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Inhibition of Glycogen Synthase 
Kinase-3β (GSK-3β) as potent 
therapeutic strategy to ameliorates 
L-dopa-induced dyskinesia in 
6-OHDA parkinsonian rats
Cheng-long Xie*, Jing-Ya Lin*, Mei-Hua Wang, Yu Zhang, Su-fang Zhang, Xi-Jin Wang &  
Zhen-Guo Liu

Levodopa (L-dopa) is the dominating therapy drug for exogenous dopaminergic substitution and can 
alleviate most of the manifestations of Parkinson’s disease (PD), but long-term therapy is associated 
with the emergence of L-dopa-induced dyskinesia (LID). Evidence points towards an involvement of 
Glycogen Synthase Kinase-3β (GSK-3β) in development of LID. In the present study, we found that 
animals rendered dyskinetic by L-dopa treatment, administration of TDZD8 (2mg/kg) obviously 
prevented the severity of AIM score, as well as improvement in motor function (P < 0.05). Moreover, 
the TDZD8-induced reduction in dyskinetic behavior correlated with a reduction in molecular correlates 
of LID. TDZD8 reduced the phosphorylation levels of tau, DARPP32, ERK and PKA protein, which 
represent molecular markers of LID, as well as reduced L-dopa-induced FosB mRNA and PPEB mRNA 
levels in the lesioned striatum. In addition, we found that TDZD8 antidyskinetic properties were 
overcome by D1 receptor, as pretreatment with SKF38393 (5 mg/kg, 10 mg/kg, reapectively), a D1 
receptor agonist, blocked TDZD8 antidyskinetic actions. This study supported the hypothesis that 
GSK-3β played an important role in the development and expression of LID. Inhibition of GSK-3β with 
TDZD8 reduced the development of ALO AIM score and associated molecular changes in 6-OHDA-
lesioned rats.

Levodopa (L-dopa) is the dominating therapy drug for exogenous dopaminergic substitution and can alleviate 
most of the manifestations of Parkinson’s disease (PD). Actually, bradykinesia and other characteristic motor 
manifestations of PD are relieved by treatment with L-dopa1. However, L-dopa–induced dyskinesia (LID) is an 
almost inevitable debilitating side effects result of long-term L-dopa treatment. Approximately 50% of the patients 
are affected after 5 years of treatment and almost all patients suffered LID after 10 years2. Moreover, LID contrib-
utes to severely impair quality of life and raise management costs of PD3. Once LID has developed in patients, 
they are hard to control and management. Young age of PD onset, disease severity, and high doses of L-dopa 
increase the risk of development of LID4. Although more and more evidences emerging from previous studies, 
their pathogenesis is still unclear and unable to give conclusive answers to questions such as what the pivotal 
mechanism underlying LID is or which treatment method is the most effective to avoid and ameliorate these 
dyskinesia5.

Recently, a number of studies suggested that treatment with L-dopa at high concentrations increased Glycogen 
Synthase Kinase-3 (GSK-3) activity and finally resulted in neuronal injury6. What is more, previous study 
reported that bilateral models of PD as MPTP-treated (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) monkeys, 
increased activation of GSK-3β  was associated with L-dopa-induced dyskinesias7. Evidence points toward an 
involvement of GSK-3β  in development of LID. On the other hand, it was also confirmed in our previous study 
that tau activation played a critical role in the molecular and behavioural induction of LID in 6-OHDA-lesioned 
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(hydroxydopamine) rats8. Another significant finding is that intermittent L-dopa treatment positively correlates 
with hyper-phosphorylation of the protein tau9.

Emerging evidences in vivo and in vitro have come to further support the unique, crucial position of GSK-3β  
in the pathogenesis of AD, especially is the major kinase phosphorylating tau protein, triggering cytoskeleton 
destabilization, tau aggregation, and neuronal death10. However, in animal models of L-dopa-induced dyskinesia, 
there is still limited data on GSK-3β  expression involve in development of LID. In the present study, therefore, 
was mainly to investigate whether GSK-3β  inhibitor against AIM score in a rat model of LID. We used selective 
GSK-3β  inhibitor TDZD8 (4-Benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione) to explore the involvement of 
GSK-3β  in protein tau phosphorylation. In parallel, we investigated the molecular mechanisms associated with 
the antidyskinetic effects of TDZD8 (1 mg/kg and 2 mg/kg) and assessed the occurrence of AIM score and the 
performance of motor function, as well as PKA activity and/or DARPP-32, ERK phosphorylation in the striatum 
of LID rats.

Results
Effects of L-dopa on GSK-3β and CDK5 in 6-OHDA-lesioned rats. 44 rats were unilaterally injected 
with 6-OHDA in the MFB (medial forebrain bundle) except sham group. Figure 1 described the experimental 
design. Those treated with L-dopa plus benserazide (LID group, n =  4) were showed high levels of GSK-3β  and 
low level of phoso-GSK-3β  (ser9) when compared with 6-OHDA lesioned rats (PD group, n =  4) and normal 
control rats (Sham groups, n =  4) in the striatum lysis (P <  0.05 compared with PD groups and Sham groups, 
Fig. 2A,B). On the contrary, the protein for CDK5 was evenly expressed in the corpus striatum, namely, there was 
no overall difference in the level of CDK5 in the Sham, PD and LID groups, respectively (P >  0.05 compared with 
PD group and Sham group, Fig. 2C).

Treatment with TDZD8 prevents the development of LID in 6-OHDA-lesioned rats. PD 
rats treated with L-dopa for 21 days developed a progressive increase in LID as indicated by ALO AIM score 
(p <  0.05 for treatment effect, p <  0.05 for time effect and p <  0.01 for treatment and time interaction, Fig. 3A). 
As expected, the PD group received the saline for 21 days did not develop LID features (Fig. 3A). Meanwhile, 
co-administration of TDZD8, an inhibitor of GSK-3β , with L-dopa did not develop severe LID over the 21 day 
treatment period, which differed significantly from the LID group in all testing sessions except at 2 day time point 
after administration (p <  0.05, Fig. 3A). Furthermore, TDZD8-H (2 mg/kg, intraperitoneal injection (i.p.)) group 
demonstrated certain more reduction in the ALO AIM score compared with the rats receiving TDZD8-L (1 mg/
kg, i.p.), but the rats still showed a mild dyskinesia, this effect did not reach completely reversed. Similarly, this 
seemed to be the same trend in Axial AIM (Fig. 3B), limb AIM (Fig. 3C) as well as orolingual AIM (Fig. 3D).

Effect of TDZD8 on parkinsonion disability score. We next sought to determine whether the phe-
nomenon of TDZD8 attenuation of LID without ablation of the therapeutic response to L-dopa. Consequently, 
we co-administered TDZD8 (1 mg/kg, 2 mg/kg, respectively) with L-dopa to 6-OHDA-lesioned rats for 21 days. 
We observed that 6-OHDA-lesioned rats treated with L-dopa prefer to use the compromised (contralateral) 
forelimb to touch the inner wall of the cylinder compared with the 6-OHDA-lesioned rats treated with saline 
(p <  0.05, Fig. 4A). If the animals were co-injected with TDZD8-L (1 mg/kg) or TDZD8-H (2 mg/kg) for 21 days, 
they also demonstrated preferential to touch the wall with contralateral forelimb at 5, 13 and 20 day time points 
after administration (p >  0.05 compared with LID group, p <  0.05 compared with PD group, Fig. 4A). When we 

Figure 1. The protocol of the experiment. SD rats (36) were unilaterally injected with 6-OHDA in the medial 
forebrain bundle (MFB). Contralateral turning behaviours after apomorphine injection were tested 21 days 
later. Apomorphine-induced rotations exceeded 7 turns/min were enrolled in the next experiment. Rats in 
the LID group (n =  8) were administrated once-daily (9:00 am) with L-dopa (25 mg/kg, i.p.) plus benserazide 
(6.25 mg/kg, i.p.) for 3 weeks; Rats in the TDZD8 groups were further divided into two groups, namely TDZD8 
low dose group (TDZD8-L, 1 mg/kg, n =  8) and TDZD8 high dose group (TDZD8-H, 2 mg/kg, n =  8). Rats 
received TDZD8 also one time per day for 3 weeks. Additionally, rats in the PD group (n =  8) and sham group 
(n =  4) were treated physiological saline for 3 weeks. AIMs were evaluated during this period at days 2, 7, 12, 17 
and 21. The animals were sacrifced 2 h after the last injection for western blot and Q-PCR. TDZD8: 4-Benzyl-2-
methyl-1,2,4-thiadiazolidine-3,5-dione; i.p.: intraperitoneal.
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continued to measure forelimb preference between TDZD8-L group and TDZD8-H group, we found that it was 
no significant difference between two groups (p >  0.05, Fig. 4A). Namely, TDZD8-H tested (2 mg/kg) did not 
produce an additional benefit over the TDZD8-L (1 mg/kg) administration in terms of forelimb functional test.

Treatment with TDZD8 prevents phosphorylation of tau, Tyrosine hydroxylase (TH), DARPP32, 
ERK and PKA protein. Previous studies had documented that phosphorylated level of tau (ser396) in the 
striatum of LID group was mild increase compared with PD group8. In this study, we confirmed that this elevation 
in p-tau level was apparent prevented in animals treated with TDZD8 (p <  0.05, Fig. 4B). Meanwhile, we observed 
a dose dependent response between TDZD8-L and TDZD8-H for inhibited the up-regulation of p-tau (p <  0.05 
compared with TDZD8-L group, Fig. 4B). The degree of dopamine depletion was verified by western blotting 
with an antibody raised against TH. We found no significant changes were observed in TH levels in the intact 

Figure 2. Protein levels were evaluated by Western blotting of proteins extracted from the striatum 
ipsilateral to the 6-OHDA lesion. They were assessed in extracts from sham (n =  4) or 6-OHDA-lesioned rats 
treated with vehicle (n =  4), pulsatile L-dopa (25 mg/kg) plus benserazide (6.25 mg/kg, n =  4) on day 23.  
(A) GSK-3β  levels expressed relative to actin levels; (B) Phosphorylated GSK-3β  (ser9) levels expressed relative 
to actin levels; (C) CDK5 levels expressed relative to actin levels. The data represent the mean of relative optical 
density ±  SD; *p <  0.05 vs sham group; #p <  0.05 vs PD group (one-way ANOVA followed by LSD post-hoc 
analysis).

Figure 3. The effect of TDZD8 on the development of L-dopa-induced dyskinesia in 6-OHDA-lesioned 
rats. Chronic TDZD8 treatment significantly attenuates dyskinesia score for 3 weeks. For each day, a total AIM 
score was calculated as the sum of the basic score multiplied by the amplitude score for each AIM subtype, 
excluding the locomotive subtype. (A) time course of the sum of axial, limb, and orolingual (B) timecourse of 
the axial score, (C) time course of the limb score and (D) time course of the orolingual score on each testing 
session were rated following the administration of L-dopa and TDZD8. Data are presented as mean ±  SD. 
*p <  0.05 vs LID group; #p <  0.05 vs TDZD8-L group (Kruskal Wallis followed by Dunn’s test for multiple 
comparisons or a Mann–Whitney U test).
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hemisphere between sham-operated and 6-OHDA-lesioned rats (p >  0.05, Fig. 5A). In contrast, TH level was 
obviously decreased by more than 92% in the lesioned side of 6-OHDA-injected rats when compared with sham 
group (p <  0.001, Fig. 5A). Figure 5B showed that chronic L-dopa treatment of hemiparkinsonian rats increased 
phosphorylation of DARPP32 in the lesioned striatum. TDZD8 at 1 mg/kg or 2 mg/kg both reduced the induction 
of p-DARPP32 following chronic L-dopa treatment in parkinsonian animals. Furthermore, TDZD8-H (2 mg/kg)  
showed more reduction in terms of p-DARPP32 level compared with TDZD8-L administration (1 mg/kg, 
p <  0.05, Fig. 5B). Interestingly, TDZD8 reduced the level of the p-DARPP32 below control group. However, we 
found no significant statistical difference between TDZD8 and PD group (p >  0.05, Fig. 5B). Similarly, repeated 
administration of L-dopa in hemiparkinsonian animals greatly increased PKA level. In keeping with previous 
results, TDZD8 treatment for 21d of rats with established dyskinesia also induced a significant reduction in 
PKA expression (p <  0.05 compared with LID group), observed co-administration with L-dopa (25 mg/kg) in 
a dose dependent manner (p <  0.05 compared with TDZD8-L group, Fig. 5C). Meanwhile, although TDZD8 
group showed more reduction level of PKA protein than control, no statistical difference was obtained between 
TDZD8 group and PD group (p >  0.05, Fig. 5C). In accordance with aforementioned results, we found that acute 
L-dopa treatment induced a marked increase in p-ERK in the lesioned hemispheres compared with PD group 
(p <  0.05, Fig. 5D). TDZD8 treatment significantly reduced the chronic L-dopa-induced ERK phosphorylation 
in the striatum relative to the LID group (p <  0.05, Fig. 5D). Interestingly, the expression of p-ERK was also 

Figure 4. (A) Unilaterally 6-OHDA-lesioned rats were tested for the percentage of impaired forelimb use 
compared with the total numbers. Animals were injected with saline, L-dopa (25 mg/kg) plus benserazide 
(6.25 mg/kg), TDZD8-L (1 mg/kg) or TDZD8-H (2 mg/kg). Motor effects of TDZD8 in 6-OHDA-lesioned 
animals showed the chronic administration of TDZD8 could significantly improve parkinsonion disability 
score. Experiment consisted of three different sessions, namely 5d, 13d and 20d in the treatment period. Data 
are presented as mean ±  SD. *p <  0.05 vs LID group, n =  8 per group; (B) Phosphorylated levels of tau (ser396) 
induced by L-dopa administration in 6-OHDA-lesioned animals was analyzed by Western blot in striatal 
samples. TDZD8 prevented increased level of p-tau and total tau after pulsatile L-dopa treatment. They were 
assessed in extracts from sham or 6-OHDA-lesioned rats treated with vehicle, pulsatile L-dopa plus benserazide 
or TDZD8-L (1 mg/kg) and TDZD8-H (2 mg/kg). The data represent the mean of relative optical density ±  SD. 
*p <  0.05 vs LID group (one-way ANOVA, n =  4).
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more significantly reduced in response to TDZD8-H than TDZD8-L administration (p <  0.05 compared with 
TDZD8-L, Fig. 5D). Furthermore, we pooled the whole data to process and found no significant difference when 
TDZD8 group compared with PD group according to p-ERK (p >  0.05, Fig. 5D).

Effects of TDZD8 on FosB and PPEB mRNA. As reported in a number of previous studies that FosB 
mRNA level was significantly increased ipsilaterally to the lesion side in the LID group after treatment with 
L-dopa (p <  0.05 compared with PD group, Fig. 5E). However, co-administration of TDZD8 showed an approxi-
mate 40% reduction in FosB mRNA level in the striatum (p <  0.05 vs LID group, Fig. 5E). Dose dependent curve 
was also observed in the FosB mRNA level. However, we found that it was no significant difference between 
TDZD8-L and TDZD8-H groups (p >  0.05 compared with TDZD8-L group, Fig. 5E). Meanwhile, we also com-
pared striatal PPEB mRNA among the four groups and found treatment with L-dopa can apparent rise the PPEB 
mRNA level compared with other three groups (p <  0.05, Fig. 5F). In accordance with previous results, treatment 
with TDZD8 lowered the expression of PPEB mRNA to similar levels as in 6-OHDA-lesioned rats without treated 
with L-dopa (p >  0.05, Fig. 5F).

The anti-dyskinetic effect of TDZD8 is overcome by D1Rs agonist. From previous certain studies 
we know that some of the major abnormalities related to sensitized D1R-signaling and associated to LID. To fur-
ther test whether the D1Rs has any role in the antidyskinetic effect of TDZD8, SKF38393 (5 mg/kg or 10 mg/kg),  
a D1R agonist, was injected 15 min before TDZD8. ALO AIMs were measured evaluated during this period 
at days 3, 8 and 14 after initiated L-dopa administration (Fig. 6). Among them, 6-OHDA-lesioned rats treated 
with L-dopa plus benserazide for 14 days developed a progressive increase in LID. Median ALO AIM score 
increased from 20.6 ±  3.18 on day 3 to 48.5 ±  6.02 on day 14 (n =  4, P <  0.05 vs day 2, Fig. 6A). Meanwhile, 
co-administration of 2 mg/kg TDZD8 with L-dopa did not develop severe LID over the 14 day treatment period, 
which differed significantly from the LID group in all testing sessions except at 2 day time point after administra-
tion (p <  0.05, Fig. 6A). Treatment with 5 mg/kg or 10 mg/kg SKF38393 significantly blocked the anti-dyskinetic 
effects of TDZD8 as observed for Global ALO AIM score (p <  0.05 vs TDZD8-H group at day 8 and 14, Fig. 6A). 
Higher doses of SKF38393 (10 mg/kg) were more effective for offset the anti-dyskinetic effects of TDZD8 than 
lower doses of SKF38393 (5 mg/kg, p <  0.05 vs SKF38393-L group, Fig. 6A). This seemed to be the nearly same 
trend in axial AIM (Fig. 6B), limb AIM (Fig. 6C) as well as orolingual AIM (Fig. 6D).

Figure 5. (A–D) Protein levels were evaluated by Western blotting of proteins extracted from the striatum 
ipsilateral to the 6-OHDA lesion. They were assessed in extracts from 6-OHDA-lesioned rats treated with 
vehicle, pulsatile L-dopa (25 mg/kg) plus benserazide (6.25 mg/kg), TDZD8-L (1 mg/kg) and TDZD8-H  
(2 mg/kg). (A) The degree of dopamine depletion induced by 6-OHDA lesions and sham. Tyrosine hydroxylase 
(TH) levels expressed relative to actin levels. #p <  0.01 and *p >  0.05 vs sham-intact hemisphere (n =  4);  
(B) phosphorylated DARPP32 level expressed relative to tatal DARPP32 level; (C) PKA level expressed relative to 
 actin levels; (D) phosphorylated ERK1/2 level expressed relative to total ERK1/2 level; (E,F) mRNA expression 
of FosB and PPEB were evaluated by Q-PCR from the striatum ipsilateral to the 6-OHDA lesion. (E) FosB 
mRNA level expressed relative to GAPDH mRNA; (F) PPEB mRNA level expressed relative to GAPDH mRNA. 
*p <  0.05 vs LID group; #p <  0.05 vs TDZD8-L group (one-way ANOVA, n =  4 per group).
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Discussion
We used a hemiparkinsonian rat’s model of dyskinesia based on unilateral 6-OHDA striatal lesion, followed by 
chronic L-dopa administration of a daily dose of 25mg/kg. In this model animals progressively develop dyskinetic 
symptoms, including axial, forelimb and orolingual dyskinesias, namely ALO AIMs. The major findings from 
this study were: (1) TDZD8 reduced L-dopa induced dyskinesia; (2) the effective TDZD8 dose (1 mg/kg or 2 mg/
kg) did not interfere with the therapeutic motor effects of L-dopa; (3) TDZD8 reduced L-dopa-induced p-tau, 
p-DARPP32, p-ERK and PKA over-expression in lesioned striatum; (4) TDZD8 reduced L-dopa-induced FosB 
mRNA and PPEB mRNA levels in the lesioned striatum; (5) anti-dyskinetic actions of TDZD8 were overcome 
by D1R agonist. Our results showed significant antidyskinetic properties of TDZD8. The anti-dyskinetic effect 
of the 2 mg/kg dose of TDZD8 was observed 7d after L-dopa administration, when dyskinesias were occurring. 
Moreover, this effect of TDZD8 was maintained over the entire 21 days chronic administration protocol without 
development of tolerance. Our findings also showed that TDZD8 reduced D1R-dependent signaling, as demon-
strated by a decrease in the molecular markers after L-dopa treatment such as DARPP32, PKA, ERK and FosB et al.

In the present study, we confirmed a dose range of TDZD8 that is effective in reducing AIM score. We found 
co-administration of TDZD8 with L-dopa did not develop severe LID over the 21 day treatment period, while 
TDZD8-H group demonstrated certain more reduction in the ALO AIM score compared with the rats receiving 
TDZD8-L. In terms of anti-parkinsonian action, TDZD8 did not alter L-dopa’s efficacy in improving impaired 
forelimb compared with the total number of limb use movements in lesioned animals to exclude the possibil-
ity that the anti-dyskinetic efficacy of TDZD8 was due to an attenuation of L-dopa’s efficacy. Recently, some 
researches lend support to the view that activation of striatal GSK3 signaling was proposed to play a role in the 

Figure 6. The decrease in dyskinesia induced by TDZD8 is overcome by dopamine rceptor-1 agonist. 
Treatment with SKF38393 (D1 receptor agonist, 5 mg/kg or 10 mg/kg) abolished the antidyskinetic effect of 
TDZD8, either individual dyskinetic subtypes; (A) global dyskinetic score; (B) axial AIM score, (C) forelimb 
AIM score and (D) orolingual AIM score. Data are presented as mean ±  SD (Kruskal Wallis followed by Dunn’s 
test for multiple comparisons or a Mann–Whitney U test).
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mechanisms implicated in development of LID in a rodent model of PD11. Moreover, Morissette et al. showed 
that in MPTP-treated monkeys, loss of striatal dopamine increased GSK-3β  activation was associated with LID 
development7. Which was consistent with our results that treatment with L-dopa in rats chronically were showed 
high levels of GSK-3β  when compared with 6-OHDA-lesioned rats and normal control rats in the striatum lysis. 
Furthermore, we had shown that in 6-OHDA-lesioned rats where L-dopa plus TDZD8 treatment preventing 
LID occur and development, as well as substantial decrease of phoso-tau level in the striatum. It was likely that 
enhanced GSK-3β  and tau activity by L-dopa were offset by the TDZD8 administration.

To our knowledge, it is now well established that 6-OHDA-lesioned medial forebrain bundle results in the 
enhanced responsiveness of striatal neurons of the direct striatonigral pathway after intermittent L-dopa admin-
istration12. Emerging evidence indicates that increased responsiveness of the D1R results from chronically L-dopa 
administration results in augmented synthesis of cAMP and hyper-activation of PKA and DARPP-329. In addi-
tion, pharmacological inhibition of PKA, or genetic inactivation of DARPP-32 have been shown to prevent LID 
occur and development. Meanwhile, abnormal PKA/DARPP-32 signaling increases the phosphorylation of ERK, 
which controls transcriptional and translational processes13. In the nucleus, PKA/DARPP-32 and ERK signal-
ing leads to increased expression of immediate early genes (FosB) and prodynorphin (PPEB)14. In the present 
study, we demonstrated that GSK-3β  inhibition with TDZD8 totally prevented the L-dopa-induced increase in 
expression of phosphorylation levels of DARPP-32 and ERK1/2, as well as PKA activation in the striatum. It is 
suggested that the persistent hyperactivation of D1R signaling by L-dopa administration in 6-OHDA-lesioned rat 
model of PD, which leads to GSK-3β  activation, might be contributes to development of LID. Accordingly to this 
idea, our results showed that concomitant administration of GSK-3β  antagonist and L-dopa entirely prevented 
up-regulation of the main marker (DARPP32/PKA/ERK) of LID that was associated with behavioural sensitiza-
tion. Consequently, these data indicated that GSK-3β  played a pivotal role in molecular priming for dyskinesia by 
L-dopa and aberrant D1-dependent molecular plasticity in the striatum.

Another key finding in this study was that L-dopa treatment positively correlated with hyperactivation of the 
FosB and PPEB levels and prevented by TDZD8 administration. Based on previous studies, it has been established 
several times that LID show a high striatal expression of PPEB mRNA and transcription factor FosB15, which are 
well-established molecular markers of LID in both rat and non-human primate models of PD16. The increase 
in FosB associated to LID is restricted to the D1R-expressing MSNs of the direct pathway and is mediated via 
activation of the D1R/cAMP cascade, which is strongly induced by administration of L-dopa17. Not only that, 
studies performed in 6-OHDA-lesioned rats showed that LID was reduced by striatal injection of a FosB antisense 
oligonucleotide18. Moreover, in the same animal model, it has been recently shown that viral vector-induced 
overexpression of ΔFosB enhances the ability of L-dopa to induce dyskinetic behavior19. In fact, our experiment 
demonstrated that TDZD8 reduced L-dopa-induced FosB mRNA and PPEB mRNA levels in the lesioned stri-
atum. These data indicated that inactivation of GSK-3β  prevented molecular adaptation from occurring and 
supported the hypothesis that GSK-3β  played a pivotal role in molecular priming for LID through D1-dependent 
direct pathway.

Our results indicated that SKF38393 (10 mg/kg) significantly blocked the anti-dyskinetic effects of TDZD8 as 
observed for each of the dyskinetic symptoms individually as well as in the total dyskinetic score. These results 
indicated that the stimulation of D1 receptors with SKF39393 specifically abolished the anti-dyskinetic effects of 
TDZD8. In accordance with aforementioned results and speculated that GSK-3β  played a pivotal role in molecu-
lar priming for LID probable through D1-dependent direct pathway. In addition, the results were only indicating 
that an overstimulation of D1R can overcome the protective effects of TDZD in dyskinesia. Therefore, another 
explanation is that SKF38393 and TDZD8 could be affecting AIMs in the opposite directions completely inde-
pendently but the effect of SKF38393 was just stronger. Consequently, the results should be interpreted with 
caution. Moreover, Lebel et al. reported Dopamine D1 receptor activation induces tau phosphorylation via GSK3 
signaling pathways20. In the literature, stimulation of D1 receptors increased GSK-3β  activity leading to tau 
hyperphosphorylation21, indicating a role for D1R involvement in the activation of GSK-3β , which should be 
verified by future studies.

Conclusions
This study supports the hypothesis that GSK-3β  plays an important role in the development and expression of 
LID. Inhibition of GSK-3β  with TDZD8 reduces the development of ALO AIM score and associated molecular 
changes in 6-OHDA-lesioned rats through a D1R-dependant pathway.

Materials and Methods
Animals. Experiments were conducted on sixty female Sprague-Dawley (SD) rats (Shanghai, people republic 
of China; weight 180–220 g). Upon their arrival, the animals were housed in clean cages with a maximum of five 
rats per cage under a 12 h light:12 h dark cycle, temperature 22.0 ±  2.0 °C and relative humidity of 55 ±  10%. Food 
and water were available ad libitum and animal care supervised by veterinarians skilled in the health care center. 
All experimental protocols involving the animals were reviewed and approved by the Ethical Committee of the 
Medical School of Shanghai Jiaotong University. The methods were carried out in accordance with the approved 
guidelines and regulations of the National Institutes of Health for the care and use of laboratory animals.

Induction of L-dopa-induced dyskinesia (LID). Unilateral 6-OHDA-lesioned PD models were per-
formed according to our previous studies8,22. Briefly, rats were deeply anesthetized by 10% chloral hydrate 
(0.35 ml/100g) and mounted in a stereotaxic apparatus equipped with a rat adaptor. 6-OHDA (32 mg dis-
solved in 8 μL of 0.9% normal saline containing 0.2% ascorbic acid) was stereotaxically injected into the right 
MFB of rats. Three week after surgery, the lesioned rats were screened behaviorally using an apomorphine 
hydrochloride-induced (0.5 mg/kg, i.p.) rotation test and all animals exhibited >7 full body turns/min toward 
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the side of the unlesioned side were selected for the next experiment. Once parkinsonism was stable (3 weeks 
post 6-OHDA), they were then treated with once-daily administration of L-dopa (25 mg/kg, i.p.) plus benserazide 
(6.25 mg/kg, i.p.) for 3 weeks to induce a rat model of dyskinesia.

Drugs and treatment. Apomorphine hydrochloride (Sigma-Aldrich, St. Louis, MO, USA) was adminis-
tered (0.5 mg/kg). L-dopa (Sigma-Aldrich, 25 mg/kg) plus benserazide-HCl (Sigma-Aldrich, 6.25 mg/kg) were 
given once-daily. TDZD8, a non-ATP competitive inhibitor of GSK-3β , was dissolved in 10% DMSO and was 
administered i.p. (TDZD8-L group, 1 mg/kg; TDZD8-H group, 2 mg/kg, respectively) 30 min prior to L-dopa 
intake for 3 weeks. The dose of TDZD8 used was based on previous studies23. (± )-1-Phenyl-2,3,4,5-tetrahydro-
(1H)-3-benzazepine-7,8-diol hydrochloride (SKF38393, Abcam, UK), a D1 Dopamine receptor agonist, was 
dissolved in saline and was administered i.p. (SKF38393-L group, 5 mg/kg; SKF38393-H group, 10 mg/kg, respec-
tively) 30 min prior to L-dopa intake for 3 weeks. The dose of TDZD8 used was based by Iderberg et al.24. The dose 
of L -dopa (25 mg/kg) was chosen by our previous study25.

AIM ratings and forelimb functional test. A battery of ALO AIM ratings was performed as our pre-
viously described11. Briefly, for quantification of LID, rats were observed individually every 20 min from 20 
to 120 min. 0 =  absent, 1 =  present less than 50% of the observation period, 2 =  present more than 50% of the 
observation time, 3 =  present all the times but suppressible by external stimuli, and 4 =  present all the times 
and not interfering by external stimuli. For each rat, the maximum theoretical score per monitoring session 
was 4*3*6 =  72. During a period of 120 min following levodopa treatment, three subtypes of AIM were assessed 
as axial, limb, orolingual every 20 min (3 min monitoring period for each). The ALO AIM was tested at 2, 7, 
12, 17 and 21 days during levodopa treatment. In terms of Parkinsonian disability score, 90 min after levodopa 
administrated and behavioral assessments were then carried out. A quantitative assessment of locomotor activity 
using forelimb functional test was performed five times at 5, 9, 13, 16 and 20 days during levodopa treatment, 
which could as an index of parkinsonion disability score. The rats were placed in a glass cylinder with a diameter 
of 22 cm and a height of 35 cm to record forelimb use during vertical exploration for 60 min. During a period 
of 60 min following levodopa treatment, forelimb functional test was assessed every 20 min (3 min monitoring 
period for each). The final value was expressed in terms of the percentage use of the impaired forelimb (contralat-
eral) compared with the total number of limb use movements8,26.

Western blot. Corpus striatum of rats was processed as previously described8. Proteins were sepa-
rated by electrophoresis and transferred overnight to polyvinylidene difluoride membranes. Then, the mem-
brane was incubated with polyclonal rabbit anti-GSK-3β  IgG and monoclonal mouse anti-CDK5 IgG (diluted 
1:1000; Cell Signaling Technology (CST), USA), polyclonal mouse anti-phospho-tau at ser396 IgG2b and 
polyclonal rabbit anti-tau IgG (diluted 1:1000; CST; diluted 1:1000; Sigma-Aldrich), monoclonal mouse 
anti-phospho-ERK at Thr202 IgG and monoclonal rabbit anti-ERK IgG (diluted 1:1000; CST), polyclonal rabbit 
anti-phospho-DAPRR32 at Thr34 IgG and monoclonal rabbit anti-DARPP32 IgG (diluted 1:1000; Millipore, 
USA; diluted 1:1000; CST) and polyclonal rabbit phoso-GSK-3β  at ser9 (diluted 1:1000; CST) overnight at 4 °C, 
respectively, and then incubated in horseradish peroxidase conjugated secondary anti-rabbit and anti-mouse 
β -actin IgG (diluted 1:1000; Beyotime Institute of Biotechnology). The signal was visualized by ECL (A:B 1:1; 
Millipore) and quantified using Quantity One software (Image Lab).

Quantitative-Polymerase Chain Reaction (Q-PCR). Striatal tissues of rats were homogenized and total 
ribonucleic acid (RNA) was extracted by Trizol reagent (Invitrogen, USA). cDNA was generated from total RNA 
samples using the RevertAid First Strand cDNA Synthesis kit (Takara, Japan). Q-PCR was performed using the 
ABI 7500 Real-Time PCR System (Life Technologies, USA) according to the supplier’s instructions. After amplifi-
cation, melting curve analysis and length verification by gel electrophoresis were carried out to confirm the spec-
ificity of PCR products. As a negative control, template RNA was replaced with PCR-grade water. Calculations 
of threshold cycle and difference were analyzed with ABI 7500 Real-Time PCR System (Life Technologies). 
Results were expressed as relative expression corrected to the housekeeping gene β -GAPDH. The detector used 
in real-time PCR reaction is SYBR Green.

The primer sequences used in this study were as follows:
5-GAGAATGAGGTTGCTTTGGAA-3 (forward) and 5-AGACGCTGGTAAGGAGTTGG-3 (reverse) for 

preproenkephalin B (PPEB) mRNA;
5-GACTCCAGGCGGAAACGGAT-3 (forward) and 5-TCGTAAGGGATCTTGCAGCC-3 (reverse) for FosB 

mRNA.

Statistical analysis. Data were expressed as the mean ±  standard deviation (SD). The scores assigned for 
AIM and parkinsonion disability are non-parametric and were analyzed using a Kruskal Wallis followed by 
Dunn’s test for multiple comparisons in the case of comparing data over multiple days, or a Mann–Whitney 
U test. The western blot, Q-PCR conformed to normal distribution were performed using one-way analysis of 
variance (ANOVA) followed by LSD post-hoc comparisons when appropriate as indicated in the figure legends. 
P-values <  0.05 were considered statistically significant differences. All analyses were carried out using SPSS 16.0.
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