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C. G. Jung believed that water was a
symbol for the unconscious mind, the
background from where our conscious
thoughts emerge, and also the sea where
they melt into the dream-like state of
primary processes (1).

Water comprises about 80% of the brain
volume and water homeostasis is inextri-
cably coupled to the CNS function. In this
regard, neuroscience describes an inverse
relationship between the intensity of the
neuropil function and the amount of water
it contains. For example, during high neu-
ronal activity (such as information process-
ing), water is transported away from the
neuropil, shrinking the extracellular matrix
(ECM). Conversely, during times of lower
brain activity (such as during sleep), water
is shifted back to the neuropil, expanding
the ECM (2, 3).

The movement of water in and out of
the neuropil occurs with the help of the
glymphatic system via special molecular
pumps, aquaporin water channels (AQP 4)
located in astrocyte end-feet. Water circu-
lation is enabled by the exchange between
the cerebrospinal fluid (CSF) and intersti-
tial fluid (ISF). The pressure gradient for
this exchange is probably provided by per-
icytes’ contraction and arterial pulsations
along with the suction, pump-like action
of AQP 4 channels (4–6). This movement
of water in and out of the neuropil enables
both, clearance of molecular waste and vol-
ume transmission (VT) of chemical signals
(7). Conversely, delayed water movement
(glymphatic stasis) may predispose to the
accumulation of misfolded proteins (4)
and ultimately to neuroinflammation (8).

The relationship between water and
delirium is complex. Both, brain edema

and dehydration may predispose to delir-
ium (9). Up-regulation of AQP 4 water
channels seems to occur in both situa-
tions. In fact, a biphasic up-regulation was
described in edema build-up and the res-
olution phase (10). Interestingly, AQP 4
receptors seem to be the common denom-
inator between the neuropil water move-
ment and neuroinflammation (10). More-
over, animal studies demonstrated that
peripheral dehydration triggers central up-
regulation of AQP 4 receptors (11–13).
This in turn causes swelling and priming
of astrocytes and microglia, predisposing
to neuroinflammation (14).

According to a recent study, two key
factors, systemic inflammation and central
cholinergic impairment must interact in
order to produce delirium (15).

The goal of this article is not to dis-
cuss VT or the relationship between AQP 4
channels and inflammation since extensive
literature exists on these subjects. Instead,
we attempt to answer three questions:

Can an inefficient glymphatic clearance
lead to impairment of central cholinergic
transmission?
Does glymphatic stasis contribute to
microglia and astrocytes’ priming, the
precursor of neuroinflammation?
Do aquaporin blockers have a place in
delirium?

We hypothesize that failure of glym-
phatic clearance leads to impairment
of acetylcholine volume transmission
(AChVT), contributing to impaired
arousal, attention, memory, and sleep as
seen in delirium.

We hypothesize further, that glymphatic
failure is pro-inflammatory in nature,
leading to up-regulation of AQP 4 chan-
nels, which in turn trigger astrocyte
swelling and gliosis with the end result
being microglial and astrocytic priming.

The above phenomena may reconcile
two theories of delirium: central choliner-
gic deficit and neuroinflammation.

ACETYLCHOLINE AND GLYMPHATIC
STASIS
Central cholinergic deficit is the best
established neurotransmitter dysfunction
in delirium and its role was known for
a long time, however, impaired AChVT
was not given much thought in the liter-
ature in spite of evidence demonstrating
that 86–93% of cholinergic boutons in the
CNS do not make synaptic contact, but
release acetylcholine (ACh) directly into
the ISF (16).

It is generally accepted that chemi-
cal communication between neurons can
occur by fast, point to point transmis-
sion at the synapse, or by non-synaptic
interactions in which neurotransmitters
are released from axon terminals (without
a conventional synaptic contact) directly
into the ISF. In this later case, neurotrans-
mitters travel through the ISF by convec-
tion and influence the activity of other
neurons through stimulation of extrasy-
naptically located receptors (17).

Failure of glymphatic clearance may
lead to accumulation of molecular debris
in the ISF, which in turn may impair the
“go-with-the-flow” of AChVT. Since VT
represents a large proportion of ACh sig-
naling, it was hypothesized that it may sup-
port the sustained and widespread neural
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functions such as cognition, attention,
awareness, and sleep (18, 19). Since these
functions are affected in delirium and since
low plasma and CSF levels of ACh have
been consistently described in delirious
patients (20), it is possible to assume that
AChVT may play a central role in the
pathophysiology of delirium.

The discovery of the glymphatic clear-
ance helps put AChVT in perspective vis-
à-vis neurodegeneration, sleep, and pos-
sibly delirium. The link between AQP
4 and cholinergic neurotransmission was
demonstrated by animal studies. For exam-
ple, AQP 4 and chlorine receptors (ClCN3)
up-regulation was documented in studies
of transgenic mice with Ach deficit (21).

Another interesting animal study doc-
umented co-localization of choliner-
gic muscarinic receptors (mAChRs) and
aquaporin-4 (AQP4) water channels on
astrocytic membrane (22). Microglia is
known to express nicotinic receptors on its
membrane. It is also known that activa-
tion of these receptors in vitro attenuates
pro-inflammatory responses (23). Since
microglia also expresses AQP 4 receptors
(24), it is possible, that just like in astro-
cytes, glymphatic stasis leads to a deficit
of AChVT and up-regulation of AQP 4
channels on microglial surface. AQP 4 up-
regulation (which is pro-inflammatory)
may constitute the link between cholinergic
deficit and neuroinflammation.

On the other hand, the lack of effi-
cacy of rivastigmine in delirium (25) may
not invalidate the cholinergic deficit theory.
Instead, it may demonstrate the difficulty
in correcting ACh function while AQP 4
receptors are up-regulated. It would be
interesting to study the efficacy of rivastig-
mine used concomitantly with an AQP 4
blocker in delirium.

NEUROINFLAMMATION AND
GLYMPHATIC STASIS
The brain lacks a lymphatic circulation
or macrophages. For this reason, neu-
roinflammation is immunologically dif-
ferent from peripheral inflammation. In
this respect “priming,” which occurs in the
CNS prior to neuroinflammation, can be
fathomed as being similar to sensitization.
Priming was described in both microglia
and astrocytes, cells that also express AQP 4
water channels on their surface. In preclin-
ical animal models, it was demonstrated

that in response to the accumulation of
abnormally folded proteins in the ISF,
astrocytes and microglia react by adopting
an activated state, and by releasing mol-
ecules that drive their own proliferation.
When “primed” these cells are suscepti-
ble to a secondary inflammatory stimu-
lus that may arise from surgery or other
systemic inflammatory process (8). Inter-
estingly, normal aging was also demon-
strated to be a stimulus for microglial
“priming” (26).

The process of priming may explain
both, the increased incidence and the sud-
den onset of delirium in medically and
surgically ill patients (20).

The accumulation of molecular waste
in the ISF also affects neuropil hydra-
tion, leading to impairment in neuronal
excitability and survival. Genetic studies
demonstrate the existence of hydration-
sensitive genes in the brain, such as
clathrin, that influence neuroexcitabil-
ity, trigger glial swelling, and result in
neuropathology (27).

In a 2013 study, our group created a rat
model of ischemia of the nucleus basalis
of Meynert and hippocampus. Ischemic
changes consisted of swelling of astrocytes,
pericyte dysfunction, detachment of astro-
cytic end-feet from the capillaries with
release of glial fibrillary acidic protein
(GFAP). AQP4 receptors were not directly
assessed, but astrocyte edema (visualized
by CD3 staining of GFAP antibodies)
provided indirect evidence of AQP4 up-
regulation (28).

Up-regulation of AQP 4 receptors
was described in the pathophysiology
of delirium due to liver failure (29).
Cultured astrocytes treated with ammo-
nia have been shown to undergo cell
swelling with increased expression of AQP4
receptors (30).

AQP4 water receptors up-regulation
was demonstrated in traumatic brain
injury (TBI) (31), ischemia, epilepsy, mul-
tiple sclerosis, HIV encephalitis, and pro-
gressive multifocal leukoencephalopathy
(PML) (32).

Studies of Alzheimer’s disease demon-
strated enhanced expression of astrocytic
AQP4 receptors compared to age-related
controls (33). These changes may be caused
by the process of aging, especially since it
was documented that in senescence astro-
cytes up-regulate both AQP 4 and Kir

4.1 potassium receptors (34). Moreover,
studies in older mice demonstrate up-
regulation of these receptors, perhaps in
order to maintain homeostasis, integrative
ability, and adaptation (34). It is interest-
ing that in diabetes mellitus, type 2, the
brain also presents with astrocytic swelling,
probably caused by up-regulation of AQP
4. This response was shown to be more pro-
nounced around zones of infarction and it
causes delay in vascular repair in the post-
stroke period. One study showed that met-
formin prevented astrocyte swelling and
facilitated re-vascularization (35). Neu-
romyelitis optica (NMO) is an inflam-
matory demyelinating disease that typi-
cally affects optic nerves and spinal cord.
Autoantibodies against AQP4 are implied
in its etiology of NMO (36).

Conversely, decreased expression of
AQP4 receptors on astrocyte membrane
was found to be neuroprotective (37). For
example, in a mouse model of ischemia
using AQP4 null mice, intracranial pressure
elevation, blood–brain barrier disruption,
inflammation, brain edema, and neuronal
apoptosis were shown to be reduced in
comparison to AQP4 positive mice (38).

Interestingly, melatonin, and melatonin
agonist ramelteon were recently found ben-
eficial in delirium (39). The idea of using
melatonin in delirium is not new, given
that sleep fragmentation and circadian
rhythm changes were described previously.
The novelty concerns the mechanism of
action of melatonin with its ability to block
protein kinase C, which inhibits AQP 4
expression (40). In addition, melatonin
was shown to be anti-inflammatory, to
inhibit nitric oxide synthase and dopamine
release (41).

Additional studies are needed to clarify
whether neuropsychiatric conditions asso-
ciated with up regulation of AQP 4 recep-
tors are more likely to predispose to delir-
ium as opposed to situations in which AQP
4 channels are not up-regulated.

DO AQUAPORIN BLOCKERS HAVE A
PLACE IN DELIRIUM?
Studies of ischemia and inflammation in
AQP 4-null mice demonstrated decreased
astrocytic swelling, and improved over-
all outcomes and survival (14). With
these findings in mind, it was suggested
that pharmacological modulation of AQP4
expression may provide a new addition
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to the medical armamentarium of dis-
orders such as brain edema, glaucoma,
tumor growth, CHF, and obesity in which
water and solute transport are involved
(42). Since AQP 4 up-regulation, astrocytic
swelling and microglia/astrocyte priming
may occur in delirium as a result of glym-
phatic stasis, would it be reasonable to
expect that AQP 4 blockers might be bene-
ficial in delirium?

A newly discovered arylsulfonamide
(Aq B013) is an antagonist of AQP 1 and
AQP 4. This is a pharmacologic agent
that offers a translational promise in the
treatment of conditions manifested by up-
regulation of aquaporins (43). Could it also
be beneficial in delirium?

In an animal study, piroxicam was
demonstrated to be a potent AQP4 regu-
lator, rendering neuroprotection in focal
cerebral ischemia (44). In NMO, an
attempt was made at blocking pathogenic
NMO–IgG binding to its target, AQP4 by
recombinant monoclonal anti-AQP4 anti-
bodies (45).

CONCLUSION
Impairment of cognition, attention, aware-
ness, and sleep are encountered both, in
delirium and Ach deficit. Because the
implementation of these functions requires
sustained and widespread neuronal activ-
ity, it has been proposed that they may be
promoted better by volume, rather than
synaptic transmission of Ach, which is best
suited for fast and selective signals.

Glymphatic stasis has two possible con-
sequences that may be of interest for delir-
ium: impairment of AchVT and prim-
ing of microglia and astrocytes. Both of
these phenomena are associated with up-
regulation of AQP 4 receptors, which may
be the common denominator between neu-
roinflammation and cholinergic deficit.
Aquaporin blockers, which were found to
be useful in cerebral ischemia and stroke,
may also be beneficial in delirium alone or
in addition to cholinesterase inhibitors.
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