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Abstract: Zinc (Zn) and Zn-based alloys have been proposed as a new generation of absorbable
metals mainly owing to the moderate degradation behavior of zinc between magnesium and iron.
Nonetheless, mechanical strength of pure Zn is relatively poor, making it insufficient for the majority
of clinical applications. In this study, a novel Zn–2Ag–1.8Au–0.2V (wt.%) alloy (Zn–Ag–Au–V) was
fabricated and investigated for use as a potential absorbable biocompatible material. Microstructural
characterization indicated an effective grain-refining effect on the Zn alloy after a thermomechanical
treatment. Compared to pure Zn, the Zn–Ag–Au–V alloy showed significantly enhanced mechanical
properties, with a yield strength of 168 MPa, an ultimate tensile strength of 233 MPa, and an elongation
of 17%. Immersion test indicated that the degradation rate of the Zn–Ag–Au–V alloy in Dulbecco’s
phosphate buffered saline was approximately 7.34 ± 0.64 µm/year, thus being slightly lower than that
of pure Zn. Biocompatibility tests with L929 and Saos-2 cells showed a moderate cytotoxicity, alloy
extracts at 16.7%, and 10% concentration did not affect metabolic activity and cell proliferation. Plaque
formation in vitro was reduced, the Zn–Ag–Au–V surface inhibited adhesion and biofilm formation
by the early oral colonizer Streptococcus gordonii, indicating antibacterial properties of the alloy.

Keywords: biocompatible materials; biocompatibility; bioactivity; zinc; absorbable; biofilm

1. Introduction

Absorbable (biodegradable) metals refer to metals degrading safely within the body. In that field,
magnesium (Mg), iron (Fe), zinc (Zn), and their alloys have gained increasing interest as absorbable
biocompatible materials potentially useable for vascular stents and osteosynthesis implants [1–5].
An appropriate degradation behavior is critical to maintain its mechanical integrity as well as
the bioactivity of the implant during the whole tissue remodeling period. Regarding Mg and its alloys,
the main drawback is the too-fast degradation process accompanied by the accumulation of hydrogen
in the tissue, making Mg-based materials not only too insufficient to provide mechanical integrity but
impeding tissue healing as well [6,7]. In contrast, Fe and its alloys degrade too slowly in vivo, leading
to long-term retention in the body [8,9].

Zn-based alloys have been considered and proposed as a new generation of absorbable metals
mainly owing to their moderate corrosion behavior, the standard corrosion potential of Zn (−0.76 VSCE)
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being between Fe (−0.44 VSCE) and Mg (−2.37 VSCE) [10,11]. More importantly, elemental Zn is
an essential element for biological functions. The average daily zinc intake is 4–14 mg/day for
humans [12]. Notably, a previous in vivo study demonstrated for Zn wires implanted into the murine
artery a steady degradation behavior and no local toxicity over 20 months after implantation [13].
Moreover, Li et al. [14] reported around Zn–1X (Mg, Ca, and Sr) pins implanted into mouse femora
new bone formation and observed remodeling. Nonetheless, the strength of pure Zn is relatively poor,
insufficient for the majority of clinical applications. For instance, for current osteosynthesis materials,
an ultimate tensile strength (UTS) of approximately 300 MPa is claimed [4]. In contrast, as cast pure Zn
has a UTS of approximately 10 MPa, which is far lower than the strength requirements for clinical
applications [2–4,15].

To date, Zn-based alloys with superior strength have been achieved by adding different alloying
elements, with or without a thermomechanical treatment. Alloying elements such as Mg, Cu, Ag, Ca,
Sr, Al, Mn, Li, Fe, and rare eath elements, etc. have been fabricated and investigated, mainly including
the Zn–Mg alloy system, Zn–Cu alloy system, and Zn–Ag alloy system [4,16–18]. The selection
of alloying elements should be based not only on the improvement of mechanical properties but
also on the consideration of biocompatibility and bioactivity. In previous studies, adding elemental
Ag to Zn alloys has been demonstrated to enhance the mechanical properties efficiently [18–22].
Also, the additional trait of adding elemental Ag is its antibacterial property [18,23]. Moreover, for
clinical use, radiopacity is a significant requirement of medical devices such as endovascular stents and
catheters, beneficial for the less invasive surgery and follow-up observation [10]. Gold (Au) has been
used in biomaterials and dental materials because of its flexibility and radiopacity. Ohyama et al. [24]
tested Au stents for the treatment of intracranial aneurysms in vivo. The results indicated that
the Au stents possessed superior radiopacity and biocompatibility in the experimental endovascular
procedures. In addition, trace vanadium (V) as an alloying element can further refine microstructure
and improve age hardening of Mg–Zn alloys [25]. Therefore, based on the above considerations, Ag,
Au, and V can bring advantages as the alloying elements for Zn-based alloys.

In this study, a novel Zn–2Ag–1.8Au–0.2V (wt.%) quaternary alloy (denoted as Zn–Ag–Au–V)
was fabricated and evaluated as a potential absorbable biomaterial. A series of thermomechanical
treatments were used to refine the microstructure. The microstructure and mechanical properties
of Zn–Ag–Au–V were investigated. In addition, the in vitro degradation behavior, cytotoxicity, and
antibacterial properties were further evaluated.

2. Materials and Methods

2.1. Materials Preparation

Phase diagrams were calculated using the Thermo-Calc software package (TCS) and the associated
TCS Nobel metal-based alloy database (TCNOBL1). The alloy was prepared analogously to the previous
study [18]. In short, the elements were melted under 1 bar argon in a graphite crucible and then cast
in a rectangular graphite mold. Homogenization in a furnace at 300 ◦C was followed by hot rolling at
200 ◦C and annealing at 390 ◦C for 15 min. Finally, plates with a dimension 30 mm × 10 mm × 0.5 mm
for immersion test and of 7 mm × 7 mm × 0.5 mm for cytotoxicity and antibacterial evaluation were
cut, respectively.

Samples were mechanically ground with carbide paper up to grit 600 (CarbiMet P1200, Buehler,
Düsseldorf, Germany) using a grinding machine (Metaserv, Buehler, Düsseldorf, Germany). Afterwards,
samples were ultrasonically cleaned with absolute ethanol for 10 min (Sonorex K102H, Bandelin, Berlin,
Germany). Samples were further disinfected with ultraviolet radiation for at least 1 h in a workbench.

2.2. Microstructure Characterization and Mechanical Properties Test

Metallographic specimens were cut, ground, polished, and then etched with 2% Nital, a mixture
of HNO3 and EtOH. The microstructure of samples was observed by optical microscopy (OM, Zeiss
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Axioplan 2; Carl Zeiss, Oberkochen, Germany). Scanning electron microscopy (SEM, Zeiss Auriga
60, Carl Zeiss Microscopy GmbH, Oberkochen, Germany) was performed to determine the phase
morphology. Additionally, phase analysis was performed on bulk samples by X-ray diffraction (XRD)
using a diffractometer D8 Discover (Bruker AXS GmbH, Karlsruhe, Germany) in GADDS-configuration
(“General Area Detector Diffraction System”). The Cu Kα X-ray beam was limited by a collimator
and a snout with 1-mm diameter to hit the sample. A Vantec-500 area detector by Bruker AXS placed
in 25-cm distance to the sample was used to collect the detector frames with an integration time of 300 s
per frame. The 2D diffraction patterns were integrated along the tilt-angle and merged in the software
package Diffrac.EVA 5.1 by Bruker AXS resulting in the one-dimensional diffraction pattern for phase
analysis. Phase analysis was done by comparing measured reflections to the ICDD-PDF 2 database
(International Centre for Diffraction Data – Powder Diffraction File).

According to ISO 10002–1: 2001 [26], the tensile properties including 0.2% yield strength (YS0.2),
ultimate tensile strength, and elongation were evaluated. The specimens with 3 mm in diameter
were carried out using a universal testing machine (Zwick Z100HT, Zwick GmbH, Ulm, Germany).
Tensile tests were performed at room temperature with a testing speed of 1.5 mm min−1 and then
increased to a strain-controlled strain rate of 2.5 × 10−3 s−1. In addition, the Vickers hardness (diamond
pyramid hardness, HV1) of samples was measured at room temperature on metallographically polished
cross-sections, and the applied load was 1 kg.

2.3. Immersion Test

A semi-static immersion test was performed in Dulbecco’s phosphate buffered saline (DPBS, Life
Technologies, Paisley, UK) at 37 ± 1 ◦C for 49 days, according to ISO 10271: 2011 [27]. The composition
of DPBS is listed in Table 1 and compared to the human extracellular fluid [28,29]. The Zn–Ag–Au–V
alloys were immersed in DPBS with a ratio of surface area to solution volume of 1.0 cm2/mL, and
pure Zn as a control. The DPBS was refreshed at certain time points (1, 4, 7, 14, 21, 28, 35, and
42 days). Metallic ion release in DPBS was detected using an inductively coupled plasma optical
emission spectrometer (ICP-OES, Optima 4300 DV, Perkin Elmer, Rodgau, Germany), and the pH values
were measured. Prior to the ICP-OES measurement, tiny degradation particles in the solution were
dissolved by pure HNO3, as described previously [30,31]. After immersion, degradation products
were removed by glycine (NH2CH2COOH) (250 g/L) for 10 min, according to ISO 8407: 2009 [32].
Afterwards, the degradation rate was calculated by weight loss using the following equation according
to the American Society for Testing and Materials standard (ASTM G31-12a) [33]:

Degradation rate (µm/year) = 8.76 × 107
× (∆W) / (D × A × T). (1)

Here, ∆W is weight loss. D (g/cm3) is the sample density. A (cm2) is the surface area. T (h) is
the immersion time. In addition, the surface morphology and chemical composition before and after
removing degradation products were evaluated by a scanning electron microscope (SEM) equipped with
an energy dispersive X-ray (EDX) analyzer at 10 kV (LEO 1430, Carl Zeiss GmbH, Oberkochen, Germany).
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Table 1. Main composition of the employed solutions compared with the human extracellular fluid [28,29].

Composition
Human Extracellular Fluid

DPBS DMEM McCoy’s 5A
Blood Plasma Interstitial Fluid

Inorganic Ions (mM)

Na+ 142.0 139.0 146.0 127.3 141.0
K+ 4.2 4.0 4.1 5.3 5.4

Mg2+ 0.8 0.7 - 0.8 0.8
Ca2+ 1.3 1.2 - 1.8 1.2
Cl− 106.0 108.0 140.6 90.8 117.2

SO4
2− 0.5 0.5 - 0.8 0.8

HPO4
2− 2.0 2.0 9.5 0.9 4.2

HCO3
− 24.0 28.3 - 44.1 26.2

Organic Components

Protein 1.2 (mM) 0.2 (mM) - - -
Glucose (mM) 5.6 5.6 - 4.5 16.6
Amino acids 2.0 (mM) 2.0 (mM) - 1.6 (g/L) 0.4 (g/L)

Concentrations of Buffering Agents (mM)

HCO3
− 24.0 28.3 - 44.1 26.2

HPO4
2− 2.0 2.0 9.5 0.9 4.2

Tris-HCl - - - 25.0 -
HPr 16.0–18.0 - - - -
Total 42.0–44.0 30.3 9.5 70.0 30.4

2.4. Cytotoxicity Test

An extract test was performed to evaluate cytotoxicity according to ISO 10993-5: 2009 [34].
Mouse fibroblast cells (L929, DSMZ GmbH, Braunschweig, Germany) and human osteosarcoma
cells (Saos-2, DSMZ GmbH, Braunschweig, Germany) were used. L929 fibroblasts were cultured
in Dulbecco’s modified Eagle medium (DMEM, Life Technologies, Paisley, UK) supplemented with
10% heat-inactivated fetal bovine serum (FBS, Life Technologies, Paisley, UK). Saos-2 osteoblasts were
cultured in McCoy’s 5A (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) supplemented with 15%
FBS. Both cell culture media were supplemented with 1% penicillin/streptomycin (Life Technologies,
Grand Island, NY, USA) and 1% GlutaMAX (Life Technologies, Paisley, UK). Both cells were grown
in 75 cm2 flasks (Costar, Corning, Tewksbury, MA, USA) under standard cell culture conditions.

Tested samples were immersed in the respective cell culture media with FBS under cell culture
conditions for 24 h, according to ISO 10993-12: 2012 [35]. Ti–6Al–4V alloy was used as a negative
control, and pure Cu as a positive control. The ratio of surface area to extraction medium was
3.0 cm2/mL. After incubation for 24 h, the original extracts were diluted with the respective fresh cell
culture media for 3, 6, and 10 times (labeled as 33.3%, 16.7%, and 10%, respectively), according to
the recommendation in [36]. The metallic ion concentrations in the extracts were detected by ICP-OES,
and the pH values were determined.

Live/dead staining assay was performed to evaluate cell morphology and cell viability exposed to
sample extracts. L929 and Saos-2 cells were seeded in 12-well plates (2.4 mL per well) at a density
of 3 × 104 cells/cm2 and then incubated overnight. Afterwards, cell culture media were replaced by
the respective sample extracts. After 24 h, cell morphologies were photographed using an inverted
microscope (CK2, Olympus, Tokyo, Japan) equipped with a remote control digital single-lens reflex
(DSLR 550D, Canon, Tokyo, Japan). Subsequently, sample extracts were removed and cells were gently
rinsed with Hank’s balanced salt solution (HBSS, Boichrom AG, Berlin, Germany). Live/dead working
solution was prepared consisting of 25 µg/mL fluorescein diacetate (FDA) and 1.25 µg/mL ethidium
bromide (EB) in 10 mL HBSS. Afterwards, 1.5 mL working solution was added to each well, followed
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by incubation for 10 min in darkness. After gentle rinsing with HBSS, cells were observed using
a fluorescence microscope (Optiphot-2, Nikon, Tokyo, Japan).

The inhibition of cell metabolic activity and cell proliferation of L929 and Saos-2 cells exposed
to different sample extracts was quantitatively assessed. Two assays were used: A tetrazolium
assay (XTT, Roche, Mannheim, Germany) and a bromodeoxyuridine assay (BrdU, Roche, Mannheim,
Germany), respectively. Briefly, cells were seeded in 96-well plates at a density of 3 × 104 cells/cm2

(200 µL per well) and incubated overnight. Afterwards, the media were replaced with 150 µL of
the respective different diluted extracts. After 24 h incubation, 50 µL XTT working solution was added
to each well for 2 h. Then, the absorbance was measured using a microplate ELISA reader with Gen5
Software (Eon Reader, Biotek Instruments GmbH, Bad Friedrichshall, Germany) at the wavelength of
450/620 nm. Additionally, to determine cell proliferation in the logarithmic growth phase between
24 h and 48 h after seeding, 15 µL BrdU labeling reagent was added to each well 24 h after cell
seeding. After 24 h incubation, proliferative activities of L929 and Saos-2 were determined by BrdU
incorporation, following manufacturer’s instructions. The absorbance was measured at 450/690 nm.

2.5. Antibacterial Test

To evaluate antibacterial properties, the Zn–Ag–Au–V alloy and Ti reference samples were
inoculated with Streptococcus gordonii strain DL1 (S. gordonii), and evaluated using a fluorescence-based
live/dead staining (Bacterial Viability Kit L13152, Invitrogen, Carlsbad, CA, USA). S. gordonii were
grown as stationary suspension culture in Schaedler medium (Beckton Dickinson GmbH, Heidelberg,
Germany) and incubated overnight at 37 ◦C. Afterwards, 4 mL S. gordonii suspension was added to
each sample in 6-well plates and cultivated at 37 ◦C for 12 h and 24 h, respectively. After incubation
for 12 h and 24 h, samples were rinsed two times with HBSS. S. gordonii adhesion on the surfaces
was evaluated by live/dead staining assay, following manufacturer’s instructions. The initial biofilm
formation and bacterial adhesion on the samples were observed using a fluorescence microscope.

2.6. Statistical Analysis

Statistical analyses were conducted using SPSS 22.0 software (IBM Corporation, Chicago, IL, USA).
All quantitative data were given as the mean ± standard deviation. Statistically significant differences
between two groups were analyzed by a two-tailed, unpaired Student’s t-test, and the significance
level was set to p < 0.05.

3. Results and Discussion

3.1. Microstructure and Mechanical Properties

Figure 1a shows the optical image of the Zn–Ag–Au–V specimen after thermomechanical treatment
and additional precipitation hardening. As shown in Figure 1b, the second phase particles were
randomly distributed along the Zn grain boundaries. Moreover, a micrograph acquired by backscatter
electron imaging (BSE) at 20 kV is shown in Figure 1c. The BSE imaging revealed the presence of
second phase precipitates dispersed in the interior and at the boundaries of the Zn grains, similar to
Zn–4Ag [18].

In our study, the average grain size of the Zn–Ag–Au–V alloy can be significantly refined via
the process optimization of the casting. Specifically, a longer holding time of the melt causes better
mixing (homogeneity). By adding a vibration during the solidification of the cast rod, the dendritic
peaks in the cast rod broke, resulting in the formation of more numerous and finer grains. Furthermore,
as-cast pure Zn and its alloys exhibited dendritic structure with anisotropy, leading to relatively low
strength [5]. For the Zn–Ag–Au–V alloy, the dendritic cast structure was successfully transformed
into a globular structure through forming and heat treatment (solution annealing). Fine precipitates
were formed after thermomechanical treatment (solution annealing and precipitation), as shown
in Figure 1b.
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Figure 2. Zn-rich part of the calculated ternary Zn–Ag–Au phase diagram using the Thermo-Calc 
software and TCNOBL1. The depicted isothermal section at 400 °C is characterized by a Zn solid 
solution (HCP_ZN) and a stability area of solid solution series of ε-phase (HCP_A3). 

Figure 1. Microstructure characterization of the Zn–Ag–Au–V alloy after thermomechanical treatment
and additional precipitation hardening. (a) Optical micrograph (OM) of the Zn–Ag–Au–V alloy,
(b) scanning electron microscope (SEM) investigation of the specimen at an accelerating voltage of
20 kV, and (c) backscatter electron imaging (BSE) at 20 kV. The red arrow indicates the presence of
coarser precipitates along the grain boundaries while finer precipitates formed within the grains.

According to thermodynamic calculations, Ag and Au showed a temperature-dependent solubility
in the Zn matrix (Zn solid solution), i.e., the HCP_ZN area (hexagonal closest packing HCP) shrinks
on cooling. Consequently, another phase HCP_A3 was expected to form representing the ε-phase,
as depicted in Figure 2. The evaluation of the diffraction patterns confirmed that besides metallic
zinc (ICDD-PDF #87-0713) as the main phase, a second phase corresponding to the ε-phase could be
detected (Figure 3a) in low concentration. The precipitated ε-phase occurred in the binary systems
zinc–silver and zinc–gold as AgZn3 (ICDD-PDF #25-1325), respectively, AuZn3 (ICDD-PDF #65-8027).
The diffraction pattern shows two solid solution members of the ε-phase with distinct differences
in their fitted lattice parameters (Figure 3b). Surprisingly, the (102)-reflection of the ε-phase showed
no separation; instead, the measured single reflection was positioned in the middle between the two
expected reflections of the silver- and gold-rich ε-phases. We suppose that the coexistence of two
ε-phase members was caused by local chemical inhomogeneities in the sample, i.e., solid solution
crystallites with variable or graded chemical composition.
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Figure 2. Zn-rich part of the calculated ternary Zn–Ag–Au phase diagram using the Thermo-Calc
software and TCNOBL1. The depicted isothermal section at 400 ◦C is characterized by a Zn solid
solution (HCP_ZN) and a stability area of solid solution series of ε-phase (HCP_A3).
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The mechanical properties of the Zn–Ag–Au–V alloy are shown in Table 2. The strength of
Zn–Ag–Au–V alloy was significantly enhanced compared to pure Zn [4,5]. After thermomechanical
treatment and additional precipitation hardening, respectively, the mechanical properties were
assessed. A comparison revealed that the 0.2% yield strength (YS0.2), ultimate tensile strength (UTS),
and hardness (HV1) increased slightly while elongation decreased significantly. Obviously, the UTS
value of the Zn–Ag–Au–V alloy was higher than the polymeric materials and close to the Mg-based alloy
(WE43), as listed in Table 2. Despite the remarkable reduction in elongation of the Zn–Ag–Au–V alloy
induced by precipitation hardening, it still met the minimum requirements for stents and orthopedic
internal fixation implants of approximately 15% according to [2].

Table 2. Mechanical properties of the Zn–Ag–Au–V alloy.

Materials Processing
Mechanical Properties

Reference
YS0.2 (MPa) UTS (MPa) Elongation (%) Hardness (HV1)

Zn–Ag–Au–V Thermomechanical
treatment 129 231 59 61 In this study

Zn–Ag–Au–V Thermomechanical
treatment * 168 233 17 96 In this study

Pure Zn As cast 10 18 0.3 38 [2]
Pure Zn As extruded 35 60 3.5 - [2]
Pure Zn As hot rolled 30–110 50–140 5.8–36 39 [2]

PLA - - 48–53 30–240 - [5]
PGA - - 60–99 1.5–20 - [5]
WE43 As extruded 195.2 280.6 10.3 - [5]

* Additional precipitation hardening.

3.2. In Vitro Degradation Behavior

The in vitro degradation behavior of Zn–Ag–Au–V alloy was evaluated by immersion test in DPBS
for 49 days. The degradation rate of Zn–Ag–Au–V alloy in DPBS solution was 7.34± 0.64µm/year, which
is slightly lower than that of pure Zn, 8.66 ± 0.35 µm/year. Figure 4 indicates the surface morphologies
and chemical composition of degradation products detected by SEM-EDX after immersion for 49 days.
Inhomogeneous degradation layers were formed covering the surfaces, as shown in Figure 4a,d.
Obviously, “crystal-like” degradation products were observed at high magnification (Figure 4b,e),
in line with previous studies [19,37]. Moreover, EDX analysis (Figure 4c,f) showed that these degradation
products were mainly composed of Zn, P, O, and C, indicating that these degradation layers might be
phosphates and carbonates, as previously reported [38–40].
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Figure 6 shows the corroded morphologies of samples after removing the degradation 
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without large pits or extensive localized corrosion, similar to that of pure Zn. It can be inferred that 
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Figure 4. Representative SEM images of the degradation products on the surfaces of pure Zn (a,b) and
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Figure 5 illustrates the degradation kinetics of pure Zn and Zn–Ag–Au–V alloy in DPBS during
49 days of immersion. All samples maintained pH values in the range from 7.15 to 7.45 mainly due to
the buffering effect in the DPBS. In addition, the cumulative Zn2+ release of Zn–Ag–Au–V alloy was
lower than that of pure Zn. In the initial period, the Zn2+ release of Zn–Ag–Au–V alloy showed no
significant difference compared to pure Zn. However, the Zn2+ release of the pure Zn from the 28th
day on was lower than that of the Zn–Ag–Au–V alloy. The Ag, Au, and V ions released in DPBS were
below the detection limit of the instrument (50 µg/L).
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saline (DPBS) for 49 days of immersion: (a) pH value and (b) Zn ion release.

Figure 6 shows the corroded morphologies of samples after removing the degradation products.
The corrosion morphology of the Zn–Ag–Au–V alloy appeared relatively uniform, without large pits
or extensive localized corrosion, similar to that of pure Zn. It can be inferred that there was little
micro-galvanic corrosion of the Zn–Ag–Au–V alloy.
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Figure 6. Representative low- and high-magnification SEM images of pure Zn (a,b), and Zn–Ag–Au–V
alloy (c,d) after removing degradation products (low-magnification, 500×; and high-magnification, 3000×).

Based on our results, the in vitro degradation behavior of the Zn–Ag–Au–V alloy in DPBS
can be deduced. When samples were immersed in DPBS, initial degradation reactions involved
the following series of anodic dissolution of the metal and the cathodic reduction of oxygen, referring
to Equations (2) and (3) [2,38,41]. Due to the dissolution of Zn, released OH− increased the pH value
in the DPBS. As shown in Figure 5, ICP-OES result shows that Zn2+ was quickly released and increased
the pH value in the initial period. With the Zn2+ and OH− released, precipitations of Zn(OH)2 and
ZnO were formed on the surfaces, referring to Equations (4) and (5) [38,42]. Due to Zn(OH)2 and ZnO
layers formed, the release of Zn2+ and the pH value trend became stable. Similar results of initial
degradation products on the surface could be observed in vitro as well as in vivo [41–43]. In addition,
HPO4

2− in the DPBS can react with released Zn2+ to form insoluble zinc phosphate (Equation (6)) [4].
The insoluble zinc phosphate thermodynamically represented a more stable passive film compared to
Zn(OH)2 and ZnO layers [3,4]. The EDX analysis of the biodegradation revealed that the products were
mainly composed of Zn, P, and O, most likely reflecting the presence of zinc oxide, zinc hydroxide, and
zinc phosphate. The corrosion layers on the surface tended to be porous and show cracks, considered
as potential transport paths for corrosion, leading to chloride diffusing through the layer and attacking
the Zn-matrix [44]. It was found that the surface was covered by deeper corroded areas or degradation
holes after removing degradation products, as shown in Figure 6.

Anodic reaction:
2Zn (s)→ 2Zn2+ (aq) + 4e− (2)

Cathodic reaction:
2H2O + O2 + 4e−→ 4OH− (3)

Zn(OH)2 formation:
Zn2+ + 2OH−→ Zn(OH)2 (4)

ZnO formation:
Zn2+ + 2OH−→ ZnO + H2O

Zn(OH)2→ ZnO + H2O
(5)
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Zinc phosphate formation:

3Zn2+ + 2OH− + 2H2O + 2HPO4
2−
→ Zn3(PO4)2·4H2O (6)

In our results, the Zn–Ag–Au–V alloy showed a relatively low degradation rate of 7.34± 0.64µm/year,
which was far lower than reported for most Zn-based alloys [2,45]. One explanation might be
the high concentration of HPO4

2- in the DPBS (4.2 mM), as listed in Table 1. The degradation rate
could be significantly decreased due to the formation of insoluble zinc phosphate in this medium.
Unlike Zn(OH)2, the compact Zn phosphates as passive film could protect the Zn substrate and
delay the degradation process [4]. Furthermore, compared to pure Zn, the degradation behavior of
Zn–Ag–Au–V alloys can be mainly influenced by the alloying elements, especially size/distribution
of the metal phases. Sikora-Jasinska et al. [19] demonstrated that the degradation rates of Zn–Ag
alloys are higher than that of pure Zn. They proposed that the Zn–5Ag and Zn–7Ag are subjected
to micro-galvanic corrosion mainly due to a distinct galvanic coupling between ε-AgZn3 dendrites
and Zn matrix. As shown in Figure 6, the corroded morphology of Zn–Ag–Au–V was relatively
uniform, probably attributed to grain refinement and homogenization of chemical distribution after
the thermomechanical treatment [4].

3.3. Cytotoxicity Evaluation

Table 3 shows the mean Zn ion concentration and pH values in Zn–Ag–Au–V alloy extracts.
The mean Zn2+ concentration in undiluted extracts of DMEM + 10% FBS and McCoy’s 5A + 15% FBS
were 738.9 µM and 313.7 µM, respectively. The other metallic ion concentrations (Ag2+, Au2+, V2+)
in the extracts were below the detection limit of the ICP-OES (<50 µg/L), indicating extremely low
free ions in the extracts. Probably these ions were bound in degradation particles [46]. Moreover, no
apparent increase in pH value (∆ pH < 0.5) was observed due to the buffer effect of the media (Table 1).

Table 3. Mean Zn ion concentration and pH value of Zn–Ag–Au–V alloy extracts.

Extracts
Zn ion Concentration (µM) pH Value

DMEM + 10% FBS McCoy’s 5A + 15% FBS DMEM + 10% FBS McCoy’s 5A + 15% FBS

100% 738.9 313.7 8.0 8.2
33.3% 249.3 111.9 7.9 8.2
16.7% 126.5 61.3 7.8 8.1
10% 77.2 41.0 7.8 8.1

Original 4.3 6.0 7.6 8.1

As shown in Figure 7, cell viability and morphology were observed by optical microscope and
live/dead staining assay. In the 100% extracts, almost all L929 and Saos-2 cells showed round-shaped
morphologies and red staining, in line with those of the positive control (pure Cu). In contrast,
L929 and Saos-2 cells cultured in the 16.7% and 10% extracts established a well-pronounced attachment,
while only a few round-shaped cells were floating in the extracts. Accordingly, fluorescent images
revealed that almost all cells were alive (green staining) and only a quite limited number of dead cells
(red staining) could be randomly observed in the 16.7% and 10% extracts, respectively. Notably, L929
and Saos-2 cells exposed to 33% extracts showed an inconsistent result. While Saos-2 cells were
predominantly spindle-shaped and viable (green), L929 mainly showed round-shaped morphologies
and were apoptotic (red).
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Figure 7. Optical images and fluorescence images of L929 cells and Saos-2 cells cultured in different
extracts of Zn–Ag–Au–V alloy after incubation for 24 h. Ti–6Al–4V alloy was used as a negative control
and pure Cu as a positive control. Green fluorescence indicates viable cells stained with fluorescein
diacetate (FDA), and red fluorescence indicates apoptotic cells with compromised membrane integrity,
stained with ethidium bromide (EB).

Figure 8a depicts the relative metabolic activity of L929 and Saos-2 cells, respectively, exposed
to the different extracts of Zn–Ag–Au–V alloy for 24 h. The highly concentrated 100% extract
decreased metabolic activity and proliferation of L929 and Saos-2 cells significantly, compared to
the negative control (p < 0.05). This was in perfect agreement with the previous microscopic results
regarding the toxic effects according to ISO 10993-5 [34]. Relative metabolic activities of L929 and
Saos-2 in the lower concentrated 16.7% and 10% extracts were always close to the control value,
showing no statistically significant difference compared to the negative control (p > 0.05). Interestingly,
the metabolic activity of Saos-2 in 33% extract was considerably higher than that of L929, indicating
a lower sensitivity of the Saos-2 cell at medium extract concentration. Figure 8b shows cell proliferation
of L929 and Saos-2 cells, respectively, exposed to the different extracts of Zn–Ag–Au–V alloy for 24 h
and determined by BrdU assay. The results of the proliferation test corresponded to the metabolic
activity data, confirming almost total inhibition for the undiluted original extracts, and no significant
inhibition for the lowest extract concentration (10% and 16.7%).
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Figure 8. Relative metabolic activity (a) and cell proliferation (b) of L929 and Saos-2 cells cultured
in different extracts of Zn–Ag–Au–V alloy after incubation for 24 h. Relative metabolic activity and cell
proliferation were normalized to Ti–6Al–4V as a negative control. Undiluted extracts (100% extracts)
display significantly lower cell viability and proliferation analyzed by Student’s t-test; * represents
p < 0.05 when compared to the negative control. The means of two independent experiment are shown
with respective standard deviations. Dashed line presents the cut-off level between nontoxic and toxic
effects according to ISO 10993-5.

Regarding absorbable biocompatible materials, biocompatibility is of primary importance.
Previous reports underline the excellent biocompatibility of Zn-based alloys when implanted into
vessels (intravascular) or bone (endosseous) in animal studies [13,14,42]. However, Zn and its alloys
exhibited apparent cytotoxic effects observed in in vitro tests [17,29,47]. It can be stated that there
was an obvious discrepancy between the in vitro and in vivo results concerning biocompatibility of
Zn-based alloys, probably due to the different degradation environments in vivo: Tissue, cells, blood
flow, etc.

In fact, a standardized extract test assesses the influence of degradation products released from
material on the cellular reaction via artificial corrosion media. Our results showed that undiluted
extracts of Zn–Ag–Au–V alloy led to almost total inhibition of cell viability and proliferation, indicating
an obvious toxic effect. Analysis of sample extracts revealed that the concentrations of the metallic
ions Ag2+, Au2+, V2+ were extremely low, under the detection limit. Thus, cytotoxicity was mainly
attributed to the Zn2+ concentration in the extracts, as previously reported [18,29,30]. In this study,
the mean Zn2+ concentration in 100% extracts of DMEM + 10% FBS and McCoy’s 5A + 15% FBS
were 738.9 µM and 313.7 µM, respectively, which was far beyond most cellular tolerance limits,
such as, e.g., for L929 fibroblasts (<80 µM) [30], U-2 OS osteoblast (<120 µM) [30], vascular smooth
muscle cells (<80µM) [48], and primary human coronary artery endothelial cells (<100µM) [49].
As expected, the cytotoxic effect was decreased after dilution of sample extracts, consistent with
previous studies [18,50]. Notably, the released Zn ion concentration in DMEM + 10% FBS (738.9 µM)
was almost two-fold higher than the that in McCoy’s 5A + 15% FBS (313.7 µM), indicating a different
initial degradation process of the Zn–Ag–Au–V alloy in both cell culture media. One factor might
be the putative inhibition of the degradation process in McCoy’s 5A due to the high concentration of
HPO4

2− (Table 1).
Current ISO standards (10993-5 and -12) have only limited value for the evaluation of absorbable

metals since they were developed mainly for nondegradable, bioinert materials. A previous study
demonstrated that the standards were not able to mimic the physiological metabolism, especially
clearance of the degradation products after implantation via dissolution in interstitial fluid,
the lymphatic system, or the blood circulation in vivo. A minimal 6-fold dilution to a maximal
10-fold dilution of extracts were recommended for screening of the cytotoxic potential of Mg-based
alloys [36]. Likewise, this recommendation might be suitable for the in vitro cytotoxicity test of
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Zn-based alloys. At higher extract dilutions, the Zn–Ag–Au–V alloy exhibited acceptable toxicity
towards L929 and Saos-2 cells. Nevertheless, further in vivo biocompatibility tests are required.

3.4. Antibacterial Evaluation

As shown in Figure 9, the antibacterial properties of the Zn–Ag–Au–V alloy were evaluated by
live/dead staining. After 12 h incubation with S. gordonii, a pronounced, bright green fluorescence
was observed on the Ti–6Al–4V surface. In contrast, a relatively weak green fluorescence
on the Zn–Ag–Au–V surface was observed. After incubation for 24 h, a dense layer of viable
S. gordonii on the surface of Ti–6Al–4V samples was observed, indicating biofilm formation. In contrast,
a relatively thin green fluorescence showed that the S. gordonii chains consisted of less viable and
nonviable bacteria on the Zn–Ag–Au–V surfaces, indicating that initial S. gordonii colonization and
biofilm formation were inhibited.
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Recently, Zn-based alloys have been demonstrated to be promising materials for craniomaxillofacial
osteosynthesis implants [5,51]. An intraoral approach is the main access for maxillofacial surgery, and
probably increases the risk of infection caused by oral bacteria. Potentially pathogenic microorganisms
related to transoral maxillofacial surgery mainly include streptococci, anaerobic Gram-negative rods as
well as anaerobic Gram-positive cocci [52]. S. gordonii has been widely recognized as a pioneer oral
strain in the process of early bacterial colonization, which plays a key role in forming a pathogenic
plaque [53]. Thereby, S. gordonii was selected in this study as a model bacterium to analyze initial oral
biofilm formation. In principle, ideal biomaterials should not only have excellent biocompatibility but
ideally possess antibacterial properties as well. To date, the antibacterial properties of the Zn-based
alloys, such as Zn–4Ag alloy, Zn–Cu alloys and Zn–Al–Mg alloys, etc., have been reported [18,54–56].
In our study, the Zn–Ag–Au–V alloy displayed antibacterial effects. Nonetheless, the antibacterial
mechanism of the Zn-based alloys was still not understood, probably attributable to the degradation
products, such as Zn2+, Ag2+, and OH− release, etc. According to the Pourbaix diagrams of Zn
in an acidic environment (i.e., S. gordonii growth medium after 24 h seeding, pH value: Approximately
from 4.3 to 4.5), pure Zn has no tendency to be passivated and mainly releases free Zn ion, referring to
Equation (3). Herein, the potential mechanism of the bacterial adhesion inhibited by Zn ions might
be caused by generating reactive oxygen species or inhibiting multiple activities of bacteria [57,58].
Moreover, other surface-confined reactions might play a role. Ag ion, as one alloying element, possesses
effective antibacterial properties as well. As previously reported, Ag ions may induce bacterial stress
that can lead to the viable but a nonculturable state, which depends on the released Ag ion rate [59,60].
In a previous study, an increased Ag content (from 2% to 6%) enhanced the antibacterial properties
of Mg–Ag alloys [61]. In addition, the cathodic reaction was accompanied by a local increase in pH
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(OH− release). An in vitro antibacterial test of Mg alloy demonstrated that an alkaline shift in pH
was a critical factor in determining bacterial viability [62]. Thus, with the synergy of these above
factors, the Zn–Ag–Au–V alloy in vitro test possessed the potential to inhibit S. gordonii adhesion
and colonization.

Within the limitations of this study, the Zn–Ag–Au–V alloy exhibited promising performance.
Mechanical properties of the Zn–Ag–Au–V alloy were apparently improved after thermomechanical
treatment. Nevertheless, there is still a need to further improve mechanical strength, especially
for load-bearing applications. Concerning the in vitro degradation evaluation, the DPBS solution
was among the most frequently used simulated body fluids. However, DPBS lacked the organic
components of human extracellular fluids, such as cells, proteins, amino acids, etc. Thus, the degradation
behavior of the Zn–Ag–Au–V alloy in the different simulated body fluids should be further explored.
Furthermore, current standardized cytotoxicity tests have been controversially discussed to predict
the biocompatibility of degradable materials like Zn and Zn alloys. It is necessary to perform additional
in vivo tests to evaluate the biocompatibility of the Zn–Ag–Au–V alloy. The antibacterial properties
of the Zn–Ag–Au–V alloy were demonstrated in this study by qualitative assessment via live/dead
fluorescent labelling as well as by crystal violet staining (data not shown). However, the antibacterial
effect of the surface should be further evaluated via sensitive quantitative tests, e.g., a luminescence assay.

4. Conclusions

In this study, we fabricated and investigated a new Zn–Ag–Au–V alloy as a potential material for
absorbable biocompatible implants. The mechanical tests demonstrated markedly improved properties.
The yield strength, ultimate tensile strength, and elongation of the Zn–Ag–Au–V alloy were 168 MPa,
233 MPa and 17%, respectively, after thermomechanical treatment. Furthermore, the degradation
rate of the Zn–Ag–Au–V alloy in DPBS was 7.34 ± 0.64 µm/year, which is slightly lower than that
of pure Zn, which is 8.66 ± 0.35 µm/year. Severe localized corrosion of the Zn–Ag–Au–V alloy was
also not observed. Regarding the cytotoxicity evaluation, the Zn–Ag–Au–V alloy showed acceptable
toxicity in the results obtained with cells exposed to 10% and 16.7% extracts. However, notable
toxic effects in undiluted extracts were observed. On the other hand, the in vitro antibacterial test
demonstrated that the Zn–Ag–Au–V alloy had the potential for inhibition of surface colonization
by oral bacteria. Initial S. gordonii adhesion and colonization was markedly decreased compared to
the reference, Ti–6Al–4V alloy. In conclusion, the investigated Zn–Ag–Au–V alloy indicated excellent
strength, uniform degradation behavior, acceptable cytotoxicity, and effective antibacterial properties
in vitro, rendering it a promising biodegradable material.
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