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Cadmium exposure and its 
association with serum uric acid 
and hyperuricemia
Honglin Sun1, Ningjian Wang1, Chi Chen1, Xiaomin Nie1, Bing Han1, Qin Li1, Chunfang Zhu1, Yi 
Chen1, Fangzhen Xia1, Yingchao Chen1, Hualing Zhai1, Boren Jiang1, Bin Hu2 & Yingli Lu1

Few studies have investigated the association between serum uric acid (UA) and cadmium exposure. 
Our previous study revealed a significantly higher blood cadmium (CdB) level in the Chinese population 
compared to populations in other countries. To determine whether CdB in Chinese adults is associated 
with serum UA and hyperuricemia, 2996 participants from the cross-sectional SPECT-China study 
were recruited. CdB was measured by atomic absorption spectrometry. Hyperuricemia was defined 
as a serum UA concentration ≥416.4 μmol/L for men and ≥356.9 μmol/L for women. Regression 
analyses were used to analyze the association of CdB with serum UA and hyperuricemia. We found 
that the median CdB level was higher in men with hyperuricemia (2.40 μg/L) than in men without 
hyperuricemia (1.98 μg/L, P < 0.05). A positive relationship between serum UA and CdB was found in 
Chinese men after adjusting for the estimated glomerular filtration rate (eGFR), current smoking status, 
diabetes, dyslipidemia, hypertension and body mass index and in participants with eGFR > 60 mL/
min per 1.73 m2. Further, the odds ratio of hyperuricemia increased with increasing CdB quartiles 
(P for trend < 0.05) in men. In conclusion, CdB was positively related to the serum UA level and to 
hyperuricemia in Chinese men but not in Chinese women.

Serum uric acid (UA) is the final enzymatic product when the body breaks down purine1. Increased production 
or decreased excretion of UA causes hyperuricemia2. Previous studies have indicated that hyperuricemia is asso-
ciated with cardiovascular diseases3 and metabolic diseases such as diabetes4, hypertension5 and dyslipidemia6. 
In past decades, the prevalence of hyperuricemia has increased to 21% and 13% in the US and Chinese general 
populations, respectively. Although this trend may be related to the increasing prevalence of adiposity and hyper-
tension1, 4, environmental factors cannot be ignored.

Cadmium is a toxic metal with negative effects on health7. Occupational exposure is mainly from indus-
trial processes. Smoking tobacco and contaminated food such as vegetables and rice are the main sources of 
general cadmium exposure7. Blood cadmium (CdB) levels vary by region, age and ethnicity7. Previous studies 
have confirmed the pathogenic role of cadmium exposure in renal damage7, bone destruction8 and cancer9, 10.  
Recent research has focused on the role of cadmium as an important environmental endocrine disruptor11. 
Epidemiological studies have linked cadmium exposure to metabolic diseases such as diabetes12, obesity13 and 
thyroid disease14, although the results have not been consistent15, 16. We also found a relationship between cad-
mium exposure and prediabetes in our previous work17. However, the relationship between cadmium exposure 
and hyperuricemia remains unknown.

Due to its long biological half-life18, cadmium mainly accumulates in the kidney and liver of human bod-
ies, which may lead to elevated plasma uric acid levels according to several animal studies19, 20. Furthermore, 
as mentioned above, cadmium exposure is associated with metabolic diseases and thus may prompt the occur-
rence of hyperuricemia and gout21, 22. Epidemiological evidence of a relationship between cadmium exposure and 
hyperuricemia is scarce. A cross-sectional study from the National Health and Nutrition Examination Survey 
(NHANES) showed no relationship between them2. Nevertheless, our previous study revealed that the CdB level 
(median of 1.70 μg/L) was much higher than that reported in other countries17, and approximately 17% of subjects 
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still had a CdB level higher than 5.0 µg/L. No study has ever explored this association in the Chinese population 
at the current CdB level, which differs from the level in the US. Hence, using data from a population-based inves-
tigation called the Survey on Prevalence in East China for Metabolic Diseases and Risk Factors (SPECT-China) 
in 2014, we aimed to explore the relationships between the CdB and serum UA levels and hyperuricemia in the 
general Chinese population.

Results
Characteristics of participants by hyperuricemia status.  The characteristics of the study population, 
categorized by sex and hyperuricemia status, are provided in Table 1. Participants with hyperuricemia were more 
likely to have comorbid conditions such as obesity, hypertension, dyslipidemia and reduced renal function in 
both genders (P < 0.05). The median CdB level was 2.40 (0.68–4.61) μg/L higher in men with hyperuricemia than 
in men without hyperuricemia (P < 0.05), but the CdB levels in women showed no significant difference between 
individuals with and without hyperuricemia. Additionally, the median blood lead (PbB) levels were comparable 
between different serum UA levels.

Association of serum UA level with CdB by linear regression.  Linear regression modeling of the data 
showed that a higher CdB level was associated with a higher serum UA concentration (B = 2.963, p < 0.05) in 

No hyperuricemia Hyperuricemia P

Men

N 944 291

Serum UA level, μmol/L 334.0 ± 52.5 473.7 ± 56.3 <0.001

Age, yr 52 ± 14 51 ± 14 0.40

Anthropometric measures

 Height, cm 168.5 ± 7.0 168.8 ± 6.8 0.57

 Weight, kg 69.2 ± 10.8 74.4 ± 10.6 <0.001

 BMI, kg/m2 24.3 ± 3.3 26.1 ± 3.0 <0.001

 Waist circumference, cm 82.7 ± 9.5 86.8 ± 7.8 <0.001

Comorbid conditions

 Diabetes, % 14.5 12.4 0.39

 Hypertension, % 36.4 47.8 <0.01

 Dyslipidemia, % 31.3 54.3 <0.001

 CdB level, μg/L 1.98 (0.56–4.19) 2.40 (0.68–4.61) <0.05

 PbB level, μg/L 36.89 (25.15–53.00) 39.00 (25.00–53.68) 0.63

 eGFR, mL/min per 1.73 m2 84.7 ± 14.0 78.9 ± 16.5 <0.001

Current smoker, % 41.5 46.0 0.18

Rural/urban residence, % 14.2/85.8 14.8/85.2 0.80

Women

N 1584 177

Serum UA level, μmol/L 258.9 ± 48.2 400.3 ± 48.7 <0.001

Age, yr 50 ± 14 59 ± 13 <0.001

Anthropometric measures

 Height, cm 156.9 ± 6.0 155.8 ± 6.5 <0.05

 Weight, kg 57.6 ± 8.7 61.7 ± 9.5 <0.001

 BMI, kg/m2 23.4 ± 3.3 25.4 ± 3.5 <0.001

 Waist circumference, cm 74.6 ± 9.6 82.3 ± 9.4 <0.001

Comorbid conditions

 Diabetes, % 7.4 19.8 <0.001

 Hypertension, % 27.4 52.4 <0.001

 Dyslipidemia, % 19.7 47.5 <0.001

 CdB level, μg/L 1.62 (0.50–3.89) 1.71 (0.50–3.66) 0.70

 PbB level, μg/L 33.19 (22.00–46.76) 36.00 (22.00–49.60) 0.29

 eGFR, mL/min per 1.73 m2 87.1 ± 15.4 72.3 ± 17.4 <0.001

 Current smoker, % 2.5 6.8 <0.01

 Rural/urban residence, % 17.2/82.8 28.8/71.2 <0.001

Table 1.  Characteristics of the participants categorized by hyperuricemia status. Data are summarized as the 
mean ± SD or median (interquartile range) for continuous variables or as a number with a proportion for 
categorical variables. Dyslipidemia was defined as total cholesterol ≥6.22 mmol/L, triglycerides ≥2.26 mmol/L, 
LDL-C ≥4.14 mmol/L or HDL-C <1.04 mmol/L. Hyperuricemia was defined as a serum urate level 
≥416.4 μmol/L in men and ≥356.9 μmol/L in women.
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men after adjusting for PbB (Table 2). This positive correlation remained even after the data were adjusted for esti-
mated glomerular filtration rate (eGFR), current smoking status, diabetes, dyslipidemia, hypertension and body 
mass index (BMI) (B = 2.718, p < 0.05). After we excluded participants with renal impairment (eGFR ≤ 60 mL/
min per 1.73 m2) and smokers, the serum UA level remained positively associated with CdB (B = 2.595, p < 0.05 
and B = 2.771, p < 0.05, separately). However, no relation between the CdB and serum UA levels was observed in 
women in either the crude or the fully adjusted model. Furthermore, PbB was analyzed as an independent varia-
ble, and we found no correlation between PbB and serum UA levels in either gender.

Association of CdB quartiles with hyperuricemia by logistic regression analyses.  In 
multivariate-adjusted logistic regression analyses (Table 3), the CdB levels were divided by quartile (Q1: ≤0.60; 
Q2: 0.61–2.09; Q3: 2.10–4.29; Q4: ≥4.30). The Q1 of CdB was used as the reference. Male participants in the 
highest quartile of CdB had an OR of 1.50 (95% CI, 1.00 to 2.24) for hyperuricemia after adjusting for age, smok-
ing and PbB (P for trend < 0.05). After adjusting for eGFR, current smoking status, PbB, diabetes, dyslipidemia, 
hypertension and BMI, the ORs of Q3 and Q4 CdB for hyperuricemia were 1.82 (95% CI, 1.18, 2.79) and 1.61 
(95% CI, 1.04, 2.49), respectively (P for trend < 0.05). Higher ORs for the CdB levels in Q3 (OR = 1.99, 95% CI, 
1.26, 3.15) and Q4 (OR = 1.77, 95% CI, 1.11, 2.80) were observed in participants with relatively normal renal 
function (eGFR > 60 mL/min per 1.73 m2, P for trend < 0.01). After we excluded smoking participants, a marginal 
significance for CdB as a risk factor for hyperuricemia remained (P for trend = 0.08). In women, the CdB levels 
were still not related to hyperuricemia (P for trend > 0.05).

Discussion
We explored the association between CdB and UA in Chinese adults. Our study revealed that CdB was positively 
associated with serum UA levels and hyperuricemia in Chinese men but not in women. This association was inde-
pendent of PbB, eGFR, current smoking status, diabetes, dyslipidemia, hypertension and BMI. Furthermore, in 
male participants with relatively normal renal function (eGFR > 60 mL/min per 1.73 m2), a positive relationship 
between CdB and hyperuricemia remained.

Cadmium exposure has been linked to numerous human health problems11. Cadmium has been found to 
target the kidneys and induce proximal tubular reabsorptive dysfunction7. Prolonged exposure to high cadmium 
levels has given rise to osteomalacia as well as osteoporosis7. In particular, various studies have demonstrated 
the possible role of cadmium as an endocrine disruptor11, 14, 15. Cadmium can accumulate in the thyroid gland. 
Colloid cystic goiter, diffuse parafollicular cells, nodular hyperplasia and hypertrophy are often found in chronic 
cadmium toxicity14. Both animal studies and epidemiology studies have revealed that cadmium alters various 
blood sex hormone levels, such as luteinizing hormone, progesterone and testosterone11, 23. Moreover, cadmium 
can exert an estrogenic effect both in vivo and in vitro24. Cadmium has been found to accumulate in the pancreas 
and exhibit detrimental effects on β cell function25. Both NHANES and our previous study showed that CdB level 
was associated with prediabetes12, 17.

The CdB levels of our participants were higher than in those in developed countries18, 26–28, which may be 
attributed to the economic boom and industrialization29. Industrial uses have led to the widespread dispersion of 
Cd at trace levels into the air, water, and soil and thus into foods18. Atmospheric Cd emissions from non-ferrous 
metal smelting and coal combustion in China increased by approximately 4.6 fold from 1990 to 201029, 30. Another 
explanation is dietary habits. As in other Asian countries such as Bangladeshi and Korea26, 31, our staple foods 
are rice and vegetables, which are more likely to be contaminated by cadmium pollution7. Furthermore, partici-
pants living in areas with low economic status had higher CdB than participants in high-economic-status areas17. 
Industrial factories prefer to build sites in low-economic-status areas because of the low prices of land and labor. 

Serum urate CdB level PbB level

Men

 Model unadjusted 2.963 (0.922)* −0.062 (0.102)

 Model adjusted for age, smoking 2.905 (0.922)* −0.059 (0.102)

 Full model, overall** 2.718 (0.862)* −0.090 (0.096)

 Full model, eGFR >60 mL/min per 1.73 m2 2.595 (0.852)* −0.039 (0.095)

 Full model, non-smoker 2.771 (1.140)* 0.016 (0.118)

Women

 Model unadjusted −0.272 (0.503) 0.100 (0.072)

 Model adjusted for age, smoking 0.439 (0.488) −0.017 (0.070)

 Full model, overall** 0.556 (0.452) −0.013 (0.066)

 Full model, eGFR >60 mL/min per 1.73 m2 0.452 (0.451) 0.011 (0.067)

 Full model, non-smoker 0.477 (0.472) −0.015 (0.070)

Table 2.  Association of CdB level (independent variable) with serum urate level (dependent variable). Data 
are expressed as unstandardized coefficients (standard errors). Linear regression analyses were used. eGFR, 
estimated glomerular filtration rate. *Denotes statistical significance at P < 0.05. **Full model included PbB, 
eGFR (which incorporates age and serum creatinine level), current smoking status, diabetes, dyslipidemia, 
hypertension and BMI. All variables were categorical except eGFR and BMI, which were entered as continuous 
measures.
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Poor infrastructure construction and environmental supervision systems combined with a lack of water-quality 
monitoring together led to water cadmium contamination17.

Little is known about the association of cadmium exposure with UA. The NHANES data for 2005–2008 
revealed no relationship between cadmium and gout in the USA2. However, the CdB levels in Americans were 
much lower than those in Chinese adults17. Previous animal studies have established models of renal toxicity with 
decreased eGFR upon cadmium administration, which resulted in elevated serum UA levels32, 33. Nevertheless, 
in our research, CdB was positively correlated with hyperuricemia after adjustment for eGFR and in participants 
with an eGFR > 60 mL/min per 1.73 m2, suggesting other mechanisms beyond a decreased eGFR.

UA is primarily produced in the liver by xanthine oxidoreductase34 and then undergoes glomerular filtration, 
tubular reabsorption and excretion by the kidneys35. The excretion of UA consists of a basolateral uptake step 
mediated by an organic anion transporter36, followed by an efflux step mediated by multidrug resistance pro-
tein 4 and the urate transporter37. Cadmium-related renal damage begins with proximal renal tubular injury38 
before glomerular injury. Tubular organic anion uptake transporters may be a target for cadmium19, 33 because 
sub-chronic cadmium intoxication results in a loss of basolateral invaginations and the down-regulation of 
organic anion transporters and organic cation transporters, which may lead to decreased urate secretion from the 
tubular cells. Cadmium toxicity may lead to impaired p-aminohippurate excretion due to a loss of organic anion 
carriers in the proximal tubular basolateral membranes20. Therefore, we hypothesized that the early renal damage 
by cadmium exposure might lead to a defect in urate excretion and give rise to hyperuricemia.

Oxidative stress is among the important mechanisms of cadmium toxicity, and the liver is a critical target 
organ39. There is an increased conversion of xanthine oxidoreductase from xanthene dehydrogenase to xanthine 
oxidase in the cadmium-treated liver40. The transition from purine to UA, mediated by xanthine oxidase, leads to 
the production of reactive oxygen species, which may be accompanied by increased UA production. Furthermore, 
previous studies have suggested that serum UA is an antioxidant41. Hence, elevated serum UA may be a protective 
mechanism against oxidative stress from cadmium exposure.

The gender-specific association between CdB and UA level is inconclusive. Sex hormones may be involved. 
CdB was found in a previous study to negatively correlate with total testosterone and sex hormone binding glob-
ulin in Chinese men23. Conversely, the data from NHANES 2011–2012 show significantly positive associations 
between CdB and serum testosterone in men42. Moreover, estrogen-induced increases in the fractional excre-
tion of UA were associated with lower levels of UA in male-to-female transsexuals43. A previous study showed 
that women and men differed in their pathogenic factors and treatment monitoring because female patients had 
greater co-morbidities and received the appropriate treatment more often44. Knowledge on this gender-specific 
association is thus rather limited.

Cadmium and lead (Pb) are two toxic metals that are widely distributed in the environment. They share sim-
ilar population exposure routes45, 46. Concurrent exposure to both metals is very common46, 47. Epidemiological 
evidence has shown that CdB is positively related to PbB17, 48 and that the two metals have interactive effects in 
certain diseases45, 49. Lead toxicity (>80 μg/dL) is associated with hyperuricemia and gout47, 50, 51. Moreover, there 
is still a link between relatively lower PbB and hyperuricemia2, 52. Thus, we regarded PbB as an important con-
founding factor. Moreover, we evaluated the relationship between PbB and UA levels in our participants, but there 
was no significant relationship in either men or women.

Variable

CdB level

Q1 Q2 Q3 Q4
P for 
trend

Men

CdB range, μg/L ≤0.60 0.61–2.09 2.10–4.29 ≥4.30

Hyperuricemia

 Model adjusted for age, smoking, PbB Ref. 1.22 (0.82, 1.80) 1.43 (0.96, 2.12) 1.50 (1.00, 2.24) <0.05

 Full model, overall* Ref. 1.22 (0.79, 1.87) 1.82 (1.18, 2.79) 1.61 (1.04, 2.49) <0.05

 Full model, eGFR >60 mL/min per 1.73 m2 Ref. 1.29 (0.82, 2.03) 1.99 (1.26, 3.15) 1.77 (1.11, 2.80) <0.01

 Full model, non-smoker Ref. 1.03 (0.58, 1.81) 1.65 (0.94, 2.92) 1.50 (0.85, 2.64) 0.08

Women

CdB range, μg/L ≤0.50 0.51–1.65 1.66–3.88 ≥3.89

Hyperuricemia

 Model adjusted for age, smoking, PbB Ref. 0.95 (0.60, 1.51) 1.24 (0.79, 1.94) 1.13 (0.70, 1.83) 0.424

 Full model, overall* Ref. 1.02 (0.61, 1.70) 1.36 (0.83, 2.22) 1.25 (0.74, 2.11) 0.265

 Full model, eGFR >60 mL/min per 1.73 m2 Ref. 0.98 (0.57, 1.67) 1.11 (0.64, 1.94) 1.11 (0.63, 1.94) 0.642

 Full model, non-smoker Ref. 1.08 (0.64, 1.81) 1.33 (0.81, 2.20) 1.11 (0.65, 1.90) 0.53

Table 3.  Association of blood cadmium level quartiles with hyperuricemia. Data are expressed as odds ratios 
(confidence interval). Logistic regression analyses were used. eGFR, estimated glomerular filtration rate. *Full 
model included eGFR (which incorporates age and serum creatinine level), current smoking status, PbB, 
diabetes, dyslipidemia, hypertension and BMI. All variables were categorical except eGFR, PbB and BMI, which 
were entered as continuous measures.
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This study is the first exploration of the relationship between CdB and hyperuricemia in different genders in 
the Chinese population. Homogeneity and strict quality control were guaranteed because the same trained staff 
was used. Furthermore, we considered PbB to be a confounding factor when exploring the association between 
CdB and UA levels.

There are some limitations of this study. First, using a cystatin C-based formula to adjust for the GFR estimates 
is required in healthy populations with normal renal function, which was not available to us, but the CKD-EPI 
equation applied in our study was confirmed to be more accurate than the Modification of Diet in Renal Disease 
Study equation, particularly for censoring numerical estimates greater than 60 mL/min per 1.73 m2 53. Second, 
we used the blood cadmium levels rather than urinary cadmium. Urinary cadmium reflects lifetime cadmium 
exposure, but for relatively low cadmium exposure levels, blood cadmium levels may be more appropriate38. 
It would have been ideal if we could detect both. Third, this study did not include information on food intake. 
A high serum UA level is usually associated with an intake of large amounts of food that is high in purines2. 
It is reasonable that the CdB levels are parallel with the serum UA levels in participants with large daily food 
intakes. Furthermore, we could not determine the causal relationship between CdB and hyperuricemia in this 
cross-sectional study.

In conclusion, CdB was positively associated with serum UA levels and hyperuricemia in Chinese men but 
not in women. This study indicated that cadmium exposure may confer a risk for hyperuricemia, which was not 
attributed solely to cadmium toxicity-induced renal dysfunction. However, in cases of relatively normal renal 
function, the CdB level was still positively related to serum UA. Further study is needed to demonstrate cau-
sality and elucidate the underlying mechanisms. In addition, efforts to reduce cadmium exposure in adults are 
warranted.

Methods
Study population.  Our data (n = 6899) were from the SPECT-China study54, 55. The sampling method was 
described in detail in our previous study23. A total of 2996 subjects were enrolled in our final study after exclud-
ing participants with missing values for UA (n = 3429) and CdB (n = 474). Before the data collection, written 
informed consent was provided by all participants. All procedures followed were in accordance with the ethical 
standards of the responsible committee on human experimentation (institutional and national) and with the 
Helsinki Declaration of 1975, as revised in 2008. The study protocol was approved by the Ethics Committee of 
Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine.

Measurements.  The questionnaires about demographic characteristics, medical history and lifestyle risk 
factors and anthropometric data were constructed by the same trained staff as previously described54, 55. Body 
weight, height and the calculation of BMI were calculated consistently with the previous study23. Waist circum-
ference and blood pressure were measured by strict adherence to the standard procedure21. Current smoking was 
defined as having smoked at least 100 cigarettes in one’s lifetime and currently smoking cigarettes17.

Venous blood samples were drawn, processed and shipped as previously described54, 55. Serum UA levels were 
measured using the uricase method with a Beckman Coulter AU 680 (Germany). The coefficient of variation was 
between 1.2% and 2.7%. Serum creatinine (Scr) was measured using a kinetic-rate Jaffe method with a Beckman 
Coulter AU 680 (Germany), and we converted the Scr levels to the estimated glomerular filtration rate (eGFR) 
according to the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation: (1) for a woman 
with Scr ≤0.7 mg/dL, eGFR = 144 × (Scr/0.7)−0.329 × (0.993)age; (2) for a woman with Scr >0.7 mg/dL, eGFR = 1
44 × (Scr/0.7)−1.209 × (0.993)age; (3) for a man with Scr ≤0.9 mg/dL, eGFR = 141 × (Scr/0.9)−0.411 × (0.993)age; and 
(4) for a man with Scr >0.9 mg/dL, eGFR = 141 × (Scr/0.9)−1.209 × (0.993)age. The value of eGFR is reported in 
units of mL/min per 1.73 m2 of body surface area17.

Cadmium and lead levels in blood samples were tested using graphite furnace atomic absorption spectrome-
try17. Standard curves were established, and quality control materials were tested before the samples were meas-
ured. Two quality control personnel participated in the process control. Outliers were detected by duplicate runs. 
The detection limits for blood cadmium and lead were 0.01 µg/L and 0.1 µg/L, respectively. The inter-assay coef-
ficient of variation for cadmium was 10%.

Fasting plasma glucose (FPG), total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), 
low-density lipoprotein (LDL), insulin and glycated hemoglobin (HbA1c) were assessed with the methods used 
previously17.

Definition of variables.  Hyperuricemia was defined as a serum UA concentration ≥416.4 μmol/L and 
≥356.9 μmol/L for men and women, respectively2. The definitions of overweight, obese, diabetic and hyperten-
sive in this study have been previously described21. Dyslipidemia was defined as described previously56.

Statistical analyses.  The IBM SPSS Statistics software, version 22 (IBM Corporation, Armonk, NY, USA), 
was used for data analysis. Analyses were performed separately for men and women due to major gender dif-
ferences in serum UA concentrations. A P value < 0.05 for a two-tailed test indicated a significant difference. 
The specific statistical methods for continuous variables and categorical variables were described in detail in a 
previous study17.

The association of CdB (an independent variable) with serum UA levels (a dependent variable) was assessed 
by linear regression analysis. The results were expressed as unstandardized coefficients (B) and standard errors. 
The full model included PbB, eGFR (which incorporates age and serum creatinine level), current smoking status, 
diabetes, dyslipidemia, hypertension and BMI.
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To consider the association of CdB with hyperuricemia, logistic regression analyses were used. CdB was 
divided into quartiles, with the first quartile representing the lowest levels and the fourth quartile the highest. The 
full model included eGFR (which incorporates age and serum creatinine levels), current smoking status, PbB, 
diabetes, dyslipidemia, hypertension and BMI. PbB, eGFR, and BMI were entered as continuous measures. Data 
were expressed as odds ratios (ORs) (95% confidence interval (CI).

Subgroup analyses.  Because hyperuricemia is known to be associated with kidney dysfunction and the 
kidneys are the most important target organs for cadmium exposure, we performed subgroup analyses that 
excluded participants with an eGFR of 60 mL/min per 1.73 m2 or less2. Moreover, smokers are at high risk of 
cadmium exposure17, and previous studies have indicated an association between smoking and increased purine 
catabolism57. Thus, we performed another subgroup analysis excluding current smokers. The regressions were 
performed by the same strategy as in the above analyses.
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