course.

Abstract: Data from 758 patients with lung adenocarcinoma were retrospectively collected. All pa-
tients had undergone computed tomography imaging and EGFR gene testing. Radiomic features
were extracted using the medical imaging tool 3D-Slicer and were combined with the clinical features
to build a machine learning prediction model. The high-dimensional feature set was screened for
optimal feature subsets using principal component analysis (PCA) and the least absolute shrinkage
and selection operator (LASSO). Model prediction of EGFR mutation status in the validation group
was evaluated using multiple classifiers. We showed that six clinical features and 622 radiomic fea-
tures were initially collected. Thirty-one radiomic features with non-zero correlation coefficients were
obtained by LASSO regression, and 24 features correlated with label values were obtained by PCA.
The shared radiomic features determined by these two methods were selected and combined with the
clinical features of the respective patient to form a subset of features related to EGFR mutations. The
full dataset was partitioned into training and test sets at a ratio of 7:3 using 10-fold cross-validation.
The area under the curve (AUC) of the four classifiers with cross-validations was: (1) K-nearest
neighbor (AUCmean = 0.83, Acc = 81%); (2) random forest (AUCmean = 0.91, Acc = 83%); (3) LGBM
(AUCmean = 0.94, Acc = 88%); and (4) support vector machine (AUCmean = 0.79, Acc = 83%). In
summary, the subset of radiographic and clinical features selected by feature engineering effectively
predicted the EGFR mutation status of this NSCLC patient cohort.

Keywords: machine learning; epidermal growth factor; radiomics; lung adenocarcinoma

1. Introduction

According to statistics by the World Health Organization (WHO), lung cancer has be-
come the leading cause of cancer-related deaths worldwide. Lung cancer can be categorized
into small cell lung cancer and non-small cell lung cancer (NSCLC), where NSCLC accounts
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for 80–85% of all lung cancer cases [1]. The major treatment modalities for lung cancer in-
clude surgical resection, postoperative chemotherapy, radiotherapy, or, if surgical resection
is not feasible, then combination therapy, depending on the diagnostic stage. Several retro-
spective studies have discovered [2–4] that patients with NSCLC harbor different driver
mutations (EGFR, BRAF, ROS1, MET, ALK, etc.), among which epidermal growth factor re-
ceptor (EGFR) mutations are prevalent. In the past decade, molecular translational research
has led to tremendous breakthroughs in cancer diagnosis and treatment, particularly in the
development of new targeted therapies against key signaling pathways involved in the
malignant progression of lung cancer [5,6]. EGFR-specific small-molecule tyrosine kinase
inhibitors (TKIs) were the first targeted agents to enter the standard treatment regimen
for NSCLC. Clinical trials have shown [7–9] that patients positive for EGFR mutations
treated with targeted TKI agents (erlotinib, afatinib, etc.) have improved progression-free
survival (PFS) and treatment tolerability compared to other first-line chemotherapy regi-
mens, whereas in patients with wild-type EGFR, PFS is shorter with targeted agents such as
gefitinib compared to chemotherapy regimens using platinum-based agents. Therefore, it
is of great clinical importance to rapidly and accurately identify the EGFR mutation status
in NSCLC patients.

A previous epidemiological study [10] has shown that several clinical factors (female,
no smoking history, adenocarcinoma, and East Asian ethnicity) are associated with a
high prevalence of EGFR mutations; however, there are no robustly predictive clinical
features of EGFR mutation status. Thus, sequencing-based mutation detection remains
the gold standard for identifying mutations in NSCLC patients. Although sequencing is
the most basic and straightforward method for genetic testing [11,12], it is a cumbersome
and inherently insensitive process that is not suitable for the analysis of large numbers of
clinical samples. Compared with sequencing, other molecular biology methods, although
with improved sensitivity and specificity, are only effective for some common mutations.
In addition to the characteristics of the assay itself, the process of genetic testing with
biopsy specimens is affected by many other factors, such as sample quality, sample content,
pathology type, and degree of differentiation, so there is a great need for a rapid, easy,
cost-effective, and accurate mutation detection method.

Computed tomography (CT) is the primary imaging tool used for the diagnosis of lung
cancer in the current clinical workflow. Therefore, extracting relevant information from
these routine images is inherently high yield. There is currently no evidence linking EGFR
status in NSCLC patients solely to CT image features; however, the latest radiomic meth-
ods [13,14] have provided a quantitative analysis of tumors and their microenvironment
by extracting minable high-content data features to establish imaging prediction models.
The application of these radiomic methods has many advantages. For example, not only
can they provide an effective clinical prediction for patients who are not eligible for biopsy,
but their successful application would also provide additional reference information for
EGFR-negative patients. In this study, we proposed a machine learning-based method
to identify imaging biomarkers of EGFR mutations in domestic NSCLC patients through
imaging analysis.

2. Materials and Methods
2.1. Patient Data

All patient data were retrospectively collected from patients diagnosed with lung
cancer between July 2013 and February 2022 where EGFR status was determined following
surgery or pathological biopsy at Xiangya Hospital, Hunan Cancer Hospital, or the Second
Hospital, the University of South China. A total of 758 cases were enrolled according to
the inclusion criteria, with a median age of 55.6 (range 23–85) years. Of the enrolled cases,
396 cases were EGFR wildtype (EGFR−)and 362 cases harbored EGFR mutations (EGFR+).
The final data were divided into training and validation groups at a 7:3 ratio. A total of
530 patients (69.9%, 246 EGFR+, and 284 EGFR−) from Hunan Cancer Hospital were used
as the training set, and 228 patients (30.1%, 116 EGFR+, and 112 EGFR−) from Xiangya
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Hospital of Central South University and the Second Affiliated Hospital of South China
University were used as the external validation dataset. The current study was approved
by the hospital ethics committee, thereby waiving the informed consent of patients.

2.2. Case Selection

The inclusion criteria were: (1) preoperative images that could be completely read;
(2) the interval between CT examination and pathological biopsy was not more than
three months; and (3) no preoperative treatment of any kind. The exclusion criteria were:
(1) preoperative CT images with large artifacts or poor image quality; (2) preoperative
neoadjuvant chemotherapy; and (3) no EGFR gene test results.

2.3. Patient Characteristics

Clinical data of the patients gathered included gender, date of diagnosis, age, smoking
history, pathological stage, and family history. The smoking history statistic was divided
into smokers and non-smokers; EGFR mutation status was divided into unmutated and
mutated groups (exon 15–21 mutation), and staging was divided into groups I–II and III–IV.
The pathological staging of the tumors followed the NCCN Clinical Practice Guidelines
for Non-Small Cell Lung Cancer version 2. 2022. The statistical summary of the enrolled
patients in this study is shown in Table 1.

Table 1. Clinical characteristics of patients.

Characteristics Groups Overall

Gender Male 441 58.2%
Female 317 41.8%

Smoking History Yes 358 47.2%
No 400 52.8%

Stage IV 602 79.4%
IIIA 71 9%
IIIB 55 7.2%
IIA 7 0.9%
IIIC 5 0.7%
IB 6 0.8%
IIB 6 0.8%
IA 4 0.5%
II 2 0.3%

Family History Yes 79 10.4%
No 679 89.6%

Tumor Location Central Type 239 31.5%
Peripheral Type 513 67.7%

unknown 6 0.8%

EGFR Mutation wild-type 396 52.2%
exon 19 218 28.8%
exon 21 115 15.2%

exon 20.21 12 1.6%
exon 18 6 0.8%

exon 19.20 5 0.7%
exon 19.21 3 0.4%

exon 18.20.21 1 0.1%
exon 18.20 1 0.1%

exon 15 1 0.1%

2.4. CT Examination

All patients were scanned in the flat scan enhancement mode with either a GE Light
speed 16 (GE Medical Systems, Milwaukee, WI, USA), GE Discovery CT750 (GE Medical
Systems, Milwaukee, WI, USA), or a Brilliance iCT (Philips Medical Systems, Cleveland,
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OH, USA) with the following acquisition parameters: tube voltage of 120 kV, tube current
of 150–200 mA, scan layer thickness of 5 mm, and reconstruction thickness and interval
of 1.5–3 mm. All image data (before extracting features) were aligned using the Elastix
module (version 5.0.1, Linux Foundation, San Francisco, CA, USA, https://elastix.lumc.nl,
accessed on 20 July 2021) in 3D-Slicer, and the images were batch pixel standardized and
normalized using specific scripts in Jupyter Notebook.

2.5. Region of Interest (ROI) Labeling

The image analysis platform 3D Slicer (version 4.11, https://www.slicer.org/, ac-
cessed on 15 August 2021) was used in this study. The ROI segmentation was performed by
two radiologists from the thoracic and abdominal groups, both with more than five years
of relevant experience. The segmentation method was semi-automated with the following
workflow: pre-processing, semi-automatic correction of lung boundaries, solid and ground
glass shadow boundary processing, manual refinement editing, etc. Images segmented
by two of the radiologic imaging specialists were selected for intraclass correlation coeffi-
cient (ICC) consistency review, and discrepancies were resolved through discussion until
consensus was reached. The overview of the radiomics workflow is illustrated in Figure 1.
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2.6. Feature Engineering

SlicerRadiomics™ (version 2.10, http://github.com/Radiomics/SlicerRadiomics, ac-
cessed on 10 December 2021) was employed in this work. This is a scripted loadable module
bundled in the 3D Slicer extension. It gives access to the radiomics feature calculation
classes implemented in pyradiomics library. 3D Slicer was used to extract a total number of
radiomic features. These features can be divided into three categories: (1) texture-based,
(2) shape-based, and (3) intensity histogram-based. Texture features include Gray-level
co-occurrence matrix (GLCM), Gray-gradient co-occurrence matrix (GGCM), Gray-level
run-length matrix (GLRLM), Neighborhood-Intensity-Difference (NID), etc. Shape-based
features include compactness, volume, surface area, Max3Ddiameter, etc. Intensity includes
histogram kurtosis, energy, entropy, etc. To improve the model’s generalization ability and

https://elastix.lumc.nl
https://www.slicer.org/
http://github.com/Radiomics/SlicerRadiomics
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fitting efficiency, redundant features were deleted and feature repeatability and stability
were tested. Two alternative feature selection and dimensionality reduction strategies were
used to choose a subset of features with acceptable reproducibility.

2.7. Feature Selection and Modeling

The least absolute shrinkage and selection operator is a regularization-based algorithm.
Unlike ridge regression, the LASSO algorithm adds the L1 norms to the cost function of
standard linear regression as the penalty function and updates the value of the weight
coefficient λ by iteration until the optimal solution is found; the insignificant feature weight
coefficients are compressed to zero, thus achieving the purpose of feature selection. The
least absolute shrinkage and selection operator (LASSO) was used to filter the features
using logistic regression in order to generate a regression function which kept features with
non-zero coefficients to form a subset of high discrimination features. Principal component
analysis (PCA) and the Shapley value algorithm were also applied to downscale and filter
the radiomic features. Concordant features among the two screening methods were selected
for predictive modeling.

2.8. Application of Shapley Value Algorithm to PCA

The feature vector corresponding to the first n feature values containing more than
95 percent of the information was maintained, and the maximum variance value was deter-
mined. However, because the features processed by PCA after dimensionality reduction
are difficult to interpret, the game theory-based Shapley (Shapley value explanation) value
algorithm [15] was used to calculate and rank the importance of the imaging features, with
only the top n features being kept. The general steps of the algorithm implementation are:
(1) obtain the subset S of features that do not contain X (i); (2) predict the effect after adding
X (i) to all feature subsets separately; and (3) calculate the marginal contribution value of
feature X (i) by summing all results. The predictive power of feature X (i) for label values
is weighted by all possible marginal contribution values. The formula for the weight of
feature X (i) is expressed as follows:

∅x
i =

1
N ∑

S⊆N\{i}

(
N− 1

S

)−1

(vx(S∪ {i})− vx(S))

where N is the number of all features, S is the feature subset consisting of S features, and
vx represents an importance parameter mapped from the subset.

2.9. Model Establishment and Statistics Analysis

All statistical analyses and modeling efforts were performed using Jupyter notebook
(version 6.1.4, https://jupyter.org/, accessed on 13 June 2021) and SPSS (IBM, Armonk,
NY, USA, version 20.0), compiled in Anaconda (version 1.10.0, Broadway Ave, NY, USA,
https://www.anaconda.com, accessed on 5 June 2021). For continuous and categorical
variables of clinical and pathological characteristics, one-way t-tests, chi-square tests, and
multiple logistic regression analyses were conducted, and two-sided p values < 0.05 were
considered statistically significant. The screened feature subsets were subjected to machine
learning model construction, and the training and test sets were randomly assigned in
a 7:3 ratio. The K-fold method was used for ten-fold cross-validation. The training set
was trained and validated using Random Forrest (RF), K-nearest neighbor (KNN), Light
Gradient boosting (LGBM), and Support vector machine (SVC), respectively. The validation
set uses the receiver operating curve (ROC) and the area under the curve (AUC) to evaluate
the classification effect of the model.

https://jupyter.org/
https://www.anaconda.com
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3. Results
3.1. Clinical Characteristics Statistics Analysis

Demographic and pathological data of the patients are listed in Table 2. All en-
rolled cases were diagnosed as NSCLC with a median age of 55.6 ± 10 (23–85) years. The
pathological stages were as follows: 602 patients were stage IV (79.4%), 71 patients were
stage IIIA (9%), 55 patients were stage IIIB (7.2%), five patients were stage IIIC (0.7%), and
seven patients were stage IIA and IIB. A total of 362 cases presented with mutated EGFR
(exon 15–21), and 396 cases harbored wild-type EGFR. The EGFR mutation status was
found to be statistically significantly different by gender and smoking history (p < 0.001).

Table 2. Patients’ baseline characteristics.

Variables Overall Mutation Wild-Type p-Value

Median Age
(Range)

55.6 ± 10
(23–85)

55.2 ± 9.9
(23–85)

55.9 ± 10.1
(29–83) 0.34

Gender Female 317 188 129
<0.001Male 441 174 267

Smoking
History No 400 236 164

<0.001
Yes 358 126 232

Family
History No 679 326 353

0.633
Yes 79 36 43

Stage I–II 25 9 16
0.309III–IV 733 352 381

Tumor
Location C-Type 239 110 129

0.583
P-Type 513 248 265

3.2. Radiomics Features Selection

Thirty-one radiomic features with non-zero penalty function coefficients were selected
by the LASSO regression classifier (Figure 2) from a total of 622 features, and a subset of
the screened features (Table 3) was selected for EGFR mutation status prediction modeling
based on the 31 feature subsets selected by LASSO regression. The predictive model results
are shown in Figure 3, and the AUCmean for the RF model is 0.66 ± 0.06; the AUCmean
for the KNN is 0.62 ± 0.05; the AUCmean for the SVC = 0.67 ± 0.04; and the AUCmean for
the LGBM model = 0.66 ± 0.07. The test set accuracies are: RF Acc = 61%; KNN Acc = 57%;
SVC Acc = 60%; and LGBM Acc = 61%. The performance of the classifier on the training
and test sets and the F1 scores are shown in Table 4.

Table 3. Feature selection by LASSO regression. (Top 10).

Groups Feature Names Coefficients

Shape Convex −0.02970268
Orientation 0.00904001

MeanBreadth −0.0272518

GLCM -333-4Correlation −0.0582105
135-4InformationMeasureCorr1 −0.01293069

45-7SumVariance 0.005674244
135-7ClusterTendendcy 0.00998332
90-7DifferenceEntropy −0.02322079

0-4InverseVariance 0.06418816

NID Busyness 0.03406641
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Table 4. Predictive performance of four models.

Model
Name

Train ROC/
AUC Mean

Test ROC/
AUC Mean p Train Acc

Mean
Test Acc

Mean p Train F1
Mean

Test F1
Mean p

LGBM 0.99 0.64 0.03 0.95 0.61 0.03 0.95 0.63 0.02
RF 1 0.65 0.03 1 0.61 0.02 1 0.62 0.04

SVC 0.72 0.65 0.03 0.64 0.6 0.01 0.65 0.61 0.01
KNN 0.76 0.58 0.01 0.7 0.57 0.02 0.7 0.57 0.02

The radiomic feature values were normalized to be between [−1, 1] by PCA, with
all metrics approximating a normal distribution. The features with the top 24 variance
percentages contained more than 95% of the information of the original radiomic features
(Figure 4), and this feature subset was set as the principal component of the original sample
(Table 5).
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Table 5. Features reduction by PCA (Top 10).

Groups Feature Names

Shape Roundness
Convex

Orientation
MeanBreadth

NID TextureStrength1
TextureStrength

GLCM 90-1InverseVariance
270-1InverseVariance
-333-1InverseVariance

135-4Correlation

The ranking of feature importance in the subset was derived from the Shapley value
algorithm (Figure 5a), The top five radiomics features in terms of predictive power for EGFR
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mutation status were (1) Convex, (2) 90-1InverseVariance, (3) MeanBreadth, (4) Orientation,
and (5) TextureStrength.
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Six radiomic features with good repeatability were found between the LASSO and
PCA-Shapley methods (Figure 5b). These six features were combined with four clinical
features to obtain a subset of radiomic and clinical features (Table 6). The predictive model
was established and evaluated again, and the dataset was split into a training set and a test
set (7:3). Ten-fold cross-validation was performed on the test data using four classifiers
(Figure 6), in which the average AUC value of the RF model was 0.91, the average AUC
value of the KNN model was 0.83, and the average AUC value of the SVC model was 0.79.
The average AUC value for the LGBM model was 0.94. The test set accuracies were: RF
Acc = 83%; KNN Acc = 81%; SVC Acc = 83%; and LGBM model LGBM Acc = 88%. In the
same way, the performance of the classifier on the training and test sets and the F1 scores
of the new model are shown in Table 7.

Table 6. A combined subset of features with radiomics and clinical.

Feature Type Feature Name

Radiomics Convex
Meanbreadth
Orientation

TextureStrength
Compactness1

270-7Correlation

Clinical SmokingHistory
Age

Gender
FamilyHistory
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Figure 6. Receiver operating characteristics (ROC) curves when using the combined features. (a) Ran-
dom Forest. (b) K-nearest neighbor. (c) Support vector machine. (d) Light Gradient boosting.

Table 7. The performance of four predictive models using the combined features.

Model
Name

Train ROC/
AUC Mean

Test ROC/
AUC Mean p Train Acc

Mean
Test Acc

Mean p Train F1
Mean

Test F1
Mean p

LGBM 1 0.926 0.084 1 0.88 0.11 1 0.72 0.32
RF 1 0.91 0.079 1 0.832 0.1 1 0.66 0.28

SVC 0.897 0.87 0.09 0.87 0.831 0.12 0.75 0.64 0.22
KNN 0.947 0.84 0.096 0.9 0.81 0.09 0.79 0.63 0.18
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4. Discussion

A variety of methods have been developed to detect EGFR mutations, such as the
polymerase chain reaction amplification gene direct sequencing method, high-resolution
lysis analysis, and fragmentation analysis [16,17]. However, each of these methods require
an invasive pathological biopsy to extract tumor samples, which is not only costly and
poorly reproducible but can also yield false-negative results. The aim of our current study
was to establish a non-invasive, novel genetic detection method via the correlation of
radiomic features to the standard genetic detection of EGFR status in NSCLC tumors.

In this study, EGFR mutations were found in 47.8% of all patients. The most common
mutations of exon 19 and exon 21 (28.8% and 15.2%, respectively) are consistent with
the results of published studies of relevant Asian patients [18–20]. There were also rarer
cases: one patient with an exon 15 mutation and 12 patients with confirmed double mu-
tations in exon 20 (TKI-resistant mutation) and exon 21 (TKI-sensitive mutation). Several
studies [18,21] have shown that EGFR mutations are mostly seen in patients with lung
adenocarcinoma without a smoking history, that female, of the peripheral type, and are not
associated with factors such as age and pathological stage, which are further validated in
our current study. Given the high rate of EGFR mutations in Chinese lung adenocarcinoma
patients, a previous study [22] has demonstrated that exon 19 and 21 mutations combined
with clinicopathological features could be a molecular marker to assess the efficacy of TKI
treatment for NSCLC. Therefore, it is necessary to explore reliable evidence to predict EGFR
mutations in addition to clinical and pathological factors. Several studies [23–25] have
shown that radiomic features can quantify the overall tumor and peripheral microenviron-
ment, reflecting different gene expression types. Moreover, additional studies [26,27] have
also pointed out that the EGFR mutation status is related to gender smoking history and
histological subtype (squamous cell adenocarcinoma), which is consistent with the results
of this study. Furthermore, previous studies [26,28,29] were based on machine-learning
using hand-draft features, and the effect of the model combined with clinical features was
better than that of the single radiomics features model or clinical features, but the prediction
effect of the combined features subset in these studies achieved about Auc 0.8. However,
our current study not only coupled radiomic and clinical features but also used different
screening methods to obtain feature subsets with good repeatability in the feature selection
stage, which has greatly improved the modeling effect. Among the four classifiers, the
LGBM classifier was found to offer the best effect (AUCmean = 0.94, acc = 88%). Despite
the advantages of machine-learning-based radiomics methods, hand-draft features require
time-consuming boundary segmentation of the lesioned tissue, so some studies [24,25,30]
have proposed the use of deep learning methods to learn certain gene-related features,
thus avoiding the four complex procedures of features engineering. On the other hand,
our objective can be further clarified in that although the mutation status is significant for
the decision of patient treatment, it is more clinically relevant for personalized treatment if
the subtypes of mutation can be distinguished. Mutations in the EGFR and echinoderm
microtubule-associated protein 4-mesenchymal lymphoma kinase fusion (EML4-ALK)
mutations are more common in NSCLC, so in future research we will analyze the mutation
types and subtypes of these two genes and introduce survival analysis of combination
therapy and prognosis analysis of targeted therapy.

Six radiomics features with relevance to the mutation were extracted, including four
shape-based features (Convex, MeanBreadth, Orientation, Compactness1) and two texture-
based features (TextureStrength, Correlation). Shape-based features are very significant
descriptors of heterogeneity and visual intuition of the tumor, while texture-based features
are defined as a repetitive arrangement of some basic pattern of the image [31]. Some
researchers [32] proposed in their studies for the first time that texture-based features of
medical images can be used to predict the effects of tumor treatment. The same shape
features have also been used in several studies [33,34] to build predictive and prognostic
models for certain specific diseases. In summary, the subset of features in the study have
potential as biomarkers.
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Generally, with the development of medical imaging data and sophisticated image
analysis tools, radiomics has gradually matured to provide an effective decision-making
tool for personalized treatment plans in modern medicine [35]. It should be noted that
there are several limitations to our study. First, this study is a retrospective study with some
positive and negative sample imbalances between groups, which could affect the results
of the analysis of variables. Second, multi-center data were used. Although this study
considered the issue of feature reproducibility in the feature screening process, the brands
and the parameters of scanning machines were inconsistent during the data collection
phase, and ROIs were all outlined semi-automatically by radiologists, which could affect
the reproducibility and stability of radiomic features. In future studies, we will establish
improved quality evaluation criteria to further promote the standardized assessment and
relevance of radiomics methods to clinical problems. Finally, although the model test results
based on feature subsets achieved high accuracy, it is still worth exploring whether the
feature selection method combining PCA and Shapley values in this study was reasonable.
We will continue to optimize the sample structure in future studies or conduct prospective
studies based on more homogeneous patient samples to strengthen the reliability and
stability of the model for gene mutation prediction so as to provide personalized treatment
plans for lung cancer patients.

5. Conclusions

We have developed a machine learning-based method for identifying the status of
EGFR mutations in NSCLC which can provide radiologists with a quantitative and intuitive
method to determine the type of gene mutation in lung cancer. Although the results were
not satisfactory in the initial training stage, better prediction results were achieved by a
random distribution of positive and negative samples, the adjustment of hyperparameters
of classifiers, and the optimization of overfitting. Our results indicate that this method
has a great potential application for gene expression prediction. Nonetheless, it is still
necessary to implement valid external validation in combination with additional multi-
center data to improve the stability and reliability of our method. We have also highlighted
the feasibility of non-invasively detecting the EGFR genetic status in lung adenocarcinomas
using a machine learning model based on combined CT radiomic features and clinical
characteristics. Hopefully it can provide additional information for the treatment strategy
of lung adenocarcinoma patients.
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