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Abstract: Excessive fat consumption leads to the development of ectopic adipose tissues, affecting the
organs they surround. Peripancreatic adipose tissue is implicated in glucose homeostasis regulation
and can be impaired in obesity. High palm oil consumption’s effects on health are still debated.
We hypothesised that crude and refined palm oil high-fat feeding may have contrasting effects on
peripancreatic adipocyte hypertrophy, inflammation and lipid oxidation compound production
in obese rats. In Wistar rats, morphological changes, inflammation and isoprostanoid production
following oxidative stress were assessed in peripancreatic adipose tissue after 12 weeks of diets
enriched in crude or refined palm oil or lard (56% energy from fat in each case) versus a standard
chow diet (11% energy from fat). Epididymal white and periaortic brown adipose tissues were also
included in the study. A refined palm oil diet disturbed glucose homeostasis and promoted lipid
deposition in periaortic locations, as well as adipocyte hypertrophy, macrophage infiltration and
isoprostanoid (5-F2c-isoprostane and 7(RS)-ST-∆8-11-dihomo-isofuran) production in peripancreatic
adipose tissue. Crude palm oil induced a lower impact on adipose deposits than its refined form
and lard. Our results show that the antioxidant composition of crude palm oil may have a protective
effect on ectopic adipose tissues under the condition of excessive fat intake.

Keywords: palm oil; high fat intake; adipose tissue; inflammation; lipid oxidation

1. Introduction

High fat intake, associated with a sedentary lifestyle, contributes to the development
of obesity and obesity-related disorders. Yet, the type of fatty acids provided may result
in different levels of metabolic alterations. Palm oil is available in different forms, which
include crude or red palm oil (crude PO) and refined palm olein (refined PO) [1]. Despite a
known beneficial influence of crude PO in cardiovascular disease and its many nutritional
qualities and benefits [2,3], the presence of palmitic acid in palm oil is an argument to avoid
palm oil consumption (see [4] for a review), on top of questions about the sustainability
of its production [5]. However, crude PO contains compounds such as carotenoids and
tocopherols which may provide health benefits [1,6,7]. Yet, the evaluation of PO effects
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on health has mainly focused on blood lipids, cardiovascular diseases, cancer and type 2
diabetes, with mixed results [8,9].

When over-consumed, a fat-rich diet leads to lipid accumulation in various adipose
tissues (ATs). No longer regarded as a storage depot only, fat is an endocrine organ
producing adipokines that act locally and systemically to modulate energy homeostasis,
insulin resistance and inflammatory status [10,11]. Specific structural and functional
changes are observed in obese visceral adipose tissue, together with local inflammation
and adipokine production, promoting metabolic disturbances [12,13]. Obesity leads to the
presence of ectopic fat surrounding organs and to the accumulation of lipids in tissues
themselves. In the liver, short-term feeding with an enriched palm oil diet was associated
with a more marked hepatic lipid accumulation compared to a sunflower oil-enriched
diet. It was concluded that palm oil further altered liver lipid metabolism [14]. However,
we previously reported that excessive and long-term intake of crude or refined PO had
no significant effect on liver steatosis, while it did affect glucose tolerance [15]. Adipose
tissue’s association with various organs suggests local interactions. In the heart, epicardial
adipose tissue may increase pro-inflammatory cytokine production, such as IL-6, which
affects local endothelium [16]. Recently, Al-Dibouni et al. [17] showed that both TNF-α and
IL-6 mRNA levels were enhanced specifically in pericardial adipose tissue in mice. On the
other hand, local biocommunication between the pancreas and the surrounding adipose
tissue occurs and is altered during obesity [18,19]. Secreted factors from peripancreatic
white adipose tissue (pWAT) of Zucker diabetic fatty (ZDF) rats were reported to impair
insulin secretion, cellular proliferation and apoptosis of INS-1 cells [20]. Moreover, in
insulin-resistant patients, pancreatic fat content could favour a local pro-inflammatory
environment and was negatively associated with insulin secretion [21]. Adipose tissue
remodelling and inflammatory status following high fat intake are dependent on the
lipid [22] and antioxidant [23,24] composition of the diets. In this context, specific local
pro-inflammatory changes in pWAT after PO-rich diets may have systemic consequences
regarding insulin resistance and glucose homeostasis.

On a different note, high reactive oxygen species (ROS) production can appear in
AT during obesity and AT accumulation correlates with an increase in systemic oxidative
stress [25]. Oxidative stress regulation is of major concern for adipose tissue metabolism
since it influences its inflammation [26] and can protect it from insulin resistance [27]. Free
radical production in AT may lead to an increase in local isoprostanoid formation and
release. Isoprostanoids are a family of oxidised lipids produced by the non-enzymatic
oxidation of fatty acids, mainly arachidonic acid, from membrane phospholipids. Since
the discovery of isoprostanoid formation in vivo [28], they have been widely studied
to assess circulating or tissue oxidative stress in numerous pathologies [29]. Moreover,
isoprostanoids are bioactive compounds that can influence many processes such as an-
giogenesis, macrophage migration and inflammation, thus participating in adipose tissue
physiology [30,31].

In the present study, we hypothesised that high-fat feeding induces ectopic lipid
deposition in peripancreatic adipose tissue, affecting inflammation and lipid oxidation
compound production locally. The effect of refined PO was compared to crude PO and
to a diet enriched with lard. Our results indicate that unlike crude PO, a refined PO diet
induces specific changes in pWAT in terms of adipocyte hypertrophy, inflammation and
oxidative stress.

2. Materials and Methods
2.1. Animals and Diets

Twenty-eight male Wistar rats (Charles River, L’Arbresle, France) aged 6 weeks at
the beginning of experiments were housed under conditions of constant temperature
(20–22 ◦C), humidity (45–50%) and a standard dark cycle (20.00–08.00 h) with free access to
food and water. Rats were assigned to four groups of seven animals and fed for 12 weeks
either a standard rat chow diet (control group) or one of the three high-fat (HF) diets. In
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the control diet, 11% of the energy was given by fat (5% soybean oil) whereas in enriched
diets, 56% of the energy was provided by fat intake [15]. The fat-enriched diets consisted
in 2.5% (w/w) of soybean oil and 30% (w/w) of crude PO, refined PO (Elaeis guineensis tenera,
Sanya Cie, Abidjan, Côte d’Ivoire) or lard (Alva, Rezé, France). The fatty acid composition
of oils is reported in Supplementary Table S1. Typical amounts of vitamin E, carotenoids
and polyphenols in the crude and refined PO are shown in Supplementary Table S2. The
experiments complied with the guidelines for the care and use of laboratory animals
(National Academies Press US, 8th edition, 2011) and all procedures were approved by the
local ethical committee (reference CEEA-LR-12002, Montpellier, France).

2.2. Tissue Sampling and Blood Parameters

Rats were fasted overnight, and blood was sampled via the abdominal artery under
pentobarbital anaesthesia (55 mg/kg ip). After centrifugation at 1000× g for 10 min at 4 ◦C,
plasma was collected and stored at −80 ◦C for glucose and insulin measurement.

Then, epididymal (eWAT), periaortic brown (AoBAT) and peripancreatic adipose
tissue (pWAT) were removed, rinsed in PBS and flash frozen in liquid nitrogen. One piece
of each was also fixed in 10% formalin before paraffin embedding for histological studies.

Plasma glucose, blood triglycerides and cholesterol were determined on a COBAS
automated analyser (Roche Diagnostics, France) and insulin was quantified by an im-
munoassay kit (Mercodia Rat Insulin ELISA). The homeostasis model assessment of insulin
resistance (HOMA-IR) was calculated using the follow equation: HOMA-IR = (fasting
blood glucose in mM x fasting plasma insulin in mUI/L)/22.5.

2.3. Isoprostanoid Quantification

Isoprostanoids were extracted from peripancreatic adipose tissue according to the
protocol described by Lee et al. [32]. Briefly, 200 mg of frozen samples were homogenised
using Fast-Prep 24 (MP Biomedical, Santa Ana, CA, USA) in the presence of butylated
hydroxytoluene (BHT), methanol and ethylene glycol-bis(2-aminoethyl- ether)-N,N,N′,N′-
tetraacetic acid (EGTA). After the addition of internal standards into samples, the lipid
fraction was recovered with Folch extraction. Then, alkaline hydrolysis was performed and
total isoprostanoids were included in the analysis (esterified and free forms). They were
purified using solid phase extraction (SPE) anion exchange cartridge separation (Waters,
Milford, MA, USA) by a succession of washings and finally eluted in a mixture of hexane,
ethanol and acetic acid. The elution solvent was evaporated under a nitrogen stream and
concentrated residue was then solubilised. Isoprostanoid concentration was determined by
liquid chromatography (LC)–mass spectrometry (MS), as recently described [33]. Note that
for 5(RS)-5-F2t-IsoPs, 5(RS)-5-F2c-IsoPs and 7(RS)-ST-∆8-11-dihomo-isofurans, the assay
could not differentiate between the R/S isomers. Whatever the conditions used, each
dosage was performed in duplicate.

Isoprostanoid concentrations were obtained in picograms (pg) of isoprostanoids per
gram of adipose tissue and we chose to convert this value to pg per adipocyte. The average
surface (cross-sectional area in µm2) of the adipocytes for each histological sample was
determined as described in the next section. Assuming that fat cells were spherical, their
average radius was calculated and we deduced their volume in cm3. Then, to determine
adipocyte number per gram of TA, we considered an approximate density of pWAT of
0.94 (based on measurements of eWAT in the study of Rotondo et al. [34]), so 1 g of pWAT
represented 1.064 cm3 (= 1

0.94 ). The calculations steps were realised as follows:

Adipocyte radius =

√
area
Π

,

Adipocyte volume =
4
3
× Π × radius 3,
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Adipocytes number per gram of TA =
Volume o f 1 g o f TA

Adipocyte Volume
=

1.064
Adipocyte Volume (cm 3)

Isoprostanoid amount per adipocyte was deduced and expressed as femtograms (fg)
of isoprostanoids per adipocyte, for convenience.

2.4. Immunohistochemistry and Haematoxylin Staining

Adipose tissue samples were fixed in 10% formalin solution (Sigma-Aldrich, Saint-
Quentin Fallavier, France) for at least 24 h, and embedded in paraffin. Sections of 5 µm were
cut on a Leica RM2145 microtome. After deparaffinisation, antigen retrieval was performed
in citrate buffer and endogenous peroxidases were blocked in H2O2. Immunochemistry
staining was carried out using an avidin–biotin-based protocol (Vectastain ABC kit, Vector
Laboratories, Burlingame, USA). As a primary antibody, we used an anti-CD68 antibody
(diluted 1/100) (BioRad Laboratories, Hercules, CA, USA). A negative control was per-
formed in the absence of the primary antibody. Images were acquired using an Eclipse
TE300 inverted microscope (Nikon). Results were expressed as macrophages number per
mm2 of tissue after analysis of 10–20 fields per sample.

For adipocyte size measurement, adipose tissue sections were stained with Hema-
toxylin QS (H-3404, Vector Laboratories) for 1 min. Adipocyte size was then determined
in µm2 using ImageJ analysis software (http://rsbweb.nih.gov/ij/, 29 March 2021), with
each cell being individually identified and measured. About 150–300 adipocytes were
analysed for each sample according to Parlee et al. [35]. A frequency function was used in
Excel software to assess the effects of each diet on adipocyte size repartition. For periaortic
brown adipose tissue, lipid inclusions (empty fields) in the tissue were quantified using
ImageJ software.

2.5. Statistical Analysis

Results are expressed as means ± SEM, n = 4–7 animals per group. The statistical
analysis was performed using one-factor analysis of variance (ANOVA) and post hoc
comparisons were performed with Fisher’s protected least significant difference (PLSD)
test using STATVIEW software (SAS Institute Inc., Cary, NC, USA). Unless indicated, p-
values given account for the PLSD test. Differences were considered significant when the
p-value was under 0.05.

3. Results
3.1. Body Weight, Glucose Homeostasis and Blood Lipids

As expected, body weight and body weight gain were higher in all groups fed a
high-fat diet when compared to the control group (Table 1). A non-significant increase
(ANOVA: p = 0.11) in eWAT weight was also observed with the obesogenic diets, the trend
being the strongest for the lard group and the weakest for the refined PO group.

Glucose homeostasis was assessed by measuring fasting blood glucose and insulin
levels. An increase in blood glucose was observed with the crude (p < 0.05) and refined
(p < 0.01) PO diets compared to controls. Fasting insulinemia increased with the three HF
diets, and especially with the refined PO, almost reaching the significance level (ANOVA:
p = 0.065). An enhancement in the HOMA-IR index was observed in all high-fat groups,
and significance was only achieved with the refined PO diet (p < 0.01).

Blood triglycerides and total cholesterol were not significantly different between
controls and HF diets groups while the highest values are observed after the refined
PO diet. High-density lipoprotein (HDL) cholesterol was the lowest for the lard group
(p < 0.05).

http://rsbweb.nih.gov/ij/
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Table 1. Body weight, glucose homeostasis and blood lipids.

Control Crude PO Refined PO Lard p-Value

Initial body
weight (g) 209 ± 4 203 ± 1 204 ± 2 208 ± 3 NS

Final body
weight (g) 527 ± 11 609 ± 14 ** 612 ± 20 ** 611 ± 23 ** 0.0065

Body weight
gain (g) 318 ± 9 406 ± 14 ** 408 ± 19 ** 403 ± 22 ** 0.0022

eWAT weight (g) 12.6 ± 1.8 20.1 ± 2.1 16.6 ± 3.5 21.4 ± 2.9 NS
Fasting glucose

(mg/dL) 136.0 ± 3.5 155.0 ± 5.8 * 157.1 ± 3.7 ** 131.6 ± 5.7 0.0015

Fasting insulin
(mU/L) 53.5 ± 7.6 108.6 ± 22.9 147.0 ± 29.9 93.6 ± 23.6 NS

HOMA-IR 18.1 ± 2.8 41.7 ± 9.1 57.6 ± 12.0 ** 31.6 ± 8.7 0.0344
Blood TG (mM) 1.03 ± 0.15 0.99 ± 0.11 1.33 ± 0.21 1.01 ± 0.15 NS
Total cholesterol

(mM) 1.97 ± 0.16 1.75 ± 0.15 2.00 ± 0.14 1.55 ± 0.09 NS

HDL cholesterol
(mM) 1.48 ± 0.12 1.34 ± 0.85 1.56 ± 0.12 1.06 ± 0.12 * 0.0179

Results are expressed as mean ± SEM, n = 7 animals per group. After one-way ANOVA (p-value indicated), data
were compared by a Fishers’ protected least significant difference (PLSD) test: * p < 0.05 and ** p < 0.01 vs. control
group; PO: palm oil, NS: non-significant, eWAT: epididymal white adipose tissue, HOMA-IR: homeostasis model
assessment of insulin resistance, TG: triglycerides, HDL: high-density lipoprotein.

3.2. Lipid Storage in Adipose Tissues

We quantified lipid deposition in pWAT and eWAT by measuring adipocyte size (area
in µm2) following the 12 weeks of nutritional intervention.

In eWAT, adipocyte size rose following diet supplementation with lard. The mean
adipocyte surface in this group was 6829± 491 µm2 compared to 4312 ± 335 µm2 (p < 0.01)
for control rats (Figure 1B). A non-significant increase in adipocyte size was also observed
in rats that consumed crude (5434 ± 155 µm2) and refined palm oil (5461 ± 421 µm2)
(p = 0.2816 and p = 0.1902, respectively). Concerning the adipocyte size distribution, we
observed a flattening and a shift to the right of the curves following the obesogenic diets
compared to the controls, and especially for the lard group (Figure 1C). This is typical of
adipocyte hypertrophy in WAT. Nevertheless, distribution curves for the crude PO and
refined PO groups showed an intermediate profile, whereas a second population of large
adipocytes (≈8000 µm2) appeared to be present in the lard group.

Adipocytes were also enlarged in the pWAT of the lard group compared to control
rats (3213 ± 250 µm2 versus 2352 ± 255 µm2, respectively, p < 0.05, Figure 2B). In contrast
with eWAT, the increase in cell size in pWAT was the highest for the refined PO group
(3452 ± 248 µm2, p < 0.01) with a more spread out size distribution than for other groups
(Figure 2C). In addition, large (around 5000 µm2) adipocyte populations were observed
in this group. Interestingly, the lowest adipocyte size enhancement was for the crude PO
group (2905 ± 372 µm2, non-significant difference versus controls). For this group, the cell
size distribution profile was intermediate and closer to that of control rats compared to
lard and refined PO groups (Figure 2C).
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Figure 1. Adipocyte size and macrophage infiltration in epididymal white adipose tissue (eWAT). (A) Representative
microphotographs of haematoxylin staining (×200; scale bar = 20 µm); (B) quantitative analysis of adipocyte area (µm2);
(C) relative frequency of adipocyte area (%); (D) quantitative analysis of immunohistochemistry for CD68 (number of
positive cells/mm2 of adipose tissue). Data are shown as means± SEM, n = 4–7 animals per group. * p < 0.05 vs. control diet.

Lipid storage in AoBAT was evaluated by the quantification of lipid inclusions in the
tissue and expressed as the percentage represented by these areas reported for the total area
of the tissue (Figure 3). A significant increase in lipid inclusions in AoBAT was observed for
the refined PO (50.1 ± 2.5%, p < 0.01) and lard (50.2 ± 3.3%, p < 0.01) groups compared to
controls (38.5 ± 5.2%) (Figure 3B). Interestingly, this increase was also significant (p < 0.01)
for both when compared to the crude PO group in which lipid inclusions (39.2 ± 0.9%)
were similar to control rats. In addition, dispersion of the values for lipid inclusions was
low for this group in contrast to the other HF diets, as described in the box plot (Figure 3C).

3.3. Macrophage Recruitment in White Adipose Tissue

Macrophage number (CD68-positive cells) in eWAT was not influenced by the obeso-
genic diets (Figure 1D). In the control rats, we observed 6.5 ± 2.0 macrophages/mm2 of
tissue. This number remained statistically unchanged (ANOVA: p = 0.6043) for the crude
PO (6.8 ± 2.2 macrophages/mm2 of tissue) and refined PO (7.0 ± 1.5 macrophages/mm2

of tissue) groups and slightly lower for the lard group (4.6 ± 1.1 macrophages/mm2 of
tissue).
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Figure 2. Adipocyte size and macrophage infiltration in peripancreatic adipose tissue (pWAT). (A) Representative mi-
crophotographs of haematoxylin staining (×200; scale bar = 20µm); (B) quantitative analysis of adipocyte area (µm2);
(C) relative frequency of adipocyte area (%); (D) quantitative analysis of immunohistochemistry for CD68 (number of
positive cells/mm2 of adipose tissue). Inset presents an example of CD68 staining in refined PO. Data are shown as means
± SEM, n = 4–7 animals per group. * p < 0.05 vs. control diet.

Almost significantly (ANOVA: p = 0.0886), a tendency of macrophage infiltration
in pWAT was present in the refined PO group compared to control rats (17.7 ± 3.6
vs. 7.7 ± 1.8 macrophages/mm2 of tissue, respectively) (Figure 2D). Conversely, few
macrophages were observed in pWAT of the crude PO and lard groups (6.9 ± 2.6 and
6.0 ± 2.4 macrophages/mm2 of tissue, respectively).

3.4. Isoprostanoid Formation in pWAT

Several isoprostanoids were studied in pWAT as markers of oxidative stress and po-
tential biological mediators. Total isoprostanoids (free and esterified forms) were assayed
for the analytes 15(RS)15-F2t-IsoP, 5(RS)-5-F2t-IsoP, 5(RS)-5-F2c-IsoP and 7(RS)-ST-∆8-11-
dihomo-IsoF (this latter molecule being an isofuran form derived from adrenic acid) [36].
Along with adipose tissue hypertrophy, lipid droplet content increased and membrane
proportion decreased (as exemplified in Figure 2). This could affect isoprostane measure-
ment considering a given weight of adipose tissue, as isoprostanoids are mainly derived
from membrane phospholipids [37] and are less likely to be present within lipid droplets.
Since adipocyte size was determined, we chose to express the isoprostanoid amount per
adipocyte.
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Figure 3. Lipid inclusions in periaortic brown adipose tissue (AoBAT). (A) Representative microphotographs of haema-
toxylin staining (×200; scale bar = 20 µm); (B) quantitative analysis of lipid inclusions as % of total tissue area; (C) box plot
displaying the distribution of lipid inclusions. Quantification of lipid inclusion was realised in 10–30 fields per rat. Data are
shown as means ± SEM, n = 7 animals per group. * p < 0.05 vs. control diet.

According to ANOVA, no significant change was observed regarding the amount
of 15(RS)-15-F2t-IsoP and 5(RS)-5-F2t-IsoP in pWAT following the four different diets
(Figure 4A). However, the production of 15(RS)-15-F2t-IsoP tended to be higher in the
refined PO group (186 ± 17 fg/adipocyte) compared to the control (131 ± 16 fg/adipocyte)
and lard (121 ± 14 fg/adipocyte) groups (ANOVA: p = 0.1653; Fisher’s PLSD: p = 0.0804
and p = 0.0397, respectively). Likewise, the amount of 5(RS)-5-F2t-IsoP seemed higher in
the pWAT with the refined PO diet compared to the control, crude PO and lard groups,
even if non-significant (ANOVA: p = 0.3428).

The concentration of 5(RS)-5-F2c-IsoP derived from arachidonic acid rose in the refined
PO group versus controls (p < 0.01) and the crude PO group (p < 0.05) (Figure 4B). Similarly,
the concentration of 7(RS)-ST-∆8-11-dihomo-IsoF was markedly enhanced with the refined
PO diet as compared to control and crude PO groups (p < 0.01) (Figure 4C). A non-
significant increase in the amount of this oxidised lipid was also noticed with the lard group.
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Figure 4. Impact of high intake of palm oils and lard on isoprostanoid concentration in peripancreatic adipose tissue (pWAT).
(A) Quantification of isoprostanoids with a trans configuration: 15(RS)-15-F2t-IsoP and 5(RS)-5-F2t-IsoP (fg/adipocyte).
(B) Quantification of 5(RS)-5-F2c-IsoP, an isoprostanoid with a cis configuration (fg/adipocyte). (C) Quantification of the
isofuran 7(RS)-ST- ∆8-11-dihomo-IsoF (fg/adipocyte). Isoprostanoids were assayed from 200 mg of adipose tissue per rat.
Data are shown as means ± SEM, n = 6–7 animals per group. * p < 0.05 or ** p < 0.01 vs. control diet.

4. Discussion

Our results demonstrate that 12 weeks of palm oil-based HF diets led to specific
morphologic and functional changes in pWAT compared to eWAT and AoBAT. Our main
finding is that crude and refined PO induce contrasting effects on ectopic pWAT and
AoBAT, although these two oils present a very similar fatty acid composition. After a
refined PO diet, but not crude PO, we observed adipocyte hypertrophy, the presence of
macrophages and signs of oxidative stress in pWAT.

Differences between groups in adipocytes hypertrophy and AoBAT “whitening” [38]
were unlikely to be related to body weight gain, which was equivalent for all obese groups.
Adipocyte hypertrophy in pWAT and lipid deposition in AoBAT were evident for lard
and the refined PO groups. Conversely, for the crude PO-fed rats, hypertrophy in pWAT
was moderate and AoBAT was histologically unchanged compared to control animals.
We observed that eWAT mass was slightly lower, though non-significantly, in the refined
PO compared to crude PO group. Less storage in eWAT could have favoured ectopic
lipid deposition in pWAT and AoBAT with the refined PO diet. This is of major concern
because localisation of AT is closely related to obesity-associated complications. Fat storage
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in subcutaneous AT rather than visceral AT limits metabolic disorders during obesity
in humans [39,40] and rats [41]. In addition, preferential lipid storage in epididymal
WAT could have protective effects against glucose intolerance, as reported in mice after
intraperitoneal transplantation of eWAT [42].

These observations are in line with the fact that crude PO seems to have a lower impact
on insulin resistance than refined PO and HOMA-IR was significantly enhanced only in
the refined PO group. Nonetheless, the two PO diets affected fasting glucose, whereas
no change was observed in the lard group compared to controls. This may be surprising
as some previous studies concluded that there is a deleterious effect of lard on systemic
and liver glucose tolerance [43]. On the other hand, the enhancement of fasting glucose
observed for the crude PO group without a clear increase in HOMA-IR is quite intriguing,
as insulin resistance classically precedes glucose intolerance.

We can assume that for some compounds affecting AT metabolism, the concentration
changed during the PO refining process. Although fatty acid proportions were compa-
rable for the three fats used in the present experiments, refined palm oil had a higher
omega-6 to omega-3 fatty acid ratio (see Supplementary Table S1) [15]. Consumption of
PUFA (polyunsaturated fatty acids) omega-3 has induced anti-inflammatory properties
in AT of obese patients [44,45], and prevented or reversed insulin resistance in obese
rats [46]. Contrary to omega-3, omega-6 fatty acids were unable to downregulate maternal
dyslipidaemia-induced oxidative stress [47].

Another dietary factor that may have a role in the smaller alterations induced by
the crude PO is its higher content in polyphenols and carotenoids compared to refined
PO and lard [15,48]. Indeed, less than 1% of the carotenoid content is preserved and PO
antioxidant capacity is reduced by 80% during PO refining steps (Supplementary Table S2).
Increased carotenoid consumption is associated with a reduction in visceral adiposity in
humans and rodents [23], while carotenoid serum and AT concentrations are inversely
correlated with insulin resistance of adipose tissue and liver [24,49]. Additionally, numer-
ous studies have shown that polyphenols such as resveratrol, curcumin or gingerenone A
were able to inhibit adipogenesis and AT mass in rodent models [24,50]. Indeed, olive oil
extracts rich in oleuropein, hydroxytyrosol and triterpenic acids present protective effects
against adipose tissue damage and obesity-associated metabolic disorders in HF diet rodent
models [51,52]. Of note, the latter studies were interested in WAT from various origins
(epididymal, mesenteric, retroperitoneal, perirenal and inguinal AT) but not peripancreatic
WAT. Although no direct causal effect is demonstrated, our present findings suggest that
the high content in polyphenols and carotenoids of crude palm oil could have contributed
to moderate adipocyte hypertrophy (or lipid inclusions for AoBAT) and, above all, to
limiting inflammation and macrophage infiltration in peripancreatic WAT.

Macrophage infiltration was absent in epididymal WAT whatever the high fat diet
used. In obesity, inflammation and macrophage infiltration usually develop in AT fol-
lowing adipocyte hypertrophy [11,53,54]. Nevertheless, the recruitment of macrophages
into eWAT during a high-fat diet is not always observed [55,56], even in the presence of
an overexpression of pro-inflammatory cytokines [57]. Here, we postulate that the diet
(composition, duration) was not harmful enough to induce macrophage infiltration in
eWAT. However, macrophage infiltration was observed in the pWAT of the refined PO
group, demonstrating inflammatory adaptation in this ectopic WAT. This is consistent with
the study of Laugerette and colleagues [22], in which, among four oil-enriched diets, PO
induced the highest levels of IL-6 in plasma and expression of IL-1β and TLR4 in WAT.
Recently, a pWAT-focused study in mice found that this AT depot is highly metabolically
active and that its surgical removal worsened obesity-related hyperinsulinemia [58]. This
adipose deposit appeared to play an important role in the regulation of basal and glucose-
stimulated insulin levels. Interestingly, Rebuffat et al. [20,59] have reported that modified
cytokine production in pWAT can affect pancreatic beta cell plasticity and function. Al-
though cytokine production was not measured, the macrophage infiltration observed
suggests that inflammation is present in peripancreatic AT with a refined PO diet. Al-
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terations of peripancreatic WAT secretion were potentially involved in insulin secretion
modifications, disruption of glucose homeostasis and the increase in HOMA-IR observed
with this palm oil diet.

An in-depth characterisation of the AoBAT was not within the scope of this study but
the restricted lipid deposition in AoBAT following a crude PO diet should be underlined
and could have health benefits. Indeed, AoBAT is a relevant AT for cardiovascular risk
in obese patients [60,61]. Some HF-based animal studies also identified that this AT as of
major concern for vascular disease development [62]. It is noteworthy that Yuriko Oi-Kano
et al. demonstrated in a rat HF diet model (30% palm oil) that supplementation with
the olive oil phenolic extract oleuropein enhanced BAT activity, with protective effects on
visceral AT [63]. Moreover, AoBAT vascularisation seems to be involved in its “whitening”
and can impact whole-body glucose metabolism [38].

Inflammation, macrophage recruitment, adipocyte metabolic activity and oxidative
stress generation are closely related in AT, and could increase isoprostanoid production
from membrane phospholipids [37]. In the current study, isoprostanoid content was con-
sidered for one single adipocyte to limit the impact of hypertrophy (raising the proportion
of lipid droplets) on the measure. A major finding was that the concentration of several
isoprostanoids was increased in pWAT with the refined PO diet, indicating local oxidative
stress enhancement. In addition, no significant change was observed for the crude PO
group and only dihomo-isofuran concentration tended to rise with the lard diet. Isofurans,
which were recently discovered [36,64], are mainly produced when oxygen tension is high
and their combined measurement with isoprostanoids allows a reliable overall assessment
of oxidative stress damage. Oxidative status is a finely controlled parameter in AT, regulat-
ing the proliferation and differentiation capacities of preadipocytes into mature adipocytes,
and is likely involved in their dysfunction [26,65]. Oxidative stress in AT depends on the
balance between ROS production (mitochondrial activity, NADPH oxidase, production by
macrophages) and the activity of antioxidant defences, including superoxide dismutases
or glutathione peroxidases, which are possibly reduced during obesity [66,67]. In that
respect, it has been shown that a decrease in glutathione-s-transferase expression favoured
a strong increase in oxidative stress in rat epididymal WAT following a cafeteria diet [68].
In our HF diet model, it could be interesting to determine if adipose tissue oxidative stress
and inflammation are more related to changes in ROS production or to a drop in oxidant
enzymes [27,65,69]. Oxidative stress enhancement in pWAT with a refined PO diet could
be a cause and a consequence of macrophage infiltration in this AT. Indeed, ROS produc-
tion by adipocytes promotes macrophage recruitment, and the latter are potential sources
of ROS [25,26,66]. More than just oxidative stress markers, isoprostanoids are bioactive
compounds and 15-F2t-IsoP functional effects have been widely studied. Remarkably, this
isoprostanoid can inhibit angiogenesis [30] or stimulate macrophage migration and their
cytokine production [31]. These properties could have participated in pWAT dysfunction in
the refined PO group. In addition, our group recently observed that several isoprostanoids,
including 15-F2t-IsoP and its epimer, inhibit insulin secretion in isolated islets (unpublished
data) [70]. This could have favoured the glucose homeostasis disruption observed with
the refined PO through local biocommunication between pWAT and the pancreas. Regard-
ing 5(RS)-5-F2c-IsoP and 7(RS)-ST-∆8-11-dihomo-IsoF, a study of their biological effects
received little attention but their high concentration in pWAT following a refined PO diet
may have had functional consequences.

5. Conclusions

To conclude, a high dietary intake of refined PO led to an increase in lipid inclu-
sions in periaortic BAT and adipocyte hypertrophy in peripancreatic WAT. The latter
displayed signs of inflammation and increased oxidative stress. Dysfunction of this adi-
pose tissue could have influenced pancreas and glucose homeostasis by the production
of pro-inflammatory adipokines or lipid mediators according to local biocommunication.
Our observations were related to a high intake of refined PO and adverse effects would
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be unlikely during normal consumption of this oil as part of a healthy diet [4]. Moderate
ectopic lipid accumulation was observed with the crude PO diet and no macrophage
infiltration or oxidative stress was detected in peripancreatic WAT. It is suggested that the
high antioxidant content of crude PO may alleviate its deleterious effects on this adipose
deposit. This study shows that not only composition in fatty acids, but mostly the amount
of valuable natural compounds as antioxidants of oils used in high-fat diets, can have
morphological and functional consequences for adipose tissues. Our results also show
pWAT-specific adaptations to PO-rich high-fat diets.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu13041134/s1, Table S1: Fatty acid composition of oils and lard used in diets, Table S2:
Comparison of antioxidant content in crude PO and refined PO.
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