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The increasing life expectancy of humans has led to a growing numbers of patients with

chronic diseases and end-stage organ failure. Transplantation is an effective approach

for the treatment of end-stage organ failure; however, the imbalance between organ

supply and the demand for human organs is a bottleneck for clinical transplantation.

Therefore, xenotransplantation might be a promising alternative approach to bridge

the gap between the supply and demand of organs, tissues, and cells; however,

immunological barriers are limiting factors in clinical xenotransplantation. Thanks to

advances in gene-editing tools and immunosuppressive therapy as well as the prolonged

xenograft survival time in pig-to-non-human primate models, clinical xenotransplantation

has become more viable. In this review, we focus on the evolution and current

status of xenotransplantation research, including our current understanding of the

immunological mechanisms involved in xenograft rejection, genetically modified pigs

used for xenotransplantation, and progress that has been made in developing

pig-to-pig-to-non-human primate models. Three main types of rejection can occur after

xenotransplantation, which we discuss in detail: (1) hyperacute xenograft rejection,

(2) acute humoral xenograft rejection, and (3) acute cellular rejection. Furthermore, in

studies on immunological rejection, genetically modified pigs have been generated to

bridge cross-species molecular incompatibilities; in the last decade, most advances

made in the field of xenotransplantation have resulted from the production of genetically

engineered pigs; accordingly, we summarize the genetically modified pigs that are

currently available for xenotransplantation. Next, we summarize the longest survival

time of solid organs in preclinical models in recent years, including heart, liver, kidney,

and lung xenotransplantation. Overall, we conclude that recent achievements and the

accumulation of experience in xenotransplantation mean that the first-in-human clinical

trial could be possible in the near future. Furthermore, we hope that xenotransplantation

and various approaches will be able to collectively solve the problem of human

organ shortage.

Keywords: immunological rejection, coagulation dysfunction, genetically modified pigs, non-human primate,
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INTRODUCTION

Transplantation is an effective approach for the treatment
of end-stage organ failure. However, the imbalance between
supplement and demand for human organs is a bottleneck
for clinical transplantation. According to the US Government
Information on Organ Donation and Transplantation, more
than 113,000 candidates were on the transplant waiting list as
of January 2019, while only 36,528 transplants were performed
in 2018 [data available from URL: https://www.organdonor.
gov/statistics-stories/statistics.html (accessed June 29, 2019)]. In
China, more than 300,000 people are on the waiting list, but only
∼16,000 organs are available each year (1). Xenotransplantation
may be an alternative solution to this grave problem. The
World Health Organization (WHO) defines xenotransplantation
as “any procedure that involves the transplantation, implantation
or infusion into a human recipient of either: (i) live cells,
tissues, or organs from a non-human animal source; or (ii)
human body fluids, cells, tissues or organs that have had
ex vivo contact with live non-human animal cells, tissues or
organs” [Xenotransplantation, WHO, Geneva, Switzerland 2016.
Available from URL: http://www.who.int/transplantation/xeno/
en/ (accessed 2019 June 29)].

Xenotransplantation is not a new concept. It was first
mentioned in 1667 in the context of the xenotransfusion
of blood from lambs to humans (2). Clinical use of animal
organs has also been documented, such as the transplantation
of a rabbit kidney to a human in 1905 (3). Because non-
human primates (NHPs) are phylogenetically closer to humans
than are other species, several trials involving the kidneys,
hearts, and livers of NHPs were conducted from the 1920s
to 1990s (4, 5). However, researchers found that NHPs were
not suitable source animals for clinical xenotransplantation
because of ethical concerns, the high risk of cross-species
transmission of infections to humans, difficulties in breeding,
organ size disparities, and other impracticalities (6). Since the
1990s, researchers have attempted to use pigs as the source
animal for xenotransplantation, and the pig is currently
considered the most appropriate candidate species. Reasons
for selecting the pig as a source animal include the pig’s
relatively large litter size and short maturation period, its
size and physiological similarity to humans, the low risk of
xenozoonosis, and the readily application of genetic engineering
techniques to produce porcine organs that are resistant to
rejection (7). However, the genetic discrepancy between pigs
and humans has resulted in barriers for xenotransplantation,
including immunological rejection, and risk of xenozoonosis.
As with human allotransplants, xenotransplants are prone to
immunological rejection. However, a vascularized porcine organ
is more vigorously rejected in comparison with the current
reaction observed in allotransplants because of the genetic
distance between pigs and primates. Thanks to genetically
modified pigs and immunosuppressive therapy, survival
time results for xenografts have improved considerably in
preclinical xenotransplantation models. These results in NHP
models indicate that the use of xenotransplantation in clinical
applications is approaching.

In this article, we (a) describe our understanding of
immunological rejection responses in xenotransplantation,
(b) summarize the genetically modified pigs used for
xenotransplantation, and (c) report the current survival
time of xenografts in pig-to-NHP models. On the basis of
this considerable progress, we hold that clinical application of
xenotransplantation will soon be a reality.

IMMUNOLOGICAL BARRIERS FOR
XENOTRANSPLANTATION

Some decellularized extracellular matrix products, such as
cornea and cardiac valves, have been used in clinical settings
(8, 9). However, these grafts have largely been structural tissues
from which the pig cells have been removed. The tissues are
repopulated with human recipient cells after transplantation.
Vascularized organ and cell transplantation have been
impeded by rejection. Immune responses following discordant
xenotransplantation include both acquired immunity and innate
immunity, in which natural antibodies, complement, natural
killer (NK) cells, and macrophages all play interdependent roles.
Three main types of rejection can occur in a successive manner:
(i) hyperacute xenograft rejection, (ii) acute humoral xenograft
rejection, and (iii) acute cellular rejection (10). In addition
to immunological rejection, coagulation dysregulation, and
inflammatory response have become more prominent, leading to
xenograft failure.

Hyperacute Rejection and Acute Humoral
Xenograft Rejection
When a wild-type pig organ is transplanted into a human or
an NHP, the graft is rapidly destroyed, usually within minutes
to hours, in a process known as hyperacute rejection (HAR)
(11). HAR is a type of humoral rejection and is mediated by
preformed antibodies that naturally pre-exist in the recipient.
The binding of preformed antibodies to the xenoantigenic
epitopes on porcine endothelial cells triggers the activation
of complement proteins. Activated complement cause further
activation and lysis of endothelial cells, leading to the destruction
of the graft vasculature and subsequent graft failure (Figure 1A)
(12). HAR is characterized histologically by disruption of vascular
integrity, edema, thrombosis, and hemorrhage with widespread
vascular deposition of antibodies and terminal complement
products (13, 14).

HAR can be avoided by depleting the antipig antibodies
or inhibiting complement activation in the recipient by
plasmapheresis (15). Although these measures lead to graft
survival prolonged beyond 24 h and sometimes for a week or
more, the recovered level of antibody has resulted in graft
failure, which is known as acute humoral xenograft rejection
(AHXR), also referred as “acute vascular rejection” or “delay
xenograft rejection” (14). AHXR is a phenomenon caused
by a combination of humoral and cellar immune responses,
combined with activated endothelia, and inflammation (16,
17) (Figure 1B). Classic features of severe AHXR are massive
interstitial hemorrhage, infarction, necrosis, thrombosis, and loss
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FIGURE 1 | Antibody-mediated xenograft rejection. (A) Hyperacute rejection. Hyperacute rejection of vascularized porcine xenografts in untreated primates is

triggered by the binding of preformed antibodies to the xenoantigenic epitopes (predominantly α1,3Gal) on the surface of donor endothelial cells. The binding antibody

deposition induces the activation of complement proteins and formation of the membrane attack complex, leading to lysis of endothelial cells destruction of the graft

vasculature and subsequent graft failure. Loss of endothelial barrier function contributes to bleeding, leading to tissue ischemia and necrosis. (B) Acute humoral

xenograft rejection. Acute humoral xenograft rejection can be induced by low levels of natural and elicited xenoreactive antibodies. The binding of xenoreactive

antibodies to endothelial cells results in complement activation, vascular endothelial activation, and injury caused by antibody-dependent cell-mediated cytotoxicity.

Innate immune cells are recruited by activated endothelia and proinflammatory signals. Simultaneously, human antipig antibodies are triggered by natural killer cells

and macrophages. MAC, membrane attack complex; C, Complement; NK, natural killers.

of tubules with polymorph infiltration and massive deposition
of immunoglobulin G (IgG), IgM, C3, C4d, and platelets (18).
Histopathological features of AHXR are similar to those of
HAR (19).

The major HAR xenoantigen is galactose-α1,3-galactose (α-
Gal), which is expressed by α1,3-galactosyltransferase (α1,3GalT;
also known as GGTA1) (20, 21). GGTA1 is functional in most
mammals, including pigs, but not in humans or Old World
monkeys (22). In human blood,∼1% of all circulating antibodies
are directed against α-Gal epitopes (23, 24). These natural anti-α-
Gal antibodies are universally induced during neonatal life by gut
bacteria that expressed GGTA1 (25). Pig-to-NHP experiments
have shown that Gal-specific antibodies could cause HAR and
AHXR (26). Kidneys and hearts from GGTA1 knockout (GTKO)
pigs were transplanted into NHP but were rejected through
antibody-meditated rejection over several days (18, 27). These
data suggest that non-Gal antigens cause AHXR, and non-Gal
antigens present an additional barrier to the transplantation of
organs from GTKO pigs to humans.

To date, two non-Gal epitopes have been identified: N-
glycolylneuraminic acid (Neu5Gc) and the SDa blood group (28,
29). The enzyme which is encoded by CMP-N-acetylneuraminic
acid hydroxylase (CMAH) gene hydroxylase Neu5Ac to produce
the Neu5Gc (30). Humans do not express Neu5Gc because of
a DNA mutation that causes them to lack functional CAMH
(31), but it is synthesized in some mammals, including pigs and
Old World Monkeys (32). Murine deficiency of Neu5Gc and
Gal epitopes in xenogeneic cells attenuates the cytotoxicity of
naturally occurring antibodies in human sera (33). Evidence in
vitro suggests that the antibody against Nec5Gc from human

serum could bind to porcine Neu5Gc (34). Anti-Neu5Gc
antibodies can be induced in humans after dietary intake of
porcine tissues from diet (35). The SDa blood group, which
is produced by beta-1,4-N-acetyl-galactosaminyltransferase 2
(β4GALNT2), is the third examined xenogeneic antigen (29).
This antigen was first identified using complementary DNA
expression libraries from GGTA1-KO pigs and screening of
serum from baboons that had rejected GGTA1-KO pig hearts
(36). The inactivation of β4GALNT2 considerably reduces the
level of human non-Gal IgM and IgG binding to pig peripheral
blood mononuclear cells, suggesting the presence of human
antibodies that bind to the porcine glycan produced by the
β4GALNT2 gene (34). Therefore, these two non-Gal epitopes
may be key barriers to clinical xenotransplantation.

Cellular Xenograft Rejection
Unlike HAR and AHXR, cellular xenograft rejection is relevant to
both whole organ grafts and cellular grafts. It results in rejection
that may occur days to weeks after transplantation (37). Cellular
rejection of a xenograft can be mediated by innate and adaptive
immune responses. These consist of NK cells, macrophages,
neutrophils, dendritic cells, T cells, and B cells.

Natural Killer Cells in Xenograft Rejection
NK cells are a subset of lymphocytes of the innate immune
system. NK cell infiltrates were found in pig organs perfused with
human blood ex vivo (38, 39) and in pig-to-NHP xenografts (40,
41), suggesting that NK cells participate in xenograft rejection.

Subsequently the molecular mechanisms involved in human
NK cell–porcine endothelial cell interactions have been studied

Frontiers in Immunology | www.frontiersin.org 3 January 2020 | Volume 10 | Article 3060

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lu et al. Preclinical Study in Xenotransplantation

extensively [review in (42)]. Xenograft rejection is mediated
by NK cells through direct NK cytotoxicity or by antibody-
dependent cellular cytotoxicity mechanisms (Figure 2A). In the
direct NK cytotoxicity pathway, through interaction of activating
receptors and ligand, NK cells release lytic granules, leading
to the lysis of the donor endothelial cell (43, 44). The direct
cytotoxicity of NK cell is tightly regulated by the balance between
activating and inhibiting signal pathways mediated by a variety
of NK cell receptors (45). The activating NK receptors NKG2D
(46) and pULBP-1 (47) bind to its pig ligand NKp44 and
an unidentified molecule, respectively, to trigger lytic granule
release. However, the inhibitory receptors on human NK cell,
KIR, ILT2, and CD94/NKG2A, poorly recognize the porcine
major histocompatibility complex (MHC) class I molecule,
swine leukocyte antigen I, consequently disabling inhibitory
signals for NK cell activation (48, 49). The destruction of pig
endothelial cells occurs by the recognition of receptors on NK
cells. The natural and elicited antibodies deposits on the graft
endothelium are recognized by Fc-fraction (FcRs) on NK cells
(Figure 2A). Interaction between FcRs and antibodies causes
cytotoxic granules to release fromNK cells and, in turn, to trigger
target cell apoptosis (50). In addition to xenoantibodies bound on
the endothelium, the induced antiswine leukocyte antigen (anti-
SLA) class I antibodies are recognized by NK cells, also leading to
antibody-dependent cellular cytotoxicity (51).

Removal of α-Gal epitopes protects porcine endothelial cells
from complement-induced lysis and primate antipig antibodies
meditated destruction but does not resolve the adhesion of NK
cells and direct NK cytotoxicity (52). These data suggest that α-
Gal residues on porcine cells may not be involved in the increased
adhesion and direct cytotoxic activity of human NK cells.

The role of NK cells in xenotransplantation still must
be fully elucidated. The majority of knowledge on NK in
xenotransplantation was generated for in vitro studies and in pig
to rodent models. Further in vivo studies on NHPs are required
for a better understanding of the role of NK cells in the rejection
of porcine cellular and organ xenografts.

Macrophage Cells in Xenograft Rejection
Macrophages have been found to be involved in the rejection of
both organ grafts and cellular grafts (53). A dense macrophage
infiltrate was identified in all the rejected xenografts through
histologic analysis (54). Macrophage contribute to xenograft
rejection by their activity of modulation adaptive immunity and
direct cytotoxicity (37). Macrophages activity can be result from
xenoreactive T cells. T cells recruit and activate macrophages,
causing infiltration, and the destruction of xenografts by
macrophages. This process, in turn, leads to T-cell response
amplification (55, 56). In addition, macrophages can be active
by direct interaction between donor endothelial antigens and
receptors on the surface of macrophage (Figure 2B) (57).
Macrophages perform direct toxic effects mediated by the
production of proinflammatory cytokines [e.g., tumor necrosis
factor alpha (TNF-α), interleukin-1 (IL-1), and IL-6] that are
secreted by macrophages (58). Therefore, the regulation of
macrophage activation should improve xenograft survival.

A number of inhibitory receptors have been reported
to inhibit phagocytic activity. Among many pathways, the
signaling regulatory protein (SIRP-α)–CD47 signaling pathway
is an important negative pathway to macrophages. SIRP-α
recognizes CD47 as a marker of self, preventing macrophage-
mediated autologous phagocytosis (59, 60). Research has
indicated that interspecies incompatibility between CD47 and
SIRP-α contributes to the rejection of xenogeneic cells by
macrophages (61) and that binding porcine CD47 does
not supply the inhibiting signal through SIRP-α to human
macrophages (62). Other inhibitory molecule, such as CD200
(63), immunoglobulin-like transcript 3 (64), and Ig-like receptor
B (65), have been reported involved in macrophage function.
However, whether incompatibility between these molecules on
pig cells and their receptors on primate macrophages promotes
macrophage activation in xenogeneic immune responses requires
further evaluation.

T-Cell Response
T lymphocytes are likely important mediators of acute
cellular rejection. Similar to allotransplantation, T cells are
activated through both direct and indirect pathways after
xenotransplantation (Figure 2C) (66). In the direct pathway,
pig antigen-presenting cells (APCs) directly active primate T
cells. The interaction between primate T-cell receptors and
SLA class I and II peptide complexes results in T-cell-mediated
cytotoxicity against the xenograft vascular endothelium. The two
cell types likely to be donor APCs are the migratory passenger
leukocytes and porcine endothelial cells constitutively expressing
CD80/86 (67). In the indirect pathway, T cells activation occurs
through donor-derived peptides presented by recipient APCs.
Pig xenoantigens are recognized by MHC class II of the recipient
and presented to host T cells (66). This process, in turn, leads
to CD4+ T-cell stimulation, B-cell activation, de novo antibody
production, and humoral xenograft rejection. The cytotoxicity of
NK cells and macrophages also can be substantially augmented
by cytokines produced by xenoantigen-activated T cells (12).

Although similar immunological mechanisms can be
observed in allotransplantation and xenotransplantation,
T-cell responses against pig antigen, especially in indirect
responses, are stronger than responses against alloantigen (68).
Surprisingly, acute cellular rejection, as seen in the majority
of allotransplants, is rarely documented after pig-to-NHP
organ xenotransplantation. There are two possible reasons
for this result: either humoral rejection is so strong that we
cannot observe cell rejection following xenotransplantation,
or current immunosuppression therapy is sufficient to control
T-cell-mediated response in xenotransplantation (69). T-cell
activation requires the binding of the TCR to an MHC–
peptide complex on the APC as well as a second costimulatory
signal involved in the CD40–CD154 and CD28–CD80/86
pathways (70). The compatibility of cross-species adhesion
and costimulation molecules is a critical issue in a xenogeneic
context. The strategies to alleviate T-cell rejection in xenografts
rely mainly on promoting costimulation and downregulation
of MHC expression in porcine cells. In 2000, costimulation
blockade-based immunosuppressive therapy was introduced
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FIGURE 2 | Cellular-mediated rejection. (A) Natural killer (NK) cells-mediated rejection. Xenoantibodies bind to donor endothelial cells with their Fab portion. The Fc

fraction of the antibody is recognized by FcRs located on the surface of NK cells, triggering the signaling cascade that leads to NK cell destruction. The release of lytic

granules (marked as dark spots) leads to pig endothelial cells lysis. The activating NK cell receptors recognize their ligands on the donor cells and trigger lytic granule

release. The inability of swine leukocyte antigen (SLA) class I to interact with human inhibitory NK-cell receptors makes porcine cells highly susceptible to human

NK-cell-mediated lysis. (B) Macrophages-mediated rejection. Macrophages can be activated by cytokines [e.g., interferon gamma (IFN-γ)] that are produced by

xenoreactive T cells contributing to the amplification of the T-cell response (not shown). Macrophage also can also be activated by signals mediated by the Fc receptor

for IgG (FcγR) upon interaction with xenoreactive-antibody-coated porcine cells. Macrophages secrete proinflammatory cytokines [e.g., tumor necrosis factor alpha

(TNF-α), interleukin (IL)-1, and IL-6) that augmented cytotoxicity of macrophages. (C) T-cell response in xenograft rejection. The direct pathway refers to the

recognition of antigens presented by pig antigen-presenting cells (APCs) by recipient T cells. The T cell is activated by interaction between T-cell receptors (TCRs) and

the SLA I and II peptide complexes. This interaction results in T-cell-mediated cytotoxicity that is directed against the xenograft vascular endothelium. The indirect

pathway refers to the recognition of donor-derived peptides on recipient APCs by recipient T cells. The interaction between primate TCRs and major histocompatibility

complex (MHC) and porcine peptide complexes leads to primate T-cell response, including cytokines production and induction of B-cell activation.

into xenotransplantation by Buhler et al. (71). The initial
agent, anti-CD154mAb, was highly effective at preventing
T-cell response in the pig-to-NHP model (72). Unfortunately,
anti-CD154mAb was found to be thrombogenic and is currently

not available for clinical use (73). ln subsequent research,
anti-CD40mAb, which also blocks the CD40–CD154 pathway,
was found to be equally effective in xenotransplantation (74, 75).
However, currently available anti-CD28 agent alone may be
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insufficient prevent a T-cell response in NHP models (76). Taken
together, the blockade of the CD40–CD154 pathway is a critical
component of immunosuppressive agents in the control of
xenogeneic T-cell response.

Coagulation Dysregulation
When HAR, AHXR, and T-cell response are prevented,
coagulation dysregulation becomes more obvious following
xenograft transplantation and is considered another major
barrier to prolonged xenograft survival in NHPs (69).
Coagulation dysregulation results in the development of
thrombotic microangiopathy in the graft. Features of thrombotic
microangiopathy include fibrin deposition and platelet
aggregation resulting in thrombosis within the vessels of the graft
and eventual ischemic injury (77, 78). With the development of
coagulation dysregulation, systemic consumptive coagulopathy
may be observed in the recipient and lead to the recipient’s death,
but this phenotype does not occur in all xenograft organs (79).

Coagulation is a complex pathway that involves interactions
with inflammation and innate immunity (80). Normally,
coagulation occurs continuously within the bloodstream but
is restrained by anticoagulants, thus maintaining coagulation
balance (81). When endothelial cells are injured, tissue factor
(TF) is liberated into circulation, triggering the extrinsic
coagulation pathway. The increased coagulation is initiated by
TF, which forms complexes with factor VIIa. The coagulation
cascade then becomes amplified by the factors shown (VIIa/TF
complex, IXa, and Xa), which in turn activate thrombin (81). A
network of inhibitory pathways, including tissue factor pathway
inhibitor (TFPI) and thrombomodulin (TBM)–protein C (PC)
pathway, regulate the coagulation balance (82) (Figure 3A).

In the context of xenotransplantation, the assault by
antibodies and complement-activated pig endothelial cells
converts endothelial cells from an anticoagulant phenotype
to a procoagulant state, leading to vascular destruction, and
infiltration by various immune cells (87). Both recipient- and
donor-derived TF contribute to activation of the extrinsic
coagulation cascade (85, 88). The molecular incompatibilities
between primate and pig coagulation–anticoagulation systems
exaggerate this process (Figure 3B). The porcine TFPI is not
sufficient to inhibit factor Xa of primates and ineffectively shuts
down the activation of the major TF (89). Porcine TBM also
fails to regulate primate thrombin. Porcine TBM binds human
thrombin less strongly and thus does not activate PC (90).
Another molecular incompatibility is porcine von Willebrand
Factor (pvWF) and primate platelet lycoprotein 1b (GPIb).
Even in the absence of shear stress, pvWF spontaneously
aggregates primate platelets through GPIb receptors (86). After
aberrant GPIb–vWF interaction, intracellular signaling occurs,
and platelets are activated. Activated platelets develop thrombosis
after being recruited to the place of the endothelial cells’
injury, which leads to widespread activation of the coagulation
system (91).

Above all, recent advances in the field of xenotransplantation
have enabled a better understanding of the immune mechanisms
underlying the failure of porcine xenografts. It is vital
for xenotransplantation be introduced into clinic. However,

many molecular mechanisms underlying xenograft rejection
needed further elucidation, especially in pig-to-NHP models.
Apparently, considerable “cross-talk” occurs between the cellular
and humoral immunology responses and between those
responses and the factors responsible for coagulation dysfunction
and inflammation in rejected xenografts. As a consequence,
diverse strategies are required to overcome the various
immunological barriers involved in the rejection of various forms
of xenotransplantation procedures.

GENETICALLY MODIFIED PIGS FOR
XENOTRANSPLANTATION

According to studies on immunological rejection and
coagulation dysregulation, plenty of genetically modified
pigs were generated to bridge cross-species molecular
incompatibilities. Since 2009, most of the advances that
have been made in the field of xenotransplantation because
of the production of genetically engineered pigs. As a
result of improvements in gene-editing tools, especially
clustered regularly interspaced short palindromic repeats-cas9
(CRIPSR/Cas9), a large variety of genetically modified pigs have
been generated, and the production of source pigs with multiple
edited genes has become easier and faster (92). In this section,
we summarize current genetically modified pigs available for
xenotransplantation (Table 1).

Expression of Human Complement
Regulatory Proteins
Complement activation is a clearly detriment factor in
contributing to xenograft failure. One approach is administering
an agent to inhibit complement, but such treatment only had a
temporary effect and enhanced the risk of infection (15, 109).
Another approach is engineering genetically modified pigs to
overcome immunological rejection. Pigs possess complement
regulatory proteins (CRPs) that are similar to those of humans,
but pig CRPs are not sufficient to protect pig epithelium cells
from human complement-mediated injury. Introduction of
human CRPs (hCRPs) (e.g., CD46, CD59, and CD55) into pig
cells was suggested to inhibit complement-mediated graft injury.
In the 1990s, two independent research groups first proposed
the suggestion that production of transgenic pigs expressing
the human CRPs CD59 (110) and CD55 (111) to protect from
hyperacute xenograft rejection. Then, pigs expressing hCRP
were produced by microinjection of DNA into the fertilized egg
(96, 97). These advances introduced the possibility of genetic
modification of the organ-source pig for xenotransplantation.
Today, many pigs expressing hCPRs have been produced
[reviewed in (112)]. Researches have also demonstrated
that expression of hCRPs can inhibit complement-mediated
graft injury and prolong xenograft survival time (113, 114).
Furthermore, studies have also demonstrated that a combination
of hCRPs offers greater protection than the expression of just
one hCRP (115, 116).
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FIGURE 3 | The coagulation cascade related to xenotransplantation. (A) Coagulation cascade in primates. Black arrows designate cascade amplification steps.

The coagulation cascade is initiated by tissue factor (TF) (extrinsic pathway) or negatively charged surface contact (intrinsic pathway). TF is expressed by vascular

subendothelial cells. When endothelium is damaged, TF is exposed to the circulation and forms complexes with factor VIIa, activating factors V and X. Factor Xa

converts prothrombin to thrombin. Thrombin then cleaves fibrinogen into fibrin monomers and activates factor XIII, which cross-links fibrin monomers into an insoluble

clot. In response to shear stress, von Willebrand Factor (vWF) binds to glycoprotein 1b (GPIb) on platelets leading to platelet activation and adhesion (83). Activated

platelet bind to fibrinogen to mediate platelet aggregation and endothelial adherence. Red lines show the natural inhibitors of coagulation. (1) Tissue factor pathway

inhibitor (TFPI) inhibits the activation of factor Xa and formats TFPI/Xa, which subsequently inhibits the TF/VIIa complex. These processes consequently prevent the

formation of thrombin (81). (2) In the thrombomodulin (TBM)–protein C (PC) pathway, TBM serves as a cofactor in the thrombin-induced activation of PC. Endothelial

(Continued)
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FIGURE 3 | protein C receptor (EPCR) is a receptor for PC that enhances its activation. The activated PC (aPC), together with cofactor protein S (PS), suppressing

factors Va and VIIIa, thereby downregulating thrombin formation and suppressing coagulation cascade (84). (3) Soluble antithrombins (AT) inhibits factors XIa, IXa, Xa,

VIIa, and thrombin by targeting serine proteases (82). (B) Dysregulated coagulation in pig-to-primate xenotransplantation. Red and black arrows designate

incompatibility between pig and primates. When pig endothelium is activated, pig TF is expressed and released into the circulation. After interaction with the pig

endothelium, recipient platelets and peripheral blood mononuclear cells (PBMCs) express primate tissue factor (hTF). The porcine TF (pTF) pathway inhibitor is an

ineffective inhibitor of the human Xa factor and may ineffectively shut down the activation of the major TF. Pig TBM (pTBM) binds only weakly to primate thrombin,

leading to levels of activated PC that are insufficient to inhibit coagulation, resulting in thrombotic microangiopathy in pig grafts within a matter of weeks (85). Porcine

vWF spontaneously could aggregate primate platelets through GPIb receptors even in the absence of shear stress (86). After aberrant porcine GPIb–primate vWF

interaction, platelets are activated. Small vessels in the graft become occluded by fibrin and platelet aggregation.

TABLE 1 | Genetically modified pigs currently available for xenotransplantation research.

Abbreviation Gene name Function Reference

GTKO 1,3-galactosyltransferase KO (GGTA1 KO) Deletion of αGal epitope (93)

CMAH KO CMP-N-acetylneuraminic acid hydroxylase KO Deletion of Neu5Gc epitope (94)

β4GalNT2 KO β-1,4N-acetylgalactosaminyltransferase KO Deletion of SDa epitope (34)

hCD46 (MCP) Human membrane cofactor protein transgene Inactivation complement factors C3b and C4b (95)

hCD55 (DAF) Human decay accelerating factor transgene Acceleration of complement decay (96)

hCD59 (MAC-IP) Human membrane attack complex C5b-9

inhibitory protein transgene

Inhibition of the complement membrane attack

complex C5b-9

(97)

hTBM Human thrombomodulin Anticoagulation (activates protein C) (98)

hTFPI Human tissue factor pathway inhibitor Antagonize the function of tissue factor (99)

hCD39 (hENTPD1) Human ectonucleoside triphosphate

diphosphohydrolase-1 transgene

Anticoagulation and anti-inflammatory (100)

hA20 Human tumor necrosis factor alpha-induced

protein-3 transgene

Inhibition of NF-kappa B activation and

TNF-mediated apoptosis

(101)

hCD47 Human integrin associated protein transgene Regulation of macrophage activation and

phagocytosis

(102)

CTLA4-Ig Cytotoxic T-lymphocyte-associated protein

4-immunoglobulin transgene

Cellular immune response: Inhibition of T-cell

costimulation via CD86/CD80

(103, 104)

CIITA-DN MHC class II transactivator dominant negative Suppression of T-cell activation (105)

hHO1 Human heme oxygenase 1 transgene Antiapoptosis; cytoprotection; anti-inflammatory (106)

ASGR1 KO Asialoglycoprotein receptor 1 Decreases human platelet phagocytosis by pig

sinusoidal endothelial cells

(107)

PERV inactivation Porcine endogenous retroviral virus inactivation Xenozoonosis (108)

Deleting Xenoreactive Antigens
Rejection of anti-Gal antibodies can be prevented through
plasmapheresis (117) or using immunoaffinity columns (118).
However, these approaches have demonstrated only partial
success because the graft is lost when antibody levels recover.
Pigs with heterozygous GTKO using homologous recombination
were produced in 2002 (119, 120), and homozygous GTKO
pigs were produced in 2003 (93, 121). Initial studies indicated
that GTKO pigs protect xenografts from injury as a result
of HAR after heart and kidney transplants to NHPs (78,
122). The production of GTKO donor pigs is a milestone of
xenotransplantation field.

In addition to GTKO pigs, genetically modified pigs with
GGTA1/CMAH (123) or GGTA1/ B4GalNT2 (124) knockout
(DKO) and GGTA1/CMAH/B4GalNT2 triple knockout (TKO)
(125) were also produced. A study demonstrated that cells
from GGTA1/CMAH DKO pigs bound a reduced human
antibody than GTKO pigs (126). Moreover, xenografts from
GGTA1/CMAH DKO pigs reduced the consumption of
human platelets in the liver model (127). These results suggest

that the deletion of Neu5Gc epitope in pigs is crucial for
increasing xenograft survival time. In vitro evidence has also
suggested that inactivation of the B4GalNT2 gene reduce human
antibody binding (34, 128). These data indicate that TKO pig
organs have proven to be a major advancement compared
with GTKO and DKO xenografts following transplantation
into human. However, experiments involving xenografts
from TKO pigs to NHPs have not been reported, mostly
because Old World monkeys express Neu5Gc (129). By
contrast, New World monkeys do not express Neu5Gc
and are likely to produce anti-Neu5Gc antibodies (130).
Therefore, this animal is the preferred candidate model for
evaluating the effect of the Neu5Gc deletion xenograft in
NHP models.

Today, the importance of α-Gal in immunological rejection
is clear, GTKO pigs are considered to be the basis for
further genetic modifications. Studies have demonstrated that
the transplantation of organs from GTKO/hCRP pigs has
a more favorable effect than the transplantation of organs
from pigs with GTKO or CRP alone (131, 132). Although
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expression of hCRP alone does not enable make graft long-term
survival, even in the GTKO pigs, the complement system
is still activated by ischemia–reperfusion injury. Herein, the
deletion of identified xenoantigens with expression of one or
more hCRPs in pigs would form the foundation for future
clinical trial.

Inhibition of Cellular Xenograft Rejection
Because of the aforementioned incompatibility between
human SIRP-α and pig CD47, genetically engineered pigs
expressing human CD47 (hCD47) have the potential to
resolve this problem. In vitro, porcine cells expressing hCD47
can reduce their phagocytosis by human macrophages (62).
Moreover, the expression of hCD47 in porcine endothelial
cells not only suppressed macrophage-mediated cytotoxic
activity and inflammatory cytokine (TNF-α, IL-1β, IL-6)
production but also inhibited human T-cell infiltration
(133). In vivo, hCD47 expression increased xenogeneic
hematopoietic engraftment chimerism in the murine
model (102) and prolonged the survival porcine skin
grafts in baboons (134). These findings collectively suggest
the beneficial role of hCD47 expression in xenografts.
However, hCD47 expression did not completely prevent
phagocytosis from primate macrophages; therefore, the pathway
of xenoantigen-activated macrophages may also need to
be suppressed.

Cytotoxic T-lymphocyte-associated antigen (CTLA4) is a
costimulatory molecule that blocking B7-CD28 costimulatory
pathway (135). Immunosuppression therapy with human
CTLA4-immunoglobulin (hCTLA4-Ig) has been shown to
extend graft survival during allotransplantation for NHPs (136).
Therefore, transgenic pig expression of hCTLA4-Ig is a potential
means of preventing T-cell activity. Martin et al. produced
transgenic pigs with neuronal expression of hCTLA4-Ig and
demonstrated that hCTLA4-Ig protein reduced the proliferation
of human T cells against porcine cells (103). The beneficial
effect of hCTL4-Ig expression extended xenograft survival
time in a rat skin transplantation model (104) and a NHP
neuronal transplantation model (137). These in vivo evidence
also suggested that the expression of hCTLA4-Ig alone could
not prevent xenograft rejection, which is consistent with the
result blocking costimulatory pathway against B7-CD28 only.
Transgenic pigs ubiquitously expressing pCTLA4-Ig were also
produced (138). However, these pigs were susceptible to infection
because of high levels of pCTLA4-Ig expression in the blood.
Therefore, the expression of this agent only in specific target
cells of the pig is favorable. In addition, T-cell response can
be controlled through the deletion of SLA class I (139) or
introduction of a mutant human class II transactivator gene
(CIITA-DN) in pigs (105), both of which reduce pig antigen
presentation in the direct pathway. However, the role of these
modified genes in protecting xenograft from rejection response
requires further evaluation in NHPs. Moreover, although not the
original intention, lacking α-Gal antigens or expression of hCRPs
has been demonstrated to reduce T-cell response to pig cells
(140, 141).

Expression of Human Coagulation
Regulation Proteins
Using GTKO/hCRP genetically modified pigs as the source
donor, HAR and AHXR have been controlled well in many pig-
to-NHP model studies (72, 74, 142). However, both thrombotic
microangiopathy and systemic consumptive coagulopathy are
increasingly recognized in xenograft and NHP recipients.
Therefore, coagulation dysregulation becomes a non-negligible
barrier to successful xenotransplantation. The graft vascular
endothelial cells enter into a procoagulant state, which cannot
be successfully controlled by the pig’s anticoagulant factors,
resulting in coagulation dysregulation and graft failure. This
problem may be resolved by further overexpression of human
coagulation regulation proteins, such as TBM, endothelial
protein C receptor (EPCR), TFPI, and CD39 in the organ-
source animals.

Transgenic expression of hTBM in donor pig is one of most
important approaches to overcoming coagulopathy currently.
Pig aortic endothelial cells expressing hTBM were reported to
substantially suppress prothrombinase activity, delay human
plasma clotting time, and exhibit less activity in inducing
human platelet aggregation (143, 144). In the pig-to-baboon
model, hTBM expression on cardiac xenografts confers an
independent protective effect for prolonging graft survival
time (145, 146). Another key player in the anticoagulation
system is EPCR, which also mediates anti-inflammatory and
cytoprotective signaling (147). Therefore, it is speculated that
overexpression of hEPCR in donor pigs is a potential solution
to overcoming related barriers, providing potent local anti-
inflammatory, anticoagulant, and cytoprotective cell signaling.
In vitro, cells from GTKO/CD46 pigs that also expressed EPCR
reduced platelet aggregation activity (144). Expression of hTFPI
is a potential approach to resolving the incompatibility between
human TF and pig TFPI. In vitro study demonstrated that
expression of hTFPI can inhibit TF activity (99). CD39 plays a key
role in the regulation of coagulation. CD39, which is responsible
for catalyzing the degradation of extracellular ATP, ADP, and
AMP, can inhibit thrombus formation. One study demonstrated
that transgenic hCD39 expression in pigs protected against
myocardial ischemia/reperfusion injury in an in vivo model
(100). In addition, vWF-deficient donor pigs exhibited prolonged
lung graft survival time in NHP models and caused a less
substantial platelet decrease in receipts (148, 149).

Graft coagulation varies among different xenograft organs
after transplantation, perhaps because of differences in vascular
structure and protein expression pattern. Recently, considerable
progress has beenmade in cardiac and renal xenotransplantation.
However, improvements have been limited in liver and
lung xenotransplantation. After pig liver xenotransplantation,
severe thrombocytopenia can occur within minutes to hours,
which exacerbates coagulation dysfunction, resulting in lethal
hemorrhage (150). PvWF is a glycoprotein that plays a key role
in the pathogenesis of xenograft failure, especially in pulmonary
xenotransplantation, because the lung releases more vWF than
the heart or kidneys (151). Moreover, the transcription of
genes involved in coagulation, fibrinolysis, and platelet function
differs in heart and kidney xenografts, which may account
for the different courses of coagulation dysregulation in the
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recipients of these organs (152). Pulmonary xenografts release
larger quantities of vWF than do heart and kidney xenografts
(148). Meta-analyses suggest that the most influential factors
in lung transplantation are EPCR and CD39 rather than TBM
and TFPI (153). These data collectively suggest that successful
control of coagulation dysregulation in xenotransplantation may
require different genetic and pharmacological strategies for
different organs.

Expression of Human Anti-inflammatory
Proteins
An increasing amount of evidence suggests that inflammatory
response plays a considerable role in graft failure in cases of a
condition called systemic inflammatory response in xenograft
recipients (154). Therefore, the engineering of donor pigs that
express one or more human anti-inflammatory or antiapoptotic
genes may be an approach to xenograft protection. Transgenic
pigs that express human hemeoxygenase-1 and human A20 are
available (101, 106). The expression of human hemeoxygenase-1
reportedly protected porcine kidneys from xenograft rejection in
the case of ex vivo perfusion with human blood and transgenic
porcine aortic endothelial cells (106). However, several human
transgenes, including hHO1, hCD47, and human A20, have been
introduced in pigs with multiple genetic manipulations (155).

As discussed above, numbers of genes have been found to be
involved in xenograft rejection. Because of the immune response
to a pig xenograft cannot be considered in isolation, successful
control of immunological rejection in xenotransplantation
requires the altering of multiple genes in donor pigs.
Genetically modified pigs with multiple genes, with up to
seven manipulations, have been produced. The in vivo evaluation
of their individual specific benefits will be difficult, and it
remains unknown whether the manipulation of so many genes
in donor pigs has adverse effects. Therefore, the optimization of
combinations of modified genes in donor pigs and evaluation of
these xenografts in NHPmodels are important in further studies.

PIG ORGAN GRAFT SURVIVAL IN
NON-HUMAN PRIMATES

Xenotransplantation has a long history with a number of animal
models, including mouse, rat, and NHP, and has been used
to reveal the mechanisms of rejection responses (156, 157).
Old World NHPs are the preferred surrogate for humans in
exploring the response to pig xenograft transplantation because
of their immunological similarities to humans (6). Today, the
pig-to-NHP model is the standard model for testing the primate
immune response to organs or tissue from genetically modified
pigs and the effect of novel immunosuppressive regimens. It
is considered the optimal testing ground for predicting human
responses as the final step before a human clinical trial (158). Two
comprehensive reviews explored pig solid organ graft survival
in an NHP until 2013 (159, 160). More recently, several studies
reported key advances in NHP models. In this section, we
summarize the studies of solid organs in preclinical models in
recent years (Table 2).

Heart Xenotransplantation
Most studies on pig heart transplantation in NHPs have
been heterotopic. The survival time of the graft was only
4–6 h following transplant with a wild-type pig heart (165).
Since GTKO pigs were introduced in 2003, GTKO only or
donor pigs expressing one or more hCRPs have helped to
prolong the xenograft survival time [reviewed in (160)]. In
2012, Mohiuddin et al. transplanted GTKO/hCD46 transgenic
pig hearts into baboons administered anti-CD154 mAb-based
immunosuppression (166). They extended the longest survival
for heterotopic cardiac xenografts to 236 days. However,
thrombotic microangiopathy was observed in the xenograft,
and coagulation dysregulation is likely to be the major
obstacle in achieving longer survival rates. Subsequently, same
authors used GTKO/hCD46/hTBM donor pigs combined with
a CD40 antibody-based immunomodulatory regimen (2C10R4)
for heterotopic heart transplantation in pig to NHPmodels (145).
In their experiments, the longest survival time was extended
to 945 days with a median survival of 298 days. Furthermore,
none of the subjects experienced consumptive coagulopathy or
thrombocytopenia. This study demonstrated the efficacy and
safety of a CD40 antibody-based immunomodulatory regimen
(2C10R4) in recipients and suggested the important role of hTBM
in donor pigs.

Although considerable progress has been made in non-
life supporting heart xenotransplantation, the life-supporting
heart xenotransplantation is still difficult in NHPs; moreover,
it is also vital to justify the potential clinical application of
heart xenotransplantation. Until 2018, the longest survival time
of life-supporting heart transplantation in pig-to-NHP cases
was only 57 days (167). On the bases of previous studies,
Langin et al. modified their procedure and reported a survival
time of more than 6 months in cases of life-supporting heart
xenotransplantation in baboons (161). In their protocol of heart
xenotransplantation, two steps were crucial to prolong the
survival of functional xenografts in baboons. First, non-ischemic
porcine heart preservation was performed instead of cold static
storage. Second, detrimental xenograft overgrowth was restricted
by a drug called temsirolimus (Table 2). The immunosuppression
protocol used in this study seems to have been tolerated
by the baboons because of no major immunosuppression-
related infection observed. Their encouraging data suggest that
their method might be safe for use in humans, and their
research constitutes vital progress toward making clinical heart
xenotransplantation a reality.

Kidney Xenotransplantation
Although the kidney is transplanted as a vital organ, progress
in the use of kidneys in pig-to-NHP models has been slower
than that for the use of the heart. Before 2015, life-sustaining
pig kidney xenotransplantation was limited to only a few weeks
on average, with the longest reported survival in pig-to-NHP
models being 90 days [review in (160)]. In 2015, GTKO/hCD55
pigs was used as donors and rhesus macaques with T-cell deletion
as recipients with follow-up maintenance therapy of anti-CD154
mAb. Recipients with lower titers of antipig antibodies exhibited
prolonged kidney xenograft survival (more than 125 days)
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TABLE 2 | Best survival time of solid organ xenotransplantation from pigs to non-human primates.

Xenograft Donor pigs genetic

background

Immunosuppressive therapy Survival time (day) Year (Reference) Initial survival

time (donor pig)

Heart

(non-life supporting)

GTKO/CD46/TBM ATG, anti-CD40mAb, anti-CD20mAb,

MMF, CVF, Solu-Medrol, aspirin,

heparin, Ganciclovir, Cefazolin,

Epogen

Rang from 159 to 945

Median: 298 days

n = 5

(145) 6 h (WT)

Heart

(life supporting)

GTKO/CD46/TBM Anti-CD20mAb, ATG, anti-CD40mAb,

MMF, methylpednisolone,

temsirolimus, steroid cortisone

18, 27, 40, 195

n = 5

(161) 9 days (hCD55)

Kidney

(life supporting)

GTKO/CD55 Anti-CD154 mAb, MMF, solumedrol 499, 414, >70

n = 3

(162) 13 days (WT)

Lung GTKO/CD47/CD55 ATG, rituximab, anti-CD154 mAb and

mycophenolate mofetil

14, 13, 4, 2, 1

n = 5

(163) 11 h (WT)

Liver GTKO ATG, anti-CD40mAb, tracrolimus, Cs,

CVF, hPCC

25, 29

n = 2

(164) 84 h (WT)

ATG, antithymocyte globulin; MMF, mycophenolate mofetil; CVF, cobra venom factor; hPCC, human prothrombin complex concentrate.

Bold values represent the longest survival time of xenograft.

(72). Compared with previous reports, features of consumptive
coagulopathy and proteinuria were delayed for many months.
Iwase et al. also reported the transplantation of a kidney
from a GTKO/CD46/CD55/TBM/EPCR/CD39 pig (TBM and
CD39 were very poorly expressed in the kidney) to a baboon
treated with an anti-CD40mAb-based regimen, and the kidney
functioned for 136 days (168). This study suggested that the
anti-CD40mAb-based regimen was likely to be of equal benefit
to anti-CD154 mAb; it also noted the potential beneficial
effects of anti-inflammatory agent. In their later study, kidneys
from GTKO/CD46/CD55/EPCR/TFPI/CD47 pigs functioned
normally in the baboons until days 237 and 260. Two baboons
died from infection rather than from immune rejection, and
no features of consumptive coagulopathy were observed (169).
They suggested that the expression of EPCR is critical to prevent
kidney xenograft from coagulation dysregulation.

In 2018, kidneys from GGTA1/B4GALNT2 DKO pigs were
transplanted into rhesus monkeys who were immunosuppressed
with T-cell depletion, anti-CD154, mycophenolic acid, and
steroids. The longest survival achieved in these recipients with
functioning transplants was 435 days (124). However, analysis of
xenografted kidneys revealed that antibody-meditated rejection
and coagulation dysregulation are still the causes of graft failure.
Additional deletion of xenoantigen and introduction of human
anticoagulation gene would be required in kidney xenografts.
More recently, Kim et al. reported their newest report in pig to
rhesus macaque kidney transplantation with the longest survival
of a life sustaining xenograft in an NHP (499 days) and consistent
survival over 1 year (162). Based on previous study of their
group (72, 169), GTKO/CD55 pigs were used as donors and
rhesus macaques with CD4+ T-cell deletion and lower titers of
antipig antibodies were as recipients. This is the first translation
model of life-sustaining kidney xenotransplantation, achieving
the longest survival time for pig kidney xenografts in NHP
models to date. This study determined that the depletion of
the CD4+ T cell before transplantation is necessary for the
long-term survival of the xenograft. However, the mechanism
that selective CD4+ T-cells depletion was sufficient to protect

xenograft remains unknown. Whether additional modification
such as SLA class II knockout is necessary for donor pigs requires
further investigation.

Another question in kidney xenograft is hypoalbuminemia,
which developed from proteinuria and uniformly documented
in the early studies. However, only modest proteinuria without
accompanying hypoalbuminemia has been observed in NHPs
with pig kidney grafts recently. More effective control of
immunological rejection by genetically modified pig and
immunosuppressive agents might be beneficial for this problem.

Liver Xenotransplantation
Pig liver xenotransplantation seems to be more difficult to
perform compared with heart and kidney xenotransplantation.
The relevant molecular mechanisms of xenogeneic rejection
involved in liver xenografts are more complex. After liver
xenotransplantation, thrombotic microangiopathy in the graft
and systemic consumptive coagulopathy appear to be more
severe after pig liver xenotransplantation (170).

The first report of pig liver orthotopic xenotransplantation
to NHPs dates back to 1968, at which time immunosuppression
was limited and donor pigs were wild type, resulting in
a maximum survival of only 3.5 days (171). Since 2010,
GTKO and GTKO/hCD46 pigs have been introduced for liver
xenotransplantation (172–174). Livers from genetically modified
pigs were transplanted into baboons, extending liver graft
survival time up to 9 days. The limited survival time of
liver xenograft was predominantly due to the development
of a lethal coagulopathy. Recently, the survival time for life-
supporting orthotopic GTKO pig liver xenografts was extended
to 25 and 29 days with hepatic function in baboons, which
represents the longest survival time following pig-to-primate
liver xenotransplantation to date (164, 175). In their modified
experimental protocol, the addition of a costimulation blockade
agent, anti-CD40 mAb, was ostensibly critical to prolonging liver
survival. Moreover, baboons were treated using a continuous
infusion of human prothrombin concentrate complex, an
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exogenous human coagulation factor, to prevent coagulation
dysregulation and allow spontaneous platelet count recovery.

Lung Xenotransplantation
The pig lung is the organ most severely damaged by
rapid coagulation dysfunction (176). Most research on lung
transplantation has employed ex vivo pig lung xenoperfusion
with human donor blood models (177), but this model is limited
to only short-term effects, usually those occurring within 4 h
(178). Lung xenotransplantation research has begun to use pig-
to-NHP models. Nguyen et al. demonstrated that the lungs of
GTKO pigs with life support transplanted into baboons were
protected from HAR. However, the xenografts were functional
for only 3.5 h because of severe coagulation dysregulation (179).
Recently, Watanabe et al. reported that the survival time of
NHP recipients of lungs from GTKO/CD47/CD55 transgenic
pigs was extended by 14 days (163, 180). These studies have
demonstrated that the introduction of hCD47 can mitigate acute
vascular rejection of lung xenografts and prolong porcine lung
transplant survival time in NHP models. However, the limited
survival time suggests the necessity of additional strategies in
lung xenotransplantation.

Considering the above-mentioned achievements, heart and
the kidney may be the first two solid organs to be used for
clinical xenotransplantation. The modification of GTKO, hCRP,
and hTBM may be indispensable in the donor pigs, at least
for heart and kidney xenografts. In addition, a new problem of
rapid and detrimental growth of xenografts after transplantation
has emerged. This problem has been observed in both heart
and kidney xenotransplantation (124, 161). The combination
approaches of therapeutic reduction in blood pressure, reduction
in corticosteroid dose, and administration of the mTOR inhibitor
appeared to successfully prevent this problem. Moreover, the
mechanisms of appropriate xenograft size require further study.
The miniature pig as the donor animal may be necessary for
the solid xenograft. Although some progress has been made
in lung and liver xenotransplantation, survival time is limited,
and preclinical results suggest that new genetic engineering
and immunosuppression strategies must be developed before
considering a transition to clinical trials.

PORCINE ENDOGENOUS RETROVIRUSES
IN XENOTRANSPLANTATION

A major concern in the field of xenotransplantation is the
transmission of porcine pathogens to human recipients. Most
porcine viruses, bacteria, and fungi can be eliminated by the
selection of negative donor animals, breeding in sterile and
isolated conditions, early weaning, and embryo transfer (181,
182). However, such strategies are impossible in the case
of porcine endogenous retroviruses (PERVs) because PERVs
are integrated into the porcine genome with multiple copies
(183) and the number of PERV proviruses varies among pig
breeds and organs, ranging from 1 to more than 100 (184).
PERVs can be divided into three subtypes: PERV-A, PERV-
B, and PERV-C (185). PERV-A and PERV-B are present in

all pig breeds, whereas PERV-C is present in only some
pigs (186). Recombinant virus PERV-A/C exhibits increased
infectivity toward human cells (187). Therefore, the International
Xenotransplantation Association recommends that the donor pig
for xenotransplantation be free of PERV-C (188).

No consensus has yet been reached regarding whether it
is necessary to guarantee PERV inactivation in donor pigs by
genetic manipulation (189, 190). PERV transmission of pig-to-
human and human-to-human cells was detected in several in
vitro studies (108, 191). However, the infection was only observed
in certain types of cells, as PERVs are unable to infect certain cell
types because of the absence of a functional receptor on most
cell surfaces (182). Furthermore, cellular restriction factors, such
as APOBEC3G, play a key role in preventing PERV infection.
Primary cells expressing APOBEC3G are difficult to infect. By
contrast, HEK 293 cells, which are the most susceptible to PERV
infection, do not express APOBEC3G (192).

To the best of our knowledge, PERV transmission has not yet
been reported in preclinical pig-to-NHP models or in clinical
cells transplantations to humans (193). If necessary, PERV
inactivation can also be accomplished by genetically engineering
pig donors. Early studies reported that PERV activation can be
suppressed by RNA interference technology (194, 195). In 2015,
Yang et al. inactivated all PERV-A and PERV-B genomes in
PERV-C-free porcine cells using CRISPR/Cas9. The engineered
cells reduced PERV transmission to human cells in vitro (196).
In 2017, the same group inactivated all PERVs in a porcine
primary cell line and generated healthy PERV-inactivated pigs
through somatic cell nuclear transfer (108). These pigs provide
a new strategy that eliminates the potential risk of PERVs in
xenotransplantation. However, the susceptibility of these pigs to
reinfection by PERV remains unclear. Godehardt et al. recently
discovered that CRISPR/Cas9 PERV-inactivated cell line PK15
still produced impaired viral particles, although these virions
were no longer infectious. The mutated PK15 cells are protected
from the reinfection by PERV (197). However, these results were
obtained through a monitoring period only up to 55 days, the
reinfectivity remains a concern, and the persistent information
and observation in PERV-inactivated pigs are necessary.

SUMMARY AND PERSPECTIVE

With recent achievements and the accumulation of experience
with xenotransplantation in preclinical research, the first-in-
human clinical trial may be possible in the near future. It
is an inevitable trend that pigs modified with multiple genes
are to be used as donor animals for xenotransplantation. New
gene-editing technologies enable the production of multiple
genetically engineered pigs in shorter periods of time and
with greater efficiency. Various types of gene-modified pigs
already exist, most of which are being tested in preclinical
pig-to-NHP xenotransplantation models. In addition, new
xenoreactive antigens are continually being discovered (198,
199), from which new knockout and transgenic pigs may
be generated. Although assessment of current genetically
modified pigs combined with immunosuppressive therapy in
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NHP models is complex and expensive, we agree with the
opinion that substantial results should be obtain in NHP
models before clinic application. Data and experience based
on studies with NHP models suggest that combining various
genetically modified pigs with different immunosuppressive
therapies is necessary for the effective transplantation of
different organs. Therefore, determining the optimal genetically
engineered organ-source pig and immunosuppressive regimen
strategy in pig-to-NHP models is a key step toward further
clinical study.

Questions regarding the regulatory challenges and ethical
concerns regarding clinical xenotransplantation are being asked
worldwide. In 2003, the US Food and Drug Administration
published comprehensive guidelines for xenotransplantation
(http://www.fda.gov/cber/guidelines.htm). Scientists suggest that
national regulatory authorities worldwide should reconsider
guidelines and regulations regarding xenotransplantation so as to
better enable design and safe conduction of informative clinical
trials of xenotransplantation when supported by preclinical data
(200). The current research makes some progress in meeting the
criteria outlined by the recommendations of the International
Society for Heart and Lung Transplantation published in 2000
(201). However, it is unclear which regulatory agencies consider
current evidence to be sufficient for moving forward with
clinical xenotransplantation.

An alternative potential approach that could alleviate the
current shortage of human organs for transplantation is to create
human–animal chimeras through various techniques, including
stem cell biotechnology, regenerative medicine, and blastocyst

complementation (202, 203). In addition, another approach to
generating organs by 3D printing technology and decellularized
scaffolds in vitro is currently available. Lee et al. described a
3D printing technique for building collagen scaffolds for the
human heart spanning from the capillary scale to the full-organ
scale. They demonstrated that cells could be embedded in the
collagen to construct functional tissue and organs in vitro (204).
To date, none of these approaches have reached the stage of
testing on NHPs. We hope and believe that these approaches
and xenotransplantation will complement each other in clinical
application and collectively solve the problem of human
organ shortage.
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