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Abstract: Natural products are important sources for drug discovery, especially anti-tumor drugs.
β-Elemene, the prominent active ingredient extract from the rhizome of Curcuma wenyujin, is a
representative natural product with broad anti-tumor activities. The main molecular mechanism of
β-elemene is to inhibit tumor growth and proliferation, induce apoptosis, inhibit tumor cell invasion
and metastasis, enhance the sensitivity of chemoradiotherapy, regulate the immune system, and
reverse multidrug resistance (MDR). Elemene oral emulsion and elemene injection were approved
by the China Food and Drug Administration (CFDA) for the treatment of various cancers and bone
metastasis in 1994. However, the lipophilicity and low bioavailability limit its application. To discover
better β-elemene-derived anti-tumor drugs with satisfying drug-like properties, researchers have
modified its structure under the premise of not damaging the basic scaffold structure. In this review,
we comprehensively discuss and summarize the potential anti-tumor mechanisms and the progress
of structural modifications of β-elemene.

Keywords: natural product; β-elemene; anti-tumor; mechanism; structural modification

1. Introduction

Cancer generally refers to various malignant tumors and is characterized by deregu-
lated cellular behavior [1]. There were about 14.1 million new cancer cases and 8.2 million
deaths worldwide in 2012 based on GLOBOCAN data [2]. It was estimated that the num-
bers of new cancer cases and cancer deaths were 4.3 and 2.8 million in China in 2015,
respectively [3]. Surgery, radiotherapy, and chemotherapy are currently the main treat-
ments for cancer, which can effectively kill cancer cells but also cause serious adverse
reactions due to the intervention affecting normal cells. Another problem with cancer
therapy is the development of drug resistance during the treatment course. Therefore, the
development of more effective treatment with fewer side effects and retarded resistance
development is an urgent need. Chinese herbal medicine has been used to treat many
diseases, including cancer, for thousands of years, and its effective ingredients have always
been the research focus of researchers [4].

Our research group has been focused on the investigation of the anti-tumor activity of
the Chinese herbal medicine Curcuma wenyujin. After efforts of many years, we successfully
separated and identified the anti-tumor natural product β-elemene (1-methyl-1-vinyl-2,4-
diisopropenyl-cyclohexane, C15H24, MW: 204.35, Figure 1), the prominent active ingredient
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extract from the rhizome of Curcuma wenyujin. Numerous experiments were subsequently
performed to prove its promising in vitro and in vivo anti-tumor effects, leading to the
approval of elemene oral emulsion (CFDA number H20010338) and elemene injection
(CFDA number H10960114) by the China Food and Drug Administration (CFDA) as a
broad spectrum of the anti-tumor drugs for the treatment of lung cancer, liver cancer,
esophageal cancer, nasopharyngeal cancer, brain cancer, and bone metastasis in 1994.
These two common dosage forms have been currently applied in clinical for more than
20 years [5,6]. Their specific information is summarized in Table 1.
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Figure 1. The plant source, commercial products, and the structure of β-elemene.

Table 1. The specific information of elemene oral emulsion and elemene injection.

Elemene Oral Emulsion Elemene Injection

Ingredient list 85% β-elemene and 15% γ- and δ-elemene 85% β-elemene and 15% γ- and δ-elemene

Description opalescent homogeneous emulsion opalescent homogeneous emulsion

Indication for adjuvant treatment of esophageal cancer
and gastric cancer to improve symptoms

lung cancer, liver cancer, esophageal cancer,
nasopharyngeal cancer, brain cancer, and

bone metastasis; intervention, intracavitary
chemotherapy, and carcinoma hydrothorax

treatment

Side effects
digestive tract reactions: nausea, vomiting,
diarrhea, and occasionally loss of appetite;

decreased hemoglobin; decreased leukocytes

phlebitis; fever; local pain; allergic reaction;
mild digestive tract reaction

Specification 20 mL: 176 mg 20 mL: 88 mg

Pharmacokinetics [5,6] t1/2 = 65 min (i.v.)
t1/2 = 126 min (i.p.) bioavailability = 18.8%

Compared with radiotherapy and chemotherapy, elemene treatment displayed fewer
side effects and is tolerated by most patients [7]. However, the lipophilicity and low
bioavailability limit its application. As a sesquiterpenoid volatile oil, its chemical structure
contains only two elements of hydrocarbon and hydrogen, resulting in poor aqueous
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solubility. Therefore, β-elemene is a lead compound to discover better anti-tumor drugs
with satisfying drug-like properties. Because the three olefinic bonds play important roles
in its anti-tumor activity, the researchers have modified its structure under the premise
of retaining the basic scaffold structure and the double bonds, including introducing
hydrophilic moieties like hydroxyl and amino groups to improve its water solubility.

In this review, we discuss and summarize the potential anti-tumor mechanisms and
the progress of structural modifications of β-elemene.

2. The Potential Anti-Tumor Mechanisms of β-Elemene

β-Elemene shows various anti-tumor effects in different tumor cells and the exact
anti-tumor mechanisms have not been fully elucidated. The main molecular mechanism
is to inhibit tumor growth and proliferation, induce apoptosis, and inhibit tumor cell
invasion and metastasis. β-Elemene involves the regulation of various signal pathways
and enzymes/proteins including p38-MAPK, Wnt-β-catenin, PI3K-AKT-Mammalian target
of rapamycin (mTOR), and Bcl-2 protein family and caspase. Moreover, β-elemene can also
enhance the sensitivity of chemotherapy or radiotherapy, regulate the immune system, and
reverse multidrug resistance (MDR). The potential anti-tumor mechanisms of β-elemene
are summarized in Figure 2.

Molecules 2021, 26, x FOR PEER REVIEW 3 of 24 
 

 

Table 1. The specific information of elemene oral emulsion and elemene injection. 

 Elemene Oral Emulsion Elemene Injection 

Ingredient list 
85% β-elemene and 15% γ- and δ-

elemene 

85% β-elemene and 15% γ- and δ-ele-

mene 

Description opalescent homogeneous emulsion opalescent homogeneous emulsion 

Indication 

for adjuvant treatment of esopha-

geal cancer and gastric cancer to 

improve symptoms 

lung cancer, liver cancer, esophageal can-

cer, nasopharyngeal cancer, brain cancer, 

and bone metastasis; intervention, in-

tracavitary chemotherapy, and carcinoma 

hydrothorax treatment 

Side effects 

digestive tract reactions: nausea, 

vomiting, diarrhea, and occasion-

ally loss of appetite; decreased he-

moglobin; decreased leukocytes 

phlebitis; fever; local pain; allergic reac-

tion; mild digestive tract reaction 

Specification 20 mL: 176 mg 20 mL: 88 mg 

Pharmacokinetics 

[5,6] 

t1/2 = 65 min (i.v.) 

t1/2 = 126 min (i.p.) 
bioavailability = 18.8% 

2. The Potential Anti-Tumor Mechanisms of β-Elemene 

β-Elemene shows various anti-tumor effects in different tumor cells and the exact 

anti-tumor mechanisms have not been fully elucidated. The main molecular mechanism 

is to inhibit tumor growth and proliferation, induce apoptosis, and inhibit tumor cell in-

vasion and metastasis. β-Elemene involves the regulation of various signal pathways and 

enzymes/proteins including p38-MAPK, Wnt-β-catenin, PI3K-AKT-Mammalian target of 

rapamycin (mTOR), and Bcl-2 protein family and caspase. Moreover, β-elemene can also 

enhance the sensitivity of chemotherapy or radiotherapy, regulate the immune system, 

and reverse multidrug resistance (MDR). The potential anti-tumor mechanisms of β-ele-

mene are summarized in Figure 2. 

 

Figure 2. Summary of the potential anti-tumor mechanisms of β-elemene. 

  

Figure 2. Summary of the potential anti-tumor mechanisms of β-elemene.

2.1. The Inhibition of Tumor Cell Proliferation and Growth

A cell cycle is mainly divided into the G0 phase (quiescent stage), G1 phase (the early
stage of DNA synthesis), S phase (DNA synthesis period), G2 phase (the later stage of
DNA synthesis), and M phase (the mitotic stage). Cyclin-dependent kinases (CDK) are
a group of serine/threonine protein kinases, which can advance and transform the cell
cycle in different phases by cooperating with cyclin. Cell division cycle (CDC) genes
and CDK inhibitors (p21, p27, p15, and p16) play an important role in the regulation of
the cell cycle [8]. Tumor cells grow vigorously and lose control with relative autonomy.
β-Elemene was reported to inhibit the proliferation of non-small-cell lung cancer (NSCLC)
cell line H460 and concentration-dependently induce cell cycle arrest at the G2/M phase.
Further mechanism studies indicated that β-elemene could reduce the activities of cyclin-
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CDC/CDK complexes including cyclin B1-CDC2, cyclin A-CDC2, and cyclin A-CDK2,
leading to arrest cell cycle at the G2/M phase [9].

Topoisomerase I (TOPO I) and TOPO IIα are key enzymes that regulate the topological
configuration of nucleic acids and have become important targets for tumor chemother-
apy [10]. In human hepatoma HepG2 cells, β-elemene was found to concentration- and
time-dependently inhibit cell proliferation and arrest the cell cycle at the G2-M/S phase.
These effects were mediated by the downregulation of the protein expression of TOPO
I and TOPO IIα [11,12]. It was also reported that β-elemene could induce the inhibition
of murine hepatocellular carcinoma cell line H22 by downregulating the expression of
c-Met and enhancing the protein expression of histone H1 [13,14]. In human glioblastoma
C6 and U251 cells, β-elemene was found to arrest the cell cycle at the G0/G1 phase and
inhibit cell proliferation through phosphorylation of the p38 MAPK pathway, which was
blocked by SB203580, an inhibitor of p38 MAPK kinase [15]. In addition, β-elemene could
also decrease cell viability and tumor volume via activating the glia maturation factor β
(GMFβ)-dependent MKK3/6-p38 signaling pathway activation as well as inhibiting the
ERK1/2-Bcl-2/survivin signaling pathway in glioblastoma U87 cells [16,17].

Telomerase is an enzyme responsible for telomere lengthening in cells and involves
maintaining chromosomal stability and cell viability. The expression of telomerase is
markedly upregulated in many tumor cells, resulting in unrestricted growth and prolifer-
ation of these cells. Human telomerase reverse transcriptase (hTERT) expression shows
a positive correlation with telomerase activity [18]. β-Elemene was found to suppress
esophageal carcinoma ECA-109 cell proliferation by inhibiting the expression of hTERT me-
diated by long noncoding RNA (lncRNA) CDKN2B-AS1 [19]. The epigenetic inactivation
of cancer-related genes is closely related to DNA hypermethylation and these abnormal epi-
genetic modifications are associated with DNA methyltransferase (DNMT) [20]. β-Elemene
could also inhibit the growth of C666-1 and HNE2 cells (nasopharyngeal carcinoma cells)
associated with the inactivation of signal transducer and activator of transcription 3 (Stat3)
and the reduced expression of DNMT1 and enhancer of zeste homolog 2 (EZH2) [21]. In
human NSCLC A459 and PC9 cells, β-elemene inhibited cell growth via reducing the
protein expression of DNMT1 mediated by ERK1/2 and AMPKα signaling pathways [22].
Subsequent investigations demonstrated that β-elemene increased insulin-like growth
factor-binding proteins 1 (IGFBP 1) gene expression through inactivating Stat3 as well
as the interaction between miRNA155-5p and human forkhead box class O 3a (FoxO 3a),
leading to the inhibition of human lung cancer A549 and H1975 cell growth [23]. Another
study indicated that β-elemene selectively inhibited the proliferation of glioma stem-like
cells (GSLCs), including U87, U373, SHG-44, T98G, and SKMG-4 cells compared with
parental glioma cells associated with downregulating Notch1 expression [24]. Moreover,
β-elemene also inhibited bladder carcinoma T24 cell proliferation and induced apoptosis
through upregulating Smad4 gene expression, a tumor suppressor gene [25].

Wnt-Frizzled-β-catenin signaling transduction pathway plays a significant role in
proliferation, differentiation, and orientation by regulating its downstream target molecule,
including TCF7, c-Myc, and cyclin D1 [26]. A study indicated that administration of
β-elemene concentration- and time-dependently inhibits human cervical cancer SiHa
cell proliferation and arrests the cell cycle at the G1 phase through the upregulation of
P15 expression and the downregulation of cyclin D1 expression. Moreover, β-elemene also
inhibits cell invasion and apoptosis via the Wnt-Frizzled-β-catenin signaling transduction
pathway [27].

The microtubule is an important part of the cytoskeleton. Interferences with the
polymerization and decomposition of microtubules are a vital target for tumor drug
therapy. β-Elemene injection effectively inhibits hepatoma HepG2 cell proliferation and
arrests the cell cycle at the S phase associated with downregulating alpha-tubulin and
inhibiting microtubular polymerization [28].
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2.2. The Induction of Cell Apoptosis

Apoptosis is a genes-controlled autonomous and orderly death process of cells, play-
ing a pivotal role in cancer regulation [29]. The death receptor pathway (for example,
Fas/APO1 and APO3), the mitochondrial pathway, and the endoplasmic reticulum (ER)
stress pathway are the main apoptosis pathways. Cysteinyl aspartate-specific proteinase
(caspase) plays a critical regulatory role in all apoptosis pathways. In the FasL/Fas signaling
pathway, the fas-associated death domain (FADD) leads to the cleavage of procaspase-
8 and activation of caspase-8, which then activates downstream caspases (caspase-3 and
caspase-7) and causes cell apoptosis. On the other hand, activated caspase-8 will cleave
binding interface database (Bid) into truncated binding interface database (tBid), which
in turn induces the release of mitochondrial cytochrome C into the cytoplasm, and the
apoptosis through the mitochondrial pathway [30]. In addition, DNA damage and in-
duction of chemotherapeutic drugs and radiation can cause a decrease in mitochondrial
transmembrane potential and an increase in membrane permeability, leading to the release
of cytochrome C into the cytoplasm. The released cytochrome C then binds to apopto-
sis protease-activating factor-1 (Apaf-1) to recruit procaspase-9, forming an apoptosome,
which causes the self-clearage and self-activation of procaspase-9. Activated caspase-9 ini-
tiates the downstream caspase cascade to induce apoptosis. The X-linked inhibitor of
apoptosis (XIAP) and the Bcl-2 family proteins, including Bcl-2, Bcl-XL, Bax, and Bad,
tightly participate in the regulation of the apoptosis process [31,32].

A study indicated that β-elemene could effectively inhibit NSCLC A549 cells’ vitality
with an IC50 value of 27.5 µg/mL. The effect was associated with ER stress activation via
the PERK/IRE1α/ATF6 pathway mediated by reactive oxygen species (ROS) generation.
The anti-tumor effect of β-elemene was also confirmed in Lewis tumor-bearing C57BL/6J
mice [33]. A subsequent study demonstrated that Cb1-regulated AKT and ERK signaling
pathways are associated with β-elemene-induced apoptosis. Moreover, the decreased Bcl-
2 expression, increased Bax expression, and the cleavage of poly ADP-ribose polymerase
(PARP) also contribute to β-elemene-induced apoptosis in A549 cells [34]. β-Elemene
also induces gastric cancer SGC7901 cell apoptosis in a concentration-dependent manner.
147 Upregulated proteins and 86 downregulated proteins as well as several pathways, in-
cluding ribosome signaling, peroxisome proliferator-activated receptors (PPARs) signaling
pathway, and p21-activated protein kinase 1 (PAK1) were responsive to the treatment of
β-elemene [35].

Survivin, abundantly expressed in tumors, is a member of the inhibitor of apoptosis
(IAP) gene family [36]. In human glioma U251 and A172 cells, β-elemene induced cell
apoptosis associated with the expression inhibition of the survivin gene and the interaction
between survivin and hepatitis B X-interacting protein (HBXIP). The apoptotic effect was
also associated with the activation of caspase-3/-7/-9 and increased levels of cleaved
PARP [37]. In addition, treatment with β-elemene induced human glioblastoma multiform
cell line U87MG by disrupting the formation of the Hsp90/Raf-1 complex, leading to
Raf-1 deactivation and ERK pathway inhibition [38]. In bladder cancer T24 cells, β-elemene
could induce apoptosis through downregulating the expression of several substances,
including survivin, Bcl-XL, and metastasis-associated gene 1 (Mta-1). The anti-tumor effect
of β-elemene was dependent on the dosage and length of incubation time [39].

The BH3-only protein p53-up-regulated modulator of apoptosis (PUMA) is a down-
stream effector in the transforming growth factor-β (TGF-β)-induced apoptosis pathway
in myc-driven B-cell lymphomas [40]. β-Elemene significantly causes the apoptosis of
Burkitt’s lymphoma Raji in a concentration-dependent manner via increasing the expres-
sion of PUMA, Bax, Bak, Bim, and Bid, as well as decreasing Bcl-2 and Bcl-XL expres-
sion [41].

2.3. The Inhibition of Tumor Cell Invasion and Metastasis

The metastasis of tumor cells is the end product of the invasion-metastasis cascade,
including the formation of the primary tumor, local invasion, intravasation, survival in the



Molecules 2021, 26, 1499 6 of 24

circulation, extravasation, and metastasis. Several substances are involved in the cascade
process. Among them, matrix metalloproteinases (MMPs) destroy the tissue barrier of
tumor cell invasion and epithelial-mesenchymal transition (EMT) endows cells the ability of
metastasis and invasion. Moreover, angiogenesis and angiogenesis-related factors include
vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), laying
a foundation for metastasis [42].

Researchers have shown that β-elemene can effectively inhibit tumor cell invasion and
metastasis in a variety of ways. It has been reported that β-elemene could inhibit melanoma
B16F10 cell metastasis via downregulating the mRNA and protein expression of MMP-
2/9, urokinase-type plasminogen activator (uPA), and its receptor (uPAR) both in vitro
and in vivo [43,44]. β-Elemene can also inhibit the growth of and metastasis of melanoma
B16F10 cells through suppressing VEGF-mediated angiogenesis and the expression of CD34,
a key marker of primary melanoma angiogenesis [45]. In CD44+ gastric cancer stem-like
cells (GCSCs), β-elemene effectively attenuated cell angiogenesis by interfering Notch-
1 expression but not with DII4 [46]. In gastric cancer cell lines, BGC823 and SGC7901, β-
elemene was found to inhibit peritoneal metastasis by modulating the focal adhesion kinase
(FAK)/Claudin-1 signaling pathway, including downregulated FAK phosphorylation and
Claudin-1 expression [47]. Moreover, β-elemene effectively suppresses cell metastasis
through inhibiting the expression of miR-1323 and then upregulating Cbl-b expression,
leading to the blocking of the EGFR-ERK/AKT signaling pathways in the doxorubicin
(Adriamycin)-resistant variant of SGC7901. Taken together, its anti-metastasis activity
of MDR gastric cancer cells was associated with the miR-1323/Cbl-b/EGFR signaling
axis [48].

E-cadherin is a member of the cadherin family and its inactivation results in cell
migration and invasion and is involved in the metastasis of cancer cells. β-Elemene could
decrease cell migration and invasion by upregulating the mRNA and protein expression
of E-cadherin via upregulating estrogen receptor-α and metastasis-associated protein 3
(MAT3) and decreasing the nuclear transcription factor Snail in human breast cancer cell
line MCF-7 [49]. Further investigations showed that β-elemene also blocked EMT through
decreasing Smad3 expression and phosphorylation, leading to the inhibition of TGF-β1-
mediated upregulation of mRNA and protein expression of nuclear transcription factors,
including Snail/SNAI1, Slug/SNAI2, TWIST, and SIP1 [50]. Furthermore, β-elemene was
found to inhibit human breast cancer MDA-MB-231 and MCF-7 cells metastasis by blocking
dimeric pyruvate kinase M2 (PKM2) transformation and nuclear translocation mediated
aerobic glycolysis [51].

2.4. The Reverse of Multidrug Resistance

Multidrug resistance, the simultaneous development of resistance to different drugs
with different targets and chemical structures, is one of the important reasons for the
failure of tumor chemotherapy. The increased efflux of various hydrophobic cytotoxic
drugs mediated by the ATP-binding cassette (ABC) transporters, including P-glycoprotein
(P-gp, also known as MDR1 or ABCB1) and breast cancer resistance protein (BCRP), is a
common drug resistance mechanism [52]. Current studies have shown that β-elemene can
effectively reverse MDR through inhibiting ABC transporters’ expression and improving
the anti-tumor effect.

In cisplatin (DDP)-resistant human lung adenocarcinoma A549/DDP cells, β-elemene
could effectively reverse drug resistance by decreasing mitochondrial membrane potential
and the expression of the P-gp activated intracellular redox system and activating apop-
tosis [53]. In drug-resistant leukemia and gastric adenocarcinoma cell lines K562/DNR
and SGC7901/ADR, β-elemene significantly enhanced the efficacy of doxorubicin (DOX)
efficiency through upregulating the E3 ubiquitin ligases (c-Cb1 and Cbl-b) and then in-
hibiting the PI3K/AKT signaling pathway, as well as downregulating the expression of
P-gp [54]. Moreover, β-elemene also increased the cytotoxicity of multiple chemotherapy
drugs (paclitaxel, colchicine, and vinblastine) in overexpressed ABCB1 transporter cell
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lines (KB-C2, HEK293, and NCI-H460/MX20) associated with inhibiting the activity of
ABCB1 transporter [55]. It was also demonstrated that treatment with β-elemene could
inhibit the proliferation of the cisplatin-sensitive/resistant human ovarian cancer cell line
A2780 and A2780/CP by downregulating the expression of CDC2 and cyclin A/B1 as well
as upregulating p21WAF1/CIP1 and p53 protein expression, leading to cell cycle arrest at
G2/M phase. Further studies indicated that β-elemene also induced apoptosis through ac-
tivating caspase-3, -8, and -9 [56,57]. These findings showed that β-elemene was a potential
agent for the treatment of cisplatin-resistant ovarian cancer.

It has been reported that β-elemene could reverse chemoresistant human breast
cancer cells (MCF-7/doxorubicin, MCF-7/adriacin, and MCF-7/docetaxel) associated
with the inhibition of BCRP and P-gp transporter expression as well as the increased
expression of phosphatase and tensin homolog deleted on chromosome ten (PTEN) [58–61].
Moreover, β-elemene was also found to reverse drug resistance through the mitochondrial
apoptosis pathway in the cisplatin-resistant human lung adenocarcinoma A549/DDP
cells and through inducing pro-death autophagy and arresting the cell cycle dependent
on cyclin D3 in the 5-fluorouracil resistant human p53-deficient colorectal cancer lines
HCT116p53-/- [62,63].

2.5. Enhancement of the Chemoradiotherapy Sensitization

Many reports proved that β-elemene could enhance the therapeutic effects of ra-
diotherapy and chemotherapy in different aspects. β-Elemene was found to improve
the radiosensitivity (X-ray, 3.38 Gray/min, 2/4/6/10 Gray) and chemosensitivity (temo-
zolomide) of the human glioblastoma multiforme (GBM) cell lines (U87MG, T98, U251,
and LN229) associated with the inhibition of DNA damage repair through ATM, AKT,
and ERK signaling pathways [64]. β-Elemene also enhanced the efficacy of gefitinib, an
epidermal growth factor receptor (EGFR) inhibitor, against GBM U87MG and U251 cells
via inhibiting the EGFR signaling pathway [65]. In the human cisplatin-resistant ovarian
cancer cell lines A2780/CP70 and MCAS, β-elemene was found to increase the suscepti-
bility to cisplatin through the regulation of DNA repair activity including the expression
inhibition of excision repair cross-complementation group-1 (ERCC-1) and the induction
of apoptosis, including the increased phosphorylate level of JNK and the downregulation
of XIAP expression [66,67]. A study indicated that β-elemene could sensitize the human
lung adenocarcinoma A549 cells to radiation (γ-ray, 6 Gray) by upregulating p53 expres-
sion, downregulating Bcl-2 expression, and inducing apoptosis [68]. Zou and co-workers
have reported that β-elemene displayed a radiosensitization (6 MV, X-ray, 4 Gray) effect
in human lung adenocarcinoma A549 cells through facilitating DNA damage and sup-
pressing DNA repair in vitro. These effects may be mediated by inhibiting the mRNA
expression of hypoxia inducible factor-1α (HIF-1α), survivin, and mTOR [69,70]. Further
studies showed that β-elemene (45 mg/kg, i.p.) significantly improved the radiosensitivity
(6 MV electron beam from a linear accelerator, 5 Gray) of A549 cells xenograft in vivo
by suppressing the HIF-1α-survivin pathway and directly or indirectly downregulating
the mRNA and protein expression of radiation-induced peroxiredoxin-1 (Prx-1), a critical
molecule in redox regulation of tumor cells [71,72]. Furthermore, β-elemene also increased
cisplatin chemosensitivity of the human NXCLC cell lines (H460 and A549) via inducing
mitochondria-mediated intrinsic apoptosis and arresting the cell cycle at the G2/M phase
associated with the CHK2-mediated CDC25C/CDC2/cyclin B1 signaling pathway [73,74].

In human bladder cancer T24 and 5637 cells, β-elemene could arrest the cell cycle at
the G0/G1 phase and enhance cisplatin-induced apoptosis dependent on caspase activity
and the ROS-AMPK signaling pathway [75,76]. β-Elemene was also found to display a
radiosensitizer effect in human gastric cancer MKN45 and SGC7901 cells. Further investi-
gations have shown that this effect is mediated by upregulating PAK1-interacting protein 1
(PAK1IP1) expression and downregulating the levels of threonine (T423, phosphor-Pak1)
and phosphor-ERK1/2, thereby inhibiting the PAK1 signaling pathway [77]. In the triple-
negative breast cancer cells, MDA-MB-231 and BT549, the combination of β-elemene and
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5-fluorouracil (5-FU) markedly suppressed cell proliferation, migration, and invasion by
inhibiting NF-κB, PI3K/PTEN/AKT/mTOR and Ras-Raf-MEK-ERK signaling pathways.
These effects were also confirmed with LY294002 (PI3K inhibitor) and U0126 (Ras-Raf-MEK-
ERK inhibitor) [78]. It is also reported that β-elemene remarkably enhances the therapeutic
effect of cisplatin on proliferative inhibition and apoptosis via blocking the JAK2-STAT3 sig-
naling pathway, including the inhibition of p-STAT3, p-JAK2, and Bcl-2 expression, as well
as the upregulation of Bax and caspase-3 expression [79]. In human melanoma A375 cells,
co-treatment of β-elemene with radiation (6 MV, X-ray, 2 and 4 Gray) notably decreased
the cell viability by 23% at a dose of 2 Gray and 30% at a dose of 4 Gray [80]. In human
colorectal carcinoma HCT116 and HT29 cells, β-elemene was found to improve the effect
of 5-FU by downregulating the expression of miR-191, which is associated with the inhi-
bition of the Wnt/β-catenin pathway [81]. Moreover, β-elemene also enhanced cisplatin
and oxaliplatin sensitivities as well in the androgen-independent prostate carcinoma cell
lines (DU145 and PC-3) and human hepatocellular carcinoma cell lines (Hep3B, Huh7,
MHCC97H, and MHCCLM3), respectively [82,83]. β-Elemene could also augment the
cisplatin-induced apoptosis dependent on the activation of mitochondria and blocking the
reduction of copper transporter 1 (CTR1) following oxaliplatin treatment.

2.6. The Activation of Protective Autophagy

Autophagy is a process by which autophagosomes engulf cellular proteins and or-
ganelles are delivered to lysosomes for degradation. Autophagy exhibits a controversial
dual role (promotion or inhibition) in the occurrence and development of cancer and the
detailed mechanisms are largely unclear. Several studies indicated that autophagy phar-
macological inhibitors can improve the effects of certain anti-tumor agents [84,85]. The
lipid-conjugated form of LC3II by the combination of LC3I, phosphatidylethanolamine
(PE), autophagy-related gene 4B (Atg4B), and Atg7 commonly serves as an autophagosome
marker [86]. β-Elemene was found to have both the effects of inducing apoptosis and
activating protective autophagy.

The activation of the PI3K-PDK1-AKT-TSC1/2-Rheb-mTORC1-p70S6K-S6 signaling
pathway leads to an increase in protein synthesis. Meanwhile, mTOR is also a key regulator,
and the activation of mTOR triggers autophagy. β-Elemene was proved to effectively
inhibit the viability of various tumor cells, including human NSCLC A549 cells, gastric
cancer MGC803 and SGC7901 cells, and renal-cell carcinoma 786-0 cells by suppressing
the PI3K/AKT/mTOR signaling pathway. At the same time, it also triggered protective
autophagy characterized by the increased punctate LC3 dots and LC3II protein level.
Treatment with chlorochine or 3-methyladenine (autophagy inhibitors) or knockdown of
Beclin 1 with siRNA significantly enhanced the effect of β-elemene [87–89]. These effects
were also confirmed in the human hepatoma cancer HepG2 cells and breast cancer cell lines
(Bcap37 and MBA-MD-231) [90,91]. These findings indicate that β-elemene in combination
with autophagy inhibitors is a feasible way for the therapy of cancer.

2.7. The Regulation of the Immune System

The reduction of the immune recognition, the enhancement of tumor cells resistant to
immune cells, or the immunosuppression of the tumor microenvironment may mediate
escaping from immune control [92]. β-Elemene was found to enhance the effect of the
immune system.

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, Apo-2L), expressed
on activated T cells, is a member of the tumor necrosis factor superfamily. Multiple
receptors can selectively induce apoptosis, but most gastric cancer cells are insensitive. In
human gastric cancer BGC823 and SGC7901 cells, β-elemene was found to increase the
sensitivity of these cells to TRAIL by promoting the formation of death-inducing signaling
complex (DISC) in lipid rafts [93]. Tumor-associated macrophages (TAMs), mainly the
alterative activated (M2) phenotype, display pro-tumoral property and have become an
attractive target for anti-cancer therapy. A study indicated that β-elemene could inhibit
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the migration, invasion, and epithelial mesenchymal transition of the mouse Lewis lung
carcinoma cells promoted by the conditioned medium of M2 RAW264.7 macrophages and
regulate the polarization of macrophages from M2 to M1 [94]. Furthermore, radiation
(X-ray, 4 Gray) and hypoxia also induced the M2 macrophages’ infiltration and polarization
in the mouse Lewis lung carcinoma cells dependent on monocyte chemoattractant protein-1
(MCP-1). β-Elemene was found to have effectively suppressed M2 macrophage recruitment
and MCP-1 expression through inhibiting the Prx-1/NF-kB/HIF-1α signaling pathway [95].
Interleukin-23 (IL-23) involves the antigen presentation of dendritic cells (DCs), which are
the most potent antigen presenting cells (APCs). Bone marrow-derived dendritic cells (BM-
DCs) modified with genes encoding murine IL-23 (DC vaccine) displayed potent clinical
applications. It was reported that β-elemene exerted great collaborative anti-tumor effects
combined with IL-23-modified DC vaccine via enhancing specific Th1-type and cytotoxic
T lymphocyte (CTL) responses against pancreatic carcinoma in the female C57BL/6 (B6)
mice [96].

3. Structural Modification of β-Elemene
3.1. Reduction and Oxidation Derivatives of β-Elemene

The structure of β-elemene contains three carbon-carbon double bonds, which are
important pharmacophores for its anti-tumor activity. Due to the influence of chemical
configuration and steric hindrance, the most active double bond of β-elemene is located
at the 7, 8 positions, followed by the 11, 12 double bond, and the 9, 10 double bond was
the least active [97]. Compounds 2–6 (Figure 3) were five reduction products of β-elemene
synthesized via hydrogenation reaction [97,98]. However, since no hydrophilic polar
groups are introduced, hydrogenation derivatives did not improve the water solubility
of β-elemene, and it is not helpful to improve its physical and chemical properties and
biological activity.
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Thomas et al. [99] and Maurer et al. [100] employed ozone oxidation to oxidize the
double bond of β-elemene into epoxides 7–9 and ketones 10–12 (Figure 4). However, there
is no report on the anti-tumor activity of related oxidation products. Because the double
bonds are key anti-tumor pharmacophores, and one or two double bonds of the oxidation
product 7–12 are destroyed, we speculate that the anti-tumor activity of these oxidation
derivatives may not be effectively improved. Oxidation of the substructures other than
double bonds can introduce hydrogen bond acceptors and polar groups without changing
the pharmacophores, which will enhance the biological activity of the products. Based
on this, Bai et al. [101] synthesized 13-β-elemenol (13), 14-β-elemenol (14), 13-β-elemenal
(15), 14-β-elemenal (16), and the acid derivatives 17 and 18 (Figure 4). Compound 15 and
compound 16 exhibited the most potent anti-proliferative effect on A549, HepG-2, and
U87 cancer cell lines, with IC50 values ranging from 11.61 to 59.55 µM.
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Li et al. [102] designed and synthesized several β-elemene hydroxylated derivatives
and found only compounds 19–21 (Figure 5) displayed comparable anti-proliferation
activity with β-elemene against malignant brain tumor cells A172, CCF-STTG1, and U-
87MG. Compounds 19 and 20 exhibited the same anti-tumor effect, while compound 21 was
inferior to β-elemene. Xie et al. [103] designed and synthesized six β-elemene derivatives
22–27 (Figure 5) by SeO2-mediated oxidation for the first time. These derivatives showed
more potent anti-tumor activity than β-elemene on several tumor cells. Compounds 28–30
(Figure 5) were another three β-elemene oxidation derivatives synthesized via a pyridinium
dichromate (PDC)-mediated oxidation reaction. Among these compounds, compound 28
exerted significant anti-proliferation activity against A549 and U-87 cells, with IC50 values
of 9.34 and 2.83 µM, respectively.
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3.2. Halogenated Derivatives of β-Elemene

As mentioned above, although the breaking of the unsaturated double bond improved
the drug-like properties of β-elemene, this kind of modification negatively affects its
anti-tumor activity. Subsequently, under the premise of retaining the double bond, the
researchers focused on the optimization of the 13 or 14 methyl groups. The structural
modifications of 13 and 14 methyl groups are inseparable from a series of key intermedi-
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ates, which is the halogenated products of elemene, such as chlorinated β-elemene and
brominated products.

In the chlorination reaction of β-elemene, the chlorination products are mainly 13-
chloro-β-elemene (31), and a small amount of 14-chloro-β-elemene (32) and dichlorination
13,14-bischloro-β-elemene (33) products will also be generated (Figure 6). However, the
polarity of the 13-chloro-β-elemene and 14-chloro-β-elemene are too similar to be sepa-
rated. Instead, the mixture of monochloride products is always used as a raw material to
prepare the next-step products. Finally, 13-substituted derivatives with better purity can
be separated by the polar difference of the subsequent reaction products. Unfortunately,
14-substituted derivatives are always discarded as impurities due to their low content.
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Xie et al. [104] successfully separated compound 31 by cyclic preparative liquid
chromatography, but compound 32 was still not obtained. Moreover, Chu et al. [104]
synthesized 13-bromo-β-elemene (34) (Figure 7) and 14-bromo-β-elemene (35) (Figure 7)
in NBS and transition metal chloride (CoCl2) system and these derivatives were directly
used for the next reaction without separating. Xie et al. [104] prepared 34, 35, and 13,
14-bisbromo-β-elemene (36) by using the Yb(OTf)3/TMSCl/NBS system. Chen et al. [105]
prepared 13-bromo-β-elemene (34) with high purity using a slightly more complicated
method (Figure 7). They firstly synthesized the mixture of compounds 31 and 32 by the
NaClO/CH3CO2H system and the mixture was directly applied in the next reaction. The
above mixture was converted to esters by displacement of chloride with CH3CO2Na, then
to a mixture of alcohols (13 and 14) via the hydrolysis under alkaline conditions. Finally, 13
was obtained after high-performance liquid chromatography (HPLC) purification, which
was further converted to 34 using the NBS/PPh3 system.

Molecules 2021, 26, x FOR PEER REVIEW 11 of 24 
 

 

modifications of 13 and 14 methyl groups are inseparable from a series of key intermedi-

ates, which is the halogenated products of elemene, such as chlorinated β-elemene and 

brominated products. 

In the chlorination reaction of β-elemene, the chlorination products are mainly 13-

chloro-β-elemene (31), and a small amount of 14-chloro-β-elemene (32) and dichlorination 

13,14-bischloro-β-elemene (33) products will also be generated (Figure 6). However, the 

polarity of the 13-chloro-β-elemene and 14-chloro-β-elemene are too similar to be sepa-

rated. Instead, the mixture of monochloride products is always used as a raw material to 

prepare the next-step products. Finally, 13-substituted derivatives with better purity can 

be separated by the polar difference of the subsequent reaction products. Unfortunately, 

14-substituted derivatives are always discarded as impurities due to their low content.  

 

Figure 6. The chlorination reaction and the chemical structures of related products 31–33. 

Xie et al. [104] successfully separated compound 31 by cyclic preparative liquid chro-

matography, but compound 32 was still not obtained. Moreover, Chu et al. [104] synthe-

sized 13-bromo-β-elemene (34) (Figure 7) and 14-bromo-β-elemene (35) (Figure 7) in NBS 

and transition metal chloride (CoCl2) system and these derivatives were directly used for 

the next reaction without separating. Xie et al. [104] prepared 34, 35, and 13, 14-bisbromo-

β-elemene (36) by using the Yb(OTf)3/TMSCl/NBS system. Chen et al. [105] prepared 13-

bromo-β-elemene (34) with high purity using a slightly more complicated method (Figure 

7). They firstly synthesized the mixture of compounds 31 and 32 by the NaClO/CH3CO2H 

system and the mixture was directly applied in the next reaction. The above mixture was 

converted to esters by displacement of chloride with CH3CO2Na, then to a mixture of al-

cohols (13 and 14) via the hydrolysis under alkaline conditions. Finally, 13 was obtained 

after high-performance liquid chromatography (HPLC) purification, which was further 

converted to 34 using the NBS/PPh3 system. 

    

Figure 7. The bromination reaction and the chemical structures of related products 34–36. 

13-Fluoro-β-elemene (37) (Figure 8) was a fluorinated compound of β-elemene and 

displayed an anti-tumor effect comparable to that of β-elemene on NSCLC cells. 

Figure 7. The bromination reaction and the chemical structures of related products 34–36.



Molecules 2021, 26, 1499 12 of 24

13-Fluoro-β-elemene (37) (Figure 8) was a fluorinated compound of β-elemene and
displayed an anti-tumor effect comparable to that of β-elemene on NSCLC cells. Further-
more, the MTT assay indicated that the IC50 values against H460 cells of β-elemene and
compound 37 were 70.6 and 62.5 µg/mL, respectively [73].
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3.3. Amine Derivatives of B-Elemene

Sun et al. [106] firstly synthesized 13-monosubstituted amines of β-elemene deriva-
tives 38a–g (Figure 9) by strictly controlling reaction conditions. Among them, compounds
38b, 38c, and 38f showed potent anti-tumor activity on Hela cell lines with IC50 values of
0.04, 3.39, and 0.52 µM, respectively, which were superior to that of β-elemene. Further
studies demonstrated that the anti-tumor activity of these derivatives was associated with
blocking the cell cycle at the G1 phase by reducing Rb phosphorylation and cyclin D1
protein expression.
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Yu et al. [107] designed and synthesized five novel β-elemene piperazine derivatives
39a–e (Figure 10) to improve its anti-tumor activity. The inhibitory effect of these derivatives
on cell growth was more potent than β-elemene, and their IC50 values were less than 15
µM. These derivatives could also activate death receptor-mediated and mitochondrial-
mediated apoptosis pathways via increasing ROS production and decreasing the cellular
FLICE-inhibitory protein (c-FLIP) level.
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Xu et al. [108] designed and synthesized fourteen 13, 14-disubstituted derivatives
40a–n (Figure 11) of β-elemene by introducing hydrophilic moiety. The water solubility
and anti-tumor activity of obtained products were successfully increased. Compounds 40c,
40m, and 40n revealed potent anti-tumor activity in vitro by decreasing the mTOR or PKB
level, with IC50 values less than 5 µM on K562 cells. Further investigation indicated that
compound 40c also displayed potent anti-tumor activity against several other cell lines,
including gastric, breast, lung, liver, ovarian, colon cancer, and leukemia cells, with an
average IC50 value of 3.44 µmol/L [109].
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In short, the introduction of amine-derived pharmacophores into the β-elemene
structure can not only improve their physical and chemical properties but also greatly
enhance their anti-tumor activity in vitro. Therefore, this structural modification method is
a practical strategy.

3.4. Ether Derivatives of β-Elemene

Compounds 41a–h (Figure 12) were eight etherified β-elemene derivatives with dif-
ferent aliphatic or aromatic substituents. However, the anti-proliferative activity of these
derivatives was not effectively improved. Only compound 41c showed slightly more
potent anti-proliferative activity than β-elemene, with an IC50 value of 105.9 µM [106].
These results indicated that etherification modification of β-elemene was not a successful
strategy to obtain much more potent β-elemene derivatives.
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Ether 43 (Figure 13) was a novel β-elemene dimer derivative with a piperazine moiety,
which displayed remarked anti-proliferative effect with an IC50 value less than 11 µM.
More importantly, the combination of compound 43 and cisplatin could effectively reverse
the drug resistance of A549/DPP cells. Further studies indicated that compound 43 could
arrest the cell cycle at the G2 phase and induce cell death in a mitochondrial-dependent
apoptosis way [110].
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3.5. Ester Derivatives of β-Elemene

As illustrated in Figure 14, Zhang et al. [111] designed and synthesized six esterified
derivatives of β-elemene (45a–f) to improve the water solubility. These derivatives ex-
hibited significant anti-tumor activity compared to β-elemene against Hela, HL-60, and
SGC-7901 cells. Chen et al. [112] prepared a series of 13-β-elemene ester derivatives 46a–u
(Figure 15) to improve the activity and half-life of β-elemene and investigated the antioxi-
dant activity in human umbilical vein endothelial cells (HUVECs). The results proved that
only compound 46g showed better antioxidant activity than β-elemene. Liu et al. [113]
synthesized five different β-elemene ester and carbamate derivatives (46v–y) (Figure 15).
However, the anti-tumor activity was not significantly improved.
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Chen et al. [114] also designed and synthesized several β-elemene dimer ester deriva-
tives and investigated their antioxidant activity on HUVECs. Furthermore, 13-monosubsti-
tuted dimers 47a and 47b (Figure 16) demonstrated the most effective antioxidant activity
associated with the production inhibition of ROS, which were better than the positive
control vitamin E. Intriguingly, the antioxidant activity of 14-monosubstituted dimers 48a
and 48b (Figure 16) was weaker than 13-monosubstituted dimers 47a and 47b. Moreover,
compound 47c (Figure 16) showed no obvious cytotoxicity to HUVECs and displayed
more active antioxidant activity than vitamin E and compound 47a. Further studies indi-
cated that compound 47c could increase the expression of superoxide dismutase and nitric
oxide release in cells, and significantly reduce intracellular malondialdehyde and lactate
dehydrogenase [105].
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3.6. Amino Acid Derivatives of β-Elemene

It is a feasible modification strategy to design β-elemene amino acid derivatives to
enhance the anti-tumor effect by selectively acting on the amino acid transport system of
tumor cells. The corresponding derivatives could also possess better drug-like properties,
such as higher solubility and more hydrogen donors or acceptors. Therefore, compounds
49a–o (Figure 17) were designed and prepared following this idea. All the β-elemene
amino acid ester derivatives showed potent anti-tumor activity superior to β-elemene on
HeLa, SGC-7901, and HL-60 cells. Compound 49h displayed the best anti-proliferative
activity with IC50 values of 27.5 µM on SGC-7901 cells, 14.6 µM on HeLa, and 25.4 µM
on HL-60 cells, respectively [115]. The deeper investigation indicated that compound
49h could arrest the cell cycle at the G2/M phase and induce apoptosis in hepatocellular
carcinoma (HCC) cells [116].
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3.7. Glycoside Derivatives of β-Elemene

Carbohydrates are a type of typical hydrophilic substance widely existing in nature,
playing a vital and complex role in many physiological activities, such as cell recognition
and signal transduction [117]. Yang et al. [118] synthesized five β-elemene glycosylation
derivatives 50a–e (Figure 18) via introducing glycoside scaffolds into β-elemene to increase
the water solubility and anti-tumor activity. Subsequently, Yang et al. [119] synthesized
six β-elemene glycosylation derivatives 51a–c and 52a–c (Figure 18) containing sulfur
(S) and selenium (Se) atoms. However, the anti-tumor activity of these derivatives has
not been reported. In theory, this is a targeted optimization strategy based on the high
lipophilic nature of β-elemene, but whether it is feasible still needs to be verified by further
biological evaluations.
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3.8. Radioactive Derivatives of β-Elemene

Sun et al. [106] synthesized three β-elemene rhenium derivatives of 53–55 (Figure 19).
These derivatives exhibited anti-proliferative activity similar to β-elemene by arresting
the cell cycle at the G1 phase through reducing Rb phosphorylation and cyclin D1 protein
expression in HeLa cells. Sun et al. [120] then continued to prepare three 99mTc(CO)3-
β-elemene derivatives 56–58 (Figure 19) with more favorable water solubility. In terms
of the oil–water partition coefficient, compound 58 was about twenty times lower than
β-elemene.
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3.9. NO-Donating Derivatives of β-Elemene

Nitric oxide (NO) is an important signaling molecule with various physiological
functions [121]. High levels of NO play a vital role in inducing cell apoptosis, inhibiting
tumor metastasis, and sensitizing drug-resistant tumor cells to chemotherapy and radio-
therapy [122]. Furoxan is a classic type of NO donor, which produces high levels of NO
in vitro and inhibits the growth of tumors in vivo [123]. Chen et al. [124] designed and
synthesized a series of β-elemene NO-donating derivatives 59–61 (Figure 20) by introduc-
ing the furoxan NO donor group. Among these compounds, 59a displayed promising
anti-tumor activity by arresting the cell cycle at the G2 phase and inducing cell apoptosis
on U-87 and SGC-7901 cells. Furthermore, treatment with compound 59a (60 mg/kg, i.v.)
once a day after three weeks showed a cancer inhibitory ratio (TIR) of 64.8% compared to
β-elemene (49.6%) on a H22 liver cancer xenograft mouse model.
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4. Conclusions

As a second-line anti-tumor drug that has been clinically used for more than 20 years
in China, natural product β-elemene exerts clinical anti-tumor efficacy through various
mechanisms of action, with promising clinical and research significance. In recent years,
clinical trials have further confirmed that β-elemene can also be used as a sensitizer
and synergist of chemotherapeutic drugs, and can effectively reduce the side effects and
adverse reactions of traditional chemotherapeutic drugs, which has successfully further
expanded its clinical application. However, in terms of the structure of β-elemene itself, its
excessive polarity lipophilic physicochemical profile also leads to a poor drug-like property.
Therefore, structural modifications and optimizations are promising strategies to obtain
better candidates. Although halogenation, etherification, esterification, amination, and
other modifications have been performed, the relative research is still few and not deep
enough. All in all, as a rare anti-tumor natural lead compound, β-elemene deserves more
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in-depth and effective structural modification to discover novel β-elemene derivatives with
improved drug-like properties and potent anti-tumor activity in vivo.
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