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Abstract
The subcutaneous route of administration has provided convenient and non-inferior delivery of therapeutic proteins compared 
to intravenous infusion, but there is potential for enhanced immunogenicity toward subcutaneously administered proteins in 
a subset of patients. Unwanted anti-drug antibody response toward proteins or monoclonal antibodies upon repeated admin-
istration is shown to impact the pharmacokinetics and efficacy of multiple biologics. Unique immunogenicity challenges of 
the subcutaneous route have been realized through various preclinical and clinical examples, although subcutaneous delivery 
has often demonstrated comparable immunogenicity to intravenous administration. Beyond route of administration as a 
treatment-related factor of immunogenicity, certain product-related risk factors are particularly relevant to subcutaneously 
administered proteins. This review attempts to provide an overview of the mechanism of immune response toward proteins 
administered subcutaneously (subcutaneous proteins) and comments on product-related risk factors related to protein structure 
and stability, dosage form, and aggregation. A two-wave mechanism of antigen presentation in the immune response toward 
subcutaneous proteins is described, and interaction with dynamic antigen-presenting cells possessing high antigen process-
ing efficiency and migratory activity may drive immunogenicity. Mitigation strategies for immunogenicity are discussed, 
including those in general use clinically and those currently in development. Mechanistic insights along with consideration 
of risk factors involved inspire theoretical strategies to provide antigen-specific, long-lasting effects for maintaining the safety 
and efficacy of therapeutic proteins.
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Key Points 

Immune response toward subcutaneously administered 
proteins likely entails two waves of antigen presentation 
by both migratory skin-resident and lymph node-resident 
dendritic cells, which likely drive immunogenicity.

Subcutaneous route of administration as a factor of 
immunogenicity is intertwined with product-related risk 
factors including impurities, biophysical characteristics, 
aggregation, and subvisible particle concentration.

Some promising immunogenicity mitigation strategies in 
the investigative research stage are tolerance induction,  
T cell engineering, protein de-immunization and toleri-
zation, use of chaperone molecules, and combination 
approaches.

1 Introduction

1.1  Introduction to Immunogenicity of Therapeutic 
Proteins

Immunogenicity is the propensity of a therapeutic protein to 
induce unwanted immune response toward itself or endog-
enous proteins [1]. An anti-drug antibody (ADA) response 
can develop after a single dose and upon repeated admin-
istration of a therapeutic protein. ADA with neutralizing or 
binding capabilities directly or indirectly affect therapeutic 
protein efficacy, respectively [2]. Neutralizing antibodies tar-
geting active site(s) on the protein can cause direct loss of 
efficacy. Several important examples underscore the impact 
of ADA against a therapeutic protein. Hemostatic efficacy 
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(IV) administration that are likely due to differences in 
immune system exposure and antigen presentation mecha-
nisms [25, 26]. Vaccine development elucidated the capac-
ity of antigens to induce a more efficient and effective host 
immune response following SC administration compared 
to IV infusion, likely a consequence of frequent encounter 
by dynamic skin antigen-presenting cells (APCs) [26–29]. 
Understanding how route of administration and product-
related factors impact immunogenic risk will be critical for 
mitigating immunogenicity and designing safer biologics for 
SC delivery.

1.2  Anatomy of the Subcutaneous Space 
and Skin‑Resident Immune Cells

1.2.1  The Epidermis and Langerhans Cells

Human skin is composed of three main layers: the epider-
mis, dermis, and hypodermis or SC fat. In the epidermis, 
keratinocytes form a layer of stratified epithelium with tight 
junctions to provide water-impermeable barrier protection, 
and cytokine secretion by keratinocytes promotes inflam-
mation during infection or injury [27, 30, 31]. Other fea-
tured cells are melanocytes producing melanin pigment, 
Merkel cells communicating with neurons, memory T cells, 
and infiltrating innate immune cells [32]. Langerhans cells 
(LCs) are key APCs in the epidermis that spread dendritic 
processes to probe for and recognize invading antigens [33]. 
LCs develop from yolk sac-derived progenitors and acquire 
a dendritic phenotype and morphology immediately follow-
ing birth, then in situ proliferation and keratinocyte-derived 
interleukin (IL)-34 help maintain their population [27, 34, 
35]. Tight cellular connections render epidermal stromal 
and immune cells primarily fixed in place, until LC motility 
upon maturation is prompted by downregulation of E-cad-
herin interactions with keratinocytes [27, 30].

Adaptive immune responses initiated by LCs are diverse. 
Upon maturation, LCs migrate to regional lymph nodes to 
induce T helper 2  (TH2) polarization of naïve  CD4+ T cells 
via thymic stromal lymphopoietin (TSLP) signaling, as 
well as T helper 1  (TH1) polarization to IFNγ-producing 
 CD4+ T cells [36, 37]. LCs are also involved in T follicular 
helper  (TfH) differentiation and germinal center (GC) B cell 
responses [38]. A major role for LCs in cellular immunity is 
differentiation of naïve  CD8+ T cells into potent cytotoxic T 
lymphocytes (CTLs), but they have contrasting tolerogenic 
functions in the skin [37, 39]. LCs suppress contact hyper-
sensitivity by interaction with cognate  CD4+ T cells in the 
context of IL-10 [40]. They induce multiple types of regu-
latory T  (Treg) cells during epicutaneous allergen immuno-
therapy in previously sensitized mice [41].

of factor VIII (FVIII) is compromised by development of 
anti-FVIII antibodies with neutralizing activity (termed 
‘inhibitors’) in approximately 30% of severe hemophilia 
A (HA) patients [3, 4]. Neutralizing antibody development 
in mild to moderate HA patients led to spontaneous bleed-
ing episodes due to cross-reaction with endogenous FVIII 
[5]. Clinical response to Pompe disease treatment is nega-
tively impacted by sustained antibody development toward 
recombinant human acid-alpha glucosidase (rhGAA), which 
is more common in infantile-onset patients with negative sta-
tus for cross-reactive immunological material [6]. Binding 
ADA can impact pharmacokinetics and pharmacodynamics 
(PK/PD) of therapeutic proteins by increasing clearance, 
and anti-adalimumab antibody response is associated with 
decreased adalimumab serum concentrations and diminished 
therapeutic response in rheumatoid arthritis patients [7, 8]. 
Anti-infliximab antibodies increase infliximab clearance, 
leading to treatment failure and acute hypersensitivity reac-
tions [9].

Although less frequent, immunologically based adverse 
events have been associated with ADA development during 
replacement therapy, such as recombinant erythropoietin 
(EPO), thrombopoietin, interferon (IFN)-β, and factor IX 
[10–16]. Increased relapse rate during recombinant IFNβ 
therapy has been observed for multiple sclerosis patients that 
develop neutralizing anti-IFNβ ADA, and multiple studies 
have found neutralizing ADA against recombinant IFNβ1a 
and IFNβ1b are cross-reactive and neutralize endogenous 
IFNβ [12, 17–20]. Other well-known examples include 
pure red-cell aplasia and thrombocytopenia development 
in patients receiving recombinant EPO or thrombopoietin, 
respectively, associated with detection of neutralizing ADA 
that cross-react with endogenous protein [13, 14, 21].

Food and Drug Administration (FDA) Guidance for 
Industry published in 2014 presents a risk-based approach 
for evaluation and mitigation of immune responses to ther-
apeutic proteins that limit efficacy and negatively impact 
safety profiles [1]. Efforts to assess risk of immunogenicity 
have considered the currently known influential factors of 
immunogenicity, including a multitude of product-, treat-
ment-, and patient-related factors. Examples of patient-
related factors are age, immune status, genetic factors such 
as human leukocyte antigen (HLA) haplotype, and autoim-
mune condition [22]. Product-related factors include protein 
structure, stability, and dosage form, and intrinsic features of 
recombinant proteins can impact immunogenicity, such as 
sequence variation, post-translational modifications (PTM), 
immunodominant epitopes, and cellular expression system 
[23, 24]. Treatment-related factors include dose, duration 
and frequency of treatment, and route of administration [23]. 
Subcutaneous (SC) administration has unique immunogenic-
ity challenges for some products compared to intravenous 
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1.2.2  The Dermis and Dermal Dendritic Cells

The basement membrane regulates protein and cell move-
ment between the epidermis and dermis [30, 42]. The 
major structural and functional protein components of the 
skin extracellular matrix (ECM) are produced by dermal 
fibroblasts [30, 43]. Intertwined collagen and elastin fib-
ers provide structure and elasticity and facilitate migra-
tion of immune cells, such as dermal dendritic cells (DCs), 
along a ‘highway system’ to perform immunosurveillance 
[27, 30]. Compared to DCs, dermal macrophages have 
poor antigen presenting capacity and migratory activity 
but high phagocytic activity, thus they clean up debris to 
maintain homeostasis and facilitate wound repair/resolu-
tion [27]. Skin-resident macrophages arise from precursor 
pools established prenatally and from blood monocytes 
after birth, then reside in skin for long periods to provide 
early host defense [27, 44]. During immune response, der-
mal blood vessels facilitate recruitment and infiltration of 
circulating innate and effector immune cells into the skin. 
Endothelial cells regulate extravasation by production of 
cytokines, chemokines, and leukocyte adhesion molecules 
[30]. Macrophages also initiate infiltration of granulocytes 
into the skin, and perivascular macrophages are the main 
source of chemoattractants (CXCL1, CXCL2) in the dermis 
promoting neutrophil extravasation at post-capillary ven-
ules in response to bacterial infection [45]. Monocytes are 
recruited to the skin during homeostasis and in response to 
infection to differentiate into macrophages or myeloid DCs 
[30]. Effector cells recruited to the skin temporarily or that 
become skin-resident cells include  CD8+ cytotoxic T cells, 
 CD4+  TH cells, and  CD4+  Treg cells [30].

The conventional DC (cDC) class is highly abundant 
in the healthy dermis, with major human and mouse sub-
sets being  CD1c+ and  CD11b+ cDCs, respectively [27]. 
Under resting conditions, cDCs acquire self-antigens in the 
periphery and undergo homeostatic maturation followed 
by migration to lymph nodes licensed by morphological 
and phenotypical changes, including upregulation of major 
histocompatibility complex II (MHC II) [27]. By presen-
tation of skin-derived self-antigens to T cells, cDCs can 
eliminate autoreactive T cells to maintain peripheral toler-
ance [46]. Maturation of cutaneous cDCs upon pathogen 
stimulation is unique from homeostatic maturation where 
co-stimulatory molecules are upregulated, and cDCs migrate 
to lymph nodes to promote differentiation and proliferation 
of naïve antigen-specific T cells [27]. Dermal  CD1a+ DCs 
in the upper human dermis can induce  TH2 polarization of 
naïve  CD4+ T cells as well as differentiation of naïve  CD8+ 
T cells into potent CTLs, although not as effective as LCs 
[37]. The  CD14+ DC subset produces key anti-inflamma-
tory cytokines, IL-10 and tumor growth factor-β (TGFβ), 

and a role for  CD14+ DCs in B cell differentiation is sug-
gested by their ability to induce  CD4+ T cell production of 
 TfH-associated chemokine CXCL13 [37].

1.2.3  The Hypodermis or Subcutaneous Fat

Underlying the dermis, the SC fat layer contains nerves, 
blood vessels, and lymphatic vessels, along with adipocytes 
that sequester potentially inflammatory lipids and produce 
proinflammatory cytokines upon stimulation [30]. Adipose 
tissue is separated into fat cell chambers by septa of connec-
tive tissue with heterogeneous structures in upper, middle, 
and lower layers of the hypodermis [47]. Connective tissue 
septa comprise the ECM and SC tissue architecture, which 
is composed of fibrous proteins and viscoelastic gel with the 
main components being collagen, elastin, glycosaminogly-
cans (GAGs), and proteoglycans [43, 48, 49]. Highly polar 
and negatively charged GAGs, including hyaluronic acid, are 
vastly abundant and contribute to the net negative charge of 
the ECM [50]. Along with high viscosity in the interstitium, 
collagen and hyaluronic acid constitute a major barrier to 
protein movement and dispersion in the SC ECM, and injec-
tion volume is limited [48, 51]. Binding of hyaluronic acid 
to water, creating a gel-like substance, and low hydraulic 
conductivity of the ECM consequently limit dispersion in 
the SC space [52, 53]. In the SC space, therapeutic proteins 
could encounter diverse cell populations including invad-
ing dermal DCs, LCs, or innate and effector immune cells 
recruited from circulation or lymph nodes.

1.2.4  Skin‑Derived Immune Cell Migration

LCs, dermal  CD1a+ DCs, and dermal  CD14+CD1a− DCs 
are skin-derived migratory DC subsets in human axillary 
lymph nodes that mediate transport and presentation of 
skin-derived antigens [54]. Upon exit to draining lymph 
nodes (DLNs), dermal DCs are of a mature phenotype, and 
their functional specializations, including  TH cell polariza-
tion and cross-presentation ability, remain unchanged by 
migration into lymph nodes [54, 55]. CCR7 signaling is 
required for DC migration under steady-state and inflam-
matory conditions. Through CCR7-mediated chemotaxis, 
migratory skin-derived DCs enter into lymphatic vessels 
in the skin in response to chemokine (CCL21) expression 
by lymphatic endothelial cells [56–58]. CCL17-deficient 
mice have demonstrated that CCL17 is strongly associated 
with LC migration to DLNs, and CCL17 also sensitized 
activated bone marrow-derived DCs in vitro for CCR7- and 
CXCR4-dependent migration [59]. Furthermore,  TH2 differ-
entiation of naïve  CD4+ T cells by  CD11bhigh migratory DCs 
required CCL17 expression, along with CCR7 upregulation, 
in response to TSLP signaling [60]. Mechanisms and stimuli 
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for cell migration out of the skin are important elements 
of the immune response to subcutaneously administered 
proteins.

1.3  ‘First‑Pass’ Interactions with Immune System 
Following Subcutaneous and Intravenous 
Delivery

Immunogenicity differences based on route of administration 
could arise from disparities in initial interactions between 
protein and the immune system as well as subsequent anti-
gen processing and presentation mechanisms. First-pass 
interactions for SC proteins could occur in the injection site 
with immune cells, including skin-resident DCs, monocyte-
derived DCs, and possibly innate or effector immune cells 
recruited into the skin during immune response [38, 61]. 
First-pass interactions could also occur later in the lymphatic 
system. Unlike IV administration, subcutaneously admin-
istered protein has to be absorbed from the injection site 
into the blood circulation [62]. Proteins or peptides less than 
16 kDa in size can be transported from the SC injection 
site to systemic circulation by diffusing into blood capillar-
ies; however, for larger molecular weight (MW) proteins, 
lymphatic uptake also plays a role in transport to systemic 
circulation [49, 63, 64]. A likely location for absorption is 
at initial lymphatics that start from ‘blind stumps’ and have 
leakier vessel walls than blood capillaries [64–66]. Under 
increased interstitial fluid pressure, stretching of connective 
tissue fibers creates tension on the anchoring filaments con-
necting endothelial cells to collagen, leading to opening of 
lymphatic lumen and intercellular channels [66, 67]. At this 
point, interstitial fluid containing water, macromolecules, 
and possibly therapeutic proteins, easily enters lymphatic 
capillaries with little protein exclusion [68].

Lymph drains into large lymphatic trunks then lymphatic 
collectors in the hypodermis that lead to the first DLN [49]. 
Lymph passes through at least one lymph node; thus, first-
pass interactions between protein and immune cells could 
occur in DLNs, which constantly drain and monitor skin-
derived antigens [65, 69]. Upon arrival in DLNs, lymph-
borne protein antigen can encounter skin-derived lymph 
node-resident DCs located in close proximity to lymphatic 
vessel entry points, an ideal position for antigen uptake [69]. 
Thus, subcutaneously administered protein may encounter 
dynamic skin-derived APC populations that are highly spe-
cialized for antigen processing, presentation, and lymph 
node migration [70, 71].

Following IV administration, first-pass interactions 
between blood-borne protein and immune cells would occur 
more diffusely within systemic circulation and secondary 
lymphoid organs. IV administered albumin in mice had 
rapid distribution throughout the body, with accumulation 
in the liver area observed within minutes [72]. First-pass 

encounters of blood-borne protein could be with soluble 
factors, such as preexisting ADAs or binding proteins [73]. 
Upon ADA binding, immune complex (IC) formation may 
initiate additional distribution pathways or accelerated 
clearance [74]. Blood-borne protein will likely encounter 
cells of the mononuclear phagocyte system (MPS), com-
prising circulating blood monocytes, DCs, and tissue mac-
rophages that make intimate connections with endothelial 
and epithelial cells [75]. Following IV administration, 
biodistribution of aggregated fluorescently labeled mouse 
serum albumin revealed fluorescence hotspots in the liver, 
lungs, and spleen, suggesting entrapment in organs with 
the MPS [72]. The liver may be a key site for first-pass 
interactions with tissue macrophages, called Kupffer cells, 
that clear soluble proteins and aggregates from circulation 
and internalize antigen-antibody complexes using Fc recep-
tor (FcR) and complement receptor (CR) recognition [76]. 
Beyond their role in phagocytosis and sequestration of anti-
gen, thought to support hyporesponsiveness, Kupffer cells 
may be able to promote antigen-specific immunity [77]. 
Thus, circulating proteins, aggregates, or ICs are likely 
to be captured by Kupffer cells, but it is not entirely clear 
whether induction of immunity and/or tolerance responses 
would occur.

Noteworthy first-pass interactions could also occur in 
the spleen, a secondary lymphoid organ with lymph node-
like structures (white pulp [WP]) and functions [78]. The 
spleen WP contains distinct lymphoid sheaths based on 
chemokine signaling: B cell populations reside in B cell 
follicles, while CCL19 and CCL21 attract  CCR7+ T cells 
and DCs to the periarticular lymphoid sheath (PALS) or T 
cell zone surrounding the central arteriole [78–81]. Protein 
antigen is delivered into the spleen at terminal arterioles 
ending in sinuses in the marginal zone (MZ) (or perifol-
licular zone) surrounding the WP [82]. There, protein could 
encounter MZ-resident APCs, such as macrophages, DCs, 
and B cells, located in ideal positions to screen and respond 
to blood-borne antigens via T-independent and T-dependent 
mechanisms [80, 83]. MZ macrophages and B cells recog-
nize antigen by CRs or pattern recognition receptors (PRRs), 
and FcR or CR interaction on spleen macrophages mediates 
clearance of protein antigen arriving as ICs bound to eryth-
rocytes [82, 84]. Protein antigen may accumulate in splenic 
MZ following IV infusion; for example, FVIII accumulated 
in splenic MZ of HA mice co-localized with metallophilic 
macrophages and  CD11c+ DCs [85]. When accumulated 
in the MZ or spleen parenchyma, known as red pulp (RP), 
blood-borne protein may be phagocytosed and processed 
by sinusoidal macrophages, pericapillary macrophages, or 
RP macrophages [75, 83]. RP macrophages commonly clear 
large particles (> 200 nm) that are retained longer in the 
RP, while smaller particles are primarily internalized by MZ 
macrophages [86].
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The spleen and MZ macrophages play central roles in 
immune response toward therapeutic proteins delivered 
intravenously, demonstrated by splenectomy or depletion of 
splenic macrophages and  CD11c+CD8α− DC populations, 
which significantly reduced anti-FVIII immune response 
in FVIII-deficient mice [85]. Adaptive immune response 
requires antigen entry into the WP, and protein antigen 
greater than 60 kDa must be transported from the MZ across 
cellular borders by specialized DCs and MZ B cells [78]. 
CD8α− cDCs that capture blood-borne protein antigen in 
the MZ or RP can initiate  CD4+ T cell responses in the WP, 
otherwise endocytosed antigen can be transferred to CD8α+ 
cDCs in PALS for T cell activation [82, 83]. In conjunction 
with antigen uptake, activation of immature splenic DCs 
by innate immune stimuli can license DCs to mature, alter 
chemokine receptor expression, and migrate toward WP 
[87]. Thus, splenic DCs mirror migration patterns of tissue-
resident DCs moving from peripheral tissue (i.e., spleen 
parenchyma) toward lymphoid tissue (i.e., splenic WP), and 
in both cases CCR7 upregulation directs migration into T 
cell areas [58, 87]. When compared to the splenic immune 
response following IV administration, more frequent inter-
actions of protein with dynamic skin APC subsets that have 
highly efficient antigen processing and presentation ability, 
as well as migratory activity, could drive the immunogenic-
ity of SC administration.

2  Immunogenicity of the Subcutaneous 
Route of Administration

2.1  Mechanistic Insights into Immune Response 
Toward Subcutaneously Administered Proteins

A two-wave mechanism of antigen presentation follow-
ing SC injection of therapeutic proteins has been proposed 
previously, in which both migratory skin-resident DCs and 
lymph node-resident DCs drive immunogenicity (Fig. 1) 
[25]. Location of protein entry and subpopulations of skin 
DCs involved in first encounters could influence the nature 
of subsequent immune response following different routes 
of administration [30]. For example, the nonthreatening 
nature of entry of epidermal antigen is more likely to initi-
ate a tolerogenic response by LCs. However, direct antigen 
encounter with dermal DCs may instigate a proinflamma-
tory response because these cells are positioned to encoun-
ter pathogens, such as viruses, that would enter the dermis 
systemically or through skin disruption. Local inflammation 
generates host cellular components such as lipids, metabo-
lites, or nucleic acids that are damage-associated molecular 
patterns (DAMPs) [88]. DAMPs activate intracellular and/
or cell surface PRRs on DCs and provide dangerous context 
to protein antigen uptake that warrants proinflammatory 

response [89]. Thus, they are danger signals that license 
skin-derived DCs for maturation, which upregulates anti-
gen processing, presentation in the context of MHC II, co-
stimulatory molecule expression, proinflammatory cytokine 
secretion, and migration [90]. Local skin inflammation can 
also generate small fragments or oligosaccharides of hya-
luronic acid, which activate Toll-like receptor (TLR) 4 on 
DCs [91]. Furthermore, product-related attributes such as 
altered-self molecular patterns, impurities, host cell proteins, 
or aggregates have potential to serve as danger signals [24].

The first wave of antigen presentation following SC injec-
tion begins when skin-derived lymph node-resident DCs in 
DLNs are delivered lymph-borne protein antigen early post-
injection [69]. The first wave continues for hours by lymph 
node-resident DCs containing intermediate levels of intact 
protein acquired in the lymph node [92]. Initial recogni-
tion of peptide antigen in the context of MHC II by naïve 
antigen-specific  CD4+ T cells occurs within T cell areas of 
DLNs. These DCs display low levels of peptide:MHC II 
complexes and initiate  CD4+ T cell responses toward pro-
tein antigen via T cell activation  (CD69+ phenotype), IL-2 
production, and clonal proliferation [69, 93]. Effector T cells 
are thus generated to mediate immune response in secondary 
lymphoid and non-lymphoid peripheral tissues [55]. Lym-
phoid-resident DCs also selectively retain antigen-specific 
lymphocytes in inflamed DLNs via MHC II expression and 
antigen presentation [93].

The second wave of antigen presentation occurs later, 
for example, 24 h post-injection, when skin-derived migra-
tory DCs arrive in DLNs carrying large amounts of protein 
acquired at the injection site [69]. Cell migration to DLNs 
for the second wave is driven by receptor-ligand interaction 
of CCR7 and CXCR4 upregulated on mature dermal DCs 
with ligands expressed within lymphatic vessels [94, 95]. In 
addition to chemokine signaling, matrix metalloproteinase 
(MMP) enzymes are essential for movement of LCs and DCs 
through the skin. LC production of MMP-2 and MMP-9, in 
addition to CXCL12 signaling of CXCR4 on LCs, facilitates 
translocation of activated LCs through the basement mem-
brane toward the dermis [90]. MMPs also degrade collagen, 
which could assist DC movement in the dermis toward ini-
tial lymphatics, and MMP9 induced by prostaglandin E2 
during inflammation is essential for DC migration to DLNs 
[90, 96]. Proinflammatory cytokines, tumor necrosis factor 
(TNF)-α and IL-1β, enhance lymphatic trafficking of migra-
tory LCs and dermal DCs by upregulating vascular endothe-
lial growth factor-C (VEGF-C), to increase lymphatic ves-
sels in the inflammatory site, and reducing expression of 
adhesion molecule E-cadherin on LCs [90, 95]. Upon SC 
injection, mechanical injury to the skin could enhance and 
prolong LC and dermal DC migration [57].

The second wave of antigen presentation to  CD4+ T cells 
by migratory DCs, expressing high levels of peptide:MHC II 
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complexes, is required to sustain T cell IL-2 receptor expres-
sion necessary for effector  CD4+ T cell generation [69]. The 
 CD4+ T cell activation program integrates signals from mul-
tiple encounters with antigen-bearing DCs before and after T 
cell commitment to cell division [97]. Subsequent contacts 
between recently activated  CD4+ T cells and antigen-bearing 
DCs promotes T cell CD25 expression and IFNγ production. 
Increased opportunities for DC:T cell reencounter reinforces 
 CD4+ T cell activation; therefore, the number of antigen-
bearing DCs arriving in DLNs could be an important param-
eter for SC immunogenicity [97]. Lymph node-resident DCs 
may participate in the second wave of antigen presentation 
following antigen transfer by migratory DCs [98]. Migratory 
DCs and LCs also have an important role in  TfH cell and GC 
responses within DLNs [38]. Physical removal of the injec-
tion site at 1 h post-intradermal antigen administration, thus 
preventing skin DC migration, significantly reduced GC B 

cells and antibody-secreting cells as well as limited expan-
sion of  TfH cells. Even though nanoparticulate antigen effi-
ciently transited to DLNs within 1 h (unaffected by injection 
site removal), the first wave of antigen presentation medi-
ated by lymph node-resident DCs alone was not able to effi-
ciently promote  TfH cell and GC B cell responses. Although 
mechanistic understanding is incomplete, it is clear that both 
resident DCs in the DLNs and, more significantly, migratory 
skin-derived DCs could drive immunogenicity of subcutane-
ously administered protein.

Receptor-mediated uptake of proteins and mAbs by 
APCs could impact subsequent antigen processing and 
presentation. For example, mannose-sensitive receptor-
mediated uptake into APCs could impact immunogenic-
ity of recombinant human proteins with exposed mannose 
moieties. Averting uptake of FVIII by mannose-sensitive 
receptors reduced the ability of DCs to activate a human 

Fig. 1  Schematic representa-
tion of the proposed two-wave 
mechanism of antigen presenta-
tion following subcutaneous 
injection of protein. a Lymph-
borne antigen is delivered to 
skin-derived LN-resident DCs 
in DLNs, which begin antigen 
processing and presentation to 
antigen-specific naïve  CD4+ 
T cells within T cell areas. b 
Skin-derived migratory DCs 
and LCs are recruited into the 
injection site to acquire antigen. 
Upregulation of chemokine 
receptors, CCR7 and CXCR4, 
on dermal DCs and LCs drives 
cell migration to initial lymphat-
ics and DLNs. Antigen-loaded 
migratory DCs and LCs arrive 
in DLNs for the second wave of 
presentation to antigen-specific 
naïve  CD4+ T cells, and migra-
tory DCs also transfer antigen 
to LN-resident DCs [25]. DC 
dendritic cell, DLN draining 
lymph node, LC Langerhans 
cell, LN lymph node
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 CD4+ T cell clone specific for a non-glycosylated FVIII 
epitope, and mannose receptor (CD206)-expressing human 
splenic myeloid DCs were hypothesized to play a role in 
splenic anti-FVIII immune response [99]. Furthermore, SC 
immune response may involve mannose-sensitive uptake 
given that mannose receptor-expressing APCs have been 
identified in peripheral lymph nodes [100, 101]. Receptor-
mediated uptake by neonatal FcR (FcRn) could also impact 
antigen presentation due to its expression by professional 
APCs and apparent association with MHC II-associated 
invariant chain in the endocytic pathway [102–104]. Mon-
oclonal antibodies (mAbs) or Fc-fusion proteins that can 
be recycled by FcRn could be recycled out of APCs thus 
decreasing lysosomal processing and the probability of anti-
gen presentation. FcRn binding can also direct the fate of 
monomeric and multimeric immunoglobulin G (IgG) ICs 
upon uptake; monomeric ICs are protected from degrada-
tion and recycled, whereas multimeric ICs are routed into 
degradative compartments where peptides can be loaded 
into MHC II [105, 106]. If IC formation between mAbs or 
between drug and ADA occurs prior to uptake by APCs, 
FcRn recognition of monomeric ICs could lead to recycling 
out of cells, while recognition of multimeric ICs could lead 
to lysosomal degradation and increased antigen processing 
and presentation. Fcγ receptor (FcγR) may initiate APC 
uptake of IgG ICs followed by hand off to FcRn in acidified 
compartments [105]. Furthermore, FcγRIII engagement is 
involved in the enhanced ability of ICs, compared to free 
antigen, to upregulate CCR7 expression and MMP-9 pro-
duction by DCs in vitro, as well as boost skin-resident DC 
migration to DLNs following SC injection [107]. Complex 
interactions of proteins with lymph node-resident DCs and 
skin-resident migratory DCs could introduce immunogenic-
ity challenges for SC delivery.

2.2  Evidence for Immunogenicity 
of the Subcutaneous Route

Some biologics formulated for SC delivery have demon-
strated enhanced immunogenicity by this route of admin-
istration; however, this notion has been contrasted by a 
number of proteins that demonstrate comparable or higher 
immunogenicity by IV administration. Clinical evidence 
for immunogenicity is variable between products and indi-
viduals due to the multitude of product-, treatment-, and 
patient-related factors, but the SC route of administration 
is known to exhibit immunogenicity challenges. In order 
to compare therapeutic protein immunogenicity following 
SC and IV administration, available data should be exam-
ined where dosing by both routes was directly compared and 
ADA development was measured concurrently. However, 
there is not an extensive number of clinical trials that have 

directly compared safety and efficacy of SC and IV dosing 
regimens for therapeutic proteins or mAbs.

2.2.1  Preclinical Evidence

Investigation into the impact of route of administration on 
immunogenicity of FVIII demonstrated that the SC route 
was more immunogenic than the IV route only in terms of 
total anti-FVIII titer, with no significant effect on neutral-
izing ADA (inhibitor) development [108]. It was hypoth-
esized that modified epitopes of FVIII created upon proteo-
lytic degradation at the injection site, with corresponding 
loss of conformational epitopes at the active site (likely 
inhibitor targets), could explain increased total anti-FVIII 
titers without increased inhibitors. Binding ADA are not 
inconsequential seeing as they could impact systemic expo-
sure or clinical response rates by altering protein PK and 
clearance [109]. Because IFNα is administered by multiple 
routes clinically and induces ADA response in a signifi-
cant patient population, impact of route of administration 
on IFNα immunogenicity has been investigated [110]. In 
BALB/c mice administered equivalent doses of IFNα, the 
SC route was most immunogenic followed by intraperito-
neal (IP), intramuscular (IM), and then IV route based on 
anti-IFNα titers. Changes in IFNα half-life following SC 
administration along with exposure of a higher frequency 
of APCs to IFNα for longer times at higher concentrations 
could explain high titers induced at earlier times follow-
ing SC administration [110]. Administration by the above 
routes is shown to impact kinetics and organ distribution of 
aggregated and monomeric albumin in mice; thus ,adminis-
tration by different routes could expose therapeutic protein 
to altered cell populations in lymphoid and non-lymphoid 
organs [72]. Furthermore, therapeutic proteins administered 
subcutaneously exhibit a relatively slower rate of absorption 
and prolonged terminal half-life compared to that observed 
following IV administration [64, 66].

Contrasting results for recombinant human IFNβ identi-
fied the IV route to be most immunogenic upon administra-
tion to immune-tolerant, transgenic mice, proposed to be a 
result of high aggregate content in some IFNβ products [111, 
112]. Upon repeated IV administration, protein aggregates 
may have enhanced uptake and processing by splenic mac-
rophages, compared to uptake of monomeric protein, with 
sustained activation of MZ B cells [111]. Similarly, murine 
growth hormone aggregates were immunogenic by IV admin-
istration, with higher IgG2c and IgG3 titers compared to SC 
delivery, suggesting involvement of T-independent type 2 
response. However, IgG1 titers were high and comparable 
following SC and IV administration [113]. Aggregates can 
be considered an immunogenicity challenge for SC and IV 
administration, where mechanisms responsible likely differ.
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2.2.2  Clinical Evidence

A mAb administered subcutaneously that has demonstrated 
considerable immunogenicity, where efficacy is impacted by 
ADA development, is adalimumab. In a long-term follow-
up study for adalimumab in rheumatoid arthritis patients, 
28% developed anti-adalimumab antibodies, 67% of which 
developed within the first 28 weeks of treatment [114]. Anti-
adalimumab antibody development was associated with 
lower serum concentrations and lower likelihood of achiev-
ing minimal disease activity or clinical remission. However, 
without directly comparable clinical IV immunogenicity 
data, it is unclear whether the relatively high immunogenic-
ity of adalimumab is due to the SC route or other intrinsic 
or extrinsic factors. Where available, comparative immu-
nogenicity data, represented by incidence of total and neu-
tralizing ADA response, within the same clinical trial have 
been collected, expanding on previous analysis by Hamuro 
et al. [73]. ADA incidence sourced from product labels or 
peer-reviewed publications are presented in Table 1 for ten 
currently approved biologics.  Herceptin® (trastuzumab) for-
mulated for SC administration has demonstrated enhanced 
ADA incidence following SC delivery. A higher incidence of 
anti-trastuzumab antibodies (16%) was observed following 
treatment with SC Herceptin Hylecta™ (formulated with 
recombinant human hyaluronidase [rHuPH20]) compared 
to IV trastuzumab (10%) (Table 1) [115]. Additionally, 21% 
of patients treated with Herceptin Hylecta™ developed anti-
rHuPH20 antibodies—a common observation for products 
formulated with this permeation enhancer.

SC rituximab, which is much more concentrated than the 
IV formulation, is also formulated with rHuPH20 to facili-
tate larger injection volumes and improve antibody disper-
sion and absorption by temporarily hydrolyzing hyaluronic 
acid [52, 116]. Observed immunogenicity of rituximab in 
SC and IV formulations is low; treatment-induced/enhanced 
anti-rituximab antibody incidence in previously untreated 
patients with follicular lymphoma was 2.0% and 1.9% in the 
SC and IV groups, respectively [117]. SC rituximab treat-
ment also induces or enhances levels of anti-rHuPH20 anti-
bodies in 15% of patients. Pooled clinical trial results for SC 
trastuzumab, rituximab, insulin, and human IgG co-adminis-
tered with rHuPH20 show an overall incidence of 1.7–18.1% 
for induced or boosted anti-rHuPH20 antibody development, 
plus a 3.3–12.1% incidence of pre-existing anti-rHuPH20 
antibodies [118]. No neutralizing anti-rHuPH20 antibod-
ies were observed, and adverse events were not associated 
with anti-rHuPH20 positivity regardless of boosting after 
rHuPH20 exposure. Antibody positivity to rHuPH20 has 
been found in 5.2% of a large cohort not previously exposed 
to rHuPH20, and rates were significantly higher in males 

compared to females and varied with age [119]. The reasons 
for baseline prevalence of anti-rHuPH20 antibodies are not 
clear, but then rHuPH20 immunogenicity seems modest with 
no observed effects on adverse events or efficacy.

Marginally higher incidence of immunogenicity following 
SC administration compared to IV is observed for peginesa-
tide, mepolizumab, golimumab, and Phesgo™ (pertuzumab, 
trastuzumab, and rHuPH20), although ADA incidence was 
approximately 5% or less (Table 1) [120–123]. Overall low 
immunogenicity of the protein itself seems to confound sig-
nificant comparison of immunogenic risk between routes 
of administration in some clinical trials. Low and compara-
ble immunogenicity of SC and IV administration has been 
observed for daratumumab and vedolizumab (Table 1) [124, 
125]. In some examples, including tezepelumab (human anti-
TSLP IgG2λ) and inebilizumab (humanized, afucosylated 
anti-CD19 IgG1κ), no ADA incidence was detected for 
either route of administration [126, 127]. The direct impact 
of B cell-depleting agents, rituximab and inebilizumab, on 
humoral responses may explain their observed overall low 
immunogenicity.

A phase IIIb clinical trial for the fusion protein abatacept, 
human IgG Fc plus extracellular domain of cytotoxic T lym-
phocyte-associated protein 4 (CTLA-4), demonstrated similar 
total ADA rates (anti-abatacept or anti-CTLA-4-T antibod-
ies) between SC (1.1%) and IV (2.3%) administration [128]. 
However, in the long-term extension period where patients 
received SC abatacept, 23.2% were positive for anti-abatacept 
antibodies [129]. No correlations between anti-abatacept sero-
positivity and adverse events, infusion reactions, or efficacy 
changes have been observed [130, 131]. Similarly, for toci-
lizumab comparable efficacy and immunogenicity profiles 
are observed for SC and IV formulations [132–134]. ADA 
positivity rates in patients administered tocilizumab subcu-
taneously or intravenously were estimated to be 1.5% and 
1.2%, respectively, based on a meta-analysis of 14 studies, 
indicating overall low risk of tocilizumab immunogenicity 
[135]. Although more ADA-positive patients who received 
tocilizumab subcutaneously had neutralizing ADA (85.1%) 
compared to ADA-positive patients who received tocilizumab 
intravenously (78.3%), none of these patients in either treat-
ment group experienced loss of efficacy. Tocilizumab’s low 
immunogenicity profile with limited ADA development may 
result from its suppression of IL-6-dependent B cell differen-
tiation and  TfH cell activity [136].

Comparative immunogenicity results for SC and IV 
administration are available for some mAbs currently 
undergoing clinical trials. In a phase I clinical trial for 
PF-06480605 (human anti-TNF-like ligand 1A [anti-
TL1A] IgG1) conducted in healthy participants, high 
ADA incidence (81.8–83.3%) was observed for SC and IV 
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administration in single-dose or multiple-dose groups [137]. 
Lower exposure of PF-06480605 was seen in participants 
positive for neutralizing ADA at lower doses, but not at 
higher doses, and ADA were not associated with adverse 
events. In a phase I trial for PF-06801591 (humanized anti-
programmed cell death protein 1 [anti-PD-1] IgG4) con-
ducted in patients with advanced solid tumors, ADA inci-
dence was marginally higher in IV groups (9.5%) compared 
to the SC group (7.1%) [138]. No neutralizing ADA were 
detected. Clinical evidence for immunogenicity is variable 
between products and individuals, and although a range of 
products show comparable, low ADA incidence (< 5%), 
there are immunogenicity challenges for SC delivery of 
certain biologics.

2.3  Interplay Between Subcutaneous 
Immunogenicity and Product‑Related Risk 
Factors

2.3.1  Biophysical Characteristics

Lymphatic transport of proteins, and thus absorption and 
distribution, are impacted by protein biophysical character-
istics—molecular size and charge. Transit of proteins and 
peptides greater than 16 kDa through SC interstitium into 
lymphatic capillaries occurs by convection with limited 
diffusion [49]. Large MW proteins in interstitial fluid can 
enter highly permeable lymphatic vessels through intercel-
lular channels opened under increased interstitial pressure 

Table 1  Clinical immunogenicity of approved therapeutic proteins by SC and IV administration [73, 121, 122, 124, 125, 132, 213]

ADA anti-drug antibody, CD cluster of differentiation, CTLA-4 cytotoxic T  lymphocyte-associated antigen 4, ESA erythropoiesis-stimulating 
agent, HER2 human epidermal growth factor receptor 2, IgG immunoglobulin G, IL-5 interleukin-5, IL-6R interleukin-6 receptor, IV intrave-
nous, N/A not applicable or not available, rHuPH20 recombinant human hyaluronidase, SC subcutaneous, TNFα tumor necrosis factor-α
a Actemra® US Drug Label listed first; Ogata et al., 2014 listed second
b Mateos et al.[124]
c Subcutaneous formulation contains rHuPH20 (2000 U/mL)
d Sandborn et al.[125]
e Treatment-induced or enhanced ADA incidence listed
f Ortega et al.[121]
g Treatment-emergent ADA incidence; pertuzumab listed first, trastuzumab listed second
h Zhuang et al.[122]
i Product information sourced from US product labels accessed in Drugs@FDA database
j ADA incidence indicates % of reported ADA-positive patients sourced from product labels where not cited otherwise

Brand name (molecule) Molecule  descriptioni Formulated protein 
concentration (mg/
mL)

ADA  incidencej 
(%)

Neutralizing 
ADA inci-
dence (%)

Anti-rHuPH20 
antibody incidence 
(%)

SC IV SC IV SC IV SC

Actemra® (tocilizumab)a Anti-human IL-6R human-
ized IgG1κ

180 20 0.8 or 3.5 0.8 or 0 0.8 0.8 N/A

Darzalex Faspro™ 
(daratumumab)b,c

Anti-CD38 human IgG1κ 120 20 0 0.5 0 0 6

Entyvio® (vedolizumab)d Anti-α4β7 integrin human-
ized IgG1

N/A 60 6 6 3 6 N/A

Herceptin®/Herceptin Hyl-
ecta™ (trastuzumab)c,e

Anti-HER2 humanized IgG1κ 120 21 16 10 6 7 21

Omontys® (peginesatide) Synthetic, pegylated 21 
amino acid dimeric peptide, 
ESA

2–12 2–12 1.9 0.7 0.9 0.9 N/A

Orencia® (abatacept) CTLA-4 modified human 
IgG1 Fc fusion protein

125 25 1 2 N/A N/A N/A

Nucala® (mepolizumab)f Anti-IL-5 humanized IgG1κ 100 100 5 4 0 0 N/A
Phesgo™
(pertuzumab + 

trastuzumab)c,g

Anti-HER2 humanized IgG1κ 60–80, 40–60 30, 21 4.8, 0.9 3, 0.4 0.4, 0.4 0.4, 0 0.9

Rituxan®/Rituxan  Hycela® 
(rituximab)c,e

Anti-CD20 chimeric murine/
human IgG1κ

120 10 2 1.9 0 0 15

Simponi® (golimumab)h Anti-TNFα human IgG1κ 100 12.5 6 0 N/A N/A N/A
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[68]. Protein will traffic through lymphatic capillaries and 
pass into lymph vessels draining into local lymph nodes, 
eventually reaching systemic circulation by draining through 
efferent lymph vessels into larger collecting vessels and the 
thoracic duct [49, 68]. Studies in sheep models have dem-
onstrated direct correlation between protein MW and pro-
portion of dose absorbed by lymphatic uptake, and large 
proteins (30–40 kDa and above) have demonstrated almost 
complete dose recovery in peripheral lymph [63, 139]. Insu-
lin bioavailability following SC administration in sheep sig-
nificantly involves lymphatic absorption; however, species 
differences caution against generalizing preclinical results 
[28, 49, 140].

Studies in mice have further demonstrated that rate of loss 
of protein from the SC injection site correlates inversely with 
protein MW in the range of 23–149 kDa, with 149-kDa protein 
cleared the slowest [141]. Also, lymphatic exposure, or frac-
tion of injected dose recovered, at the draining, axillary lymph 
nodes following front foot pad injection increased proportion-
ally relative to protein MW. Lymph node distribution and PK 
studies demonstrate arrival of subcutaneously administered 
proteins in DLNs within hours [25]. Mean tmax value, or time 
to reach maximum protein levels, in draining, axillary lymph 
nodes obtained in mice was almost 3 h for 149-kDa protein 
following SC injection compared to shorter times just under 
or over 1 h for proteins 23, 44.3, and 66 kDa [141]. It is pos-
sible that slower rate of exit from the SC space and increased 
immunological exposure of larger MW proteins at the lymph 
nodes could translate into heightened immune response.

Very large protein and particulates could become trapped 
in the ECM due to convection limitations and steric hin-
drance. Furthermore, positively charged proteins sized 
20–78 kDa appear in lymph at delayed times compared to 
negatively charged, size-matched proteins [142]. Biologics 
with slight positive charge at local physiological pH, due to 
an isoelectric point of 7–9, could interact with negatively 
charged GAGs that are highly abundant in the ECM [28, 
49]. Protein molecular charges can be heterogeneous from 
deamination, isomerization, and PTM, and surface charge 
may change from surrounding pH variations in the SC 
space during transition and dispersion of the protein from 
the stable formulation state [28, 143]. An additional con-
sideration is whether protein chemical stability pathways, 
for example, oxidation, could generate modified epitopes 
and impact immunogenicity [144–147]. Overall, increased 
retention time due to charge interactions, or steric hindrance, 
could slow absorption and prolong exposure of therapeutic 
protein to invading LCs and dermal DCs (Fig. 2). The pre-
sumed mechanism of vaccine adjuvants demonstrates how 
SC immune response can be enhanced via facilitation of 
phagocytosis and slowing antigen exit from the injection site 
to promote uptake and trafficking of antigen by migratory 
DCs [57, 148].

2.3.2  Protein Aggregation

Protein molecules acquire a strong propensity to aggregate 
when externally applied stresses induce changes in protein 
conformation or partial loss of native structure that increase 
surface exposure of hydrophobic domains [149, 150]. Bio-
processing stresses include high concentration, high tem-
perature, changes in pH or ionic strength, shear stresses, 
and air–liquid or liquid–surface interfaces [24]. Even though 
classification systems are in place to determine aggregate 
features that confer immunogenic potential, there is an over-
all lack of understanding of the type and size of therapeutic 
protein aggregates universally implicated in immunogenic-
ity [151–153]. Filipe et al. endeavored to correlate type and 
amount of stress-induced IgG aggregates with immunogenic 
potential, and not all aggregates had the same propensity 
to induce an immune response [152]. FDA Guidance for 
Industry recognized subvisible aggregates or particulates 
(0.1–10 μm) to have a strong potential to be immunogenic, 
but preclinical studies present contrasting results [1, 154].

Submicron-sized mAb aggregates (100–1000 nm) were 
demonstrated to be most immunogenic upon SC administra-
tion compared to soluble oligomers (< 100 nm) or micron-
sized aggregates (1–100 μm) [155]. Conversely, native-like 
soluble oligomers (< 100 nm) induced higher antibody 
response in mice following SC administration compared 
to native mAb monomer or micron-sized non-native aggre-
gates [153]. Subvisible aggregates of single-chain variable 
fragment (scFv) and ovalbumin induced significantly higher 
IgG2a titers compared to monomeric protein by SC injection 
in BALB/c mice, although total IgG and IgG1 titers were 
comparable. Skewing towards  TH1-type immune response 
by aggregates was also suggested by cytokine profiles in DC 
co-culture experiments [156, 157]. Additionally,  TH1-type 
immune response was observed for bevacizumab heat-trig-
gered aggregates in a human artificial lymph node (HuALN) 
model, where delayed immune reactions can be monitored 
by long-term exposure of the system up to 28 days [158].

Human IgG aggregates induced by stirring and micron-
sized particles coated with IgG induce B cell-mediated 
immune response in an immunologically tolerant murine 
model [159]. Thus, IgG-coated particles with multivalency 
were able to transiently break immunological tolerance 
upon SC immunization. The particulate nature of aggregates 
may be responsible; via presentation of repetitive surface 
antigens, multivalent protein aggregates may be uniquely 
capable of cross-linking B cell receptors, leading to anti-
body production without T cell help [160]. Also in human 
IgG transgenic mice, human IgG oligomers with chemi-
cal amino acid modifications from light stress were able to 
break tolerance and induce ADA recognizing native IgG, the 
mechanism of which depended on T cell help and presum-
ably involved generation of ‘neo-epitopes’ [161]. Notably, 
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IgG oligomers generated under process- or pH-related stress 
conditions were immunogenic in wild-type mice but did 
not break tolerance in the immune tolerant mouse model. 
Breaking of tolerance was also observed in mice following 
SC administration of recombinant murine growth hormone 
(rmGH) aggregates with a presumed  TH1-type antibody 
response [113]. IV administration of the same aggregates, 
however, showed a mixed  TH1/TH2-type response with 
possible T-independent type 2 response. Encounter of IV-
injected aggregates with splenic MZ B cells may make 
T-independent type 2 response more likely following IV 
administration.

Upon SC administration, submicron- to micron-sized 
aggregates can experience longer retention in the SC 
space, enrichment in DLNs, and slower clearance than 
monomeric protein [72, 162, 163]. Removal of albumin 
aggregates from the SC injection site in mice is slower 
than monomeric protein, and complete clearance was not 
observed after 48 h [72]. Retention of protein aggregates in 
the SC space or enrichment in DLNs could prolong interac-
tions with skin-derived DCs and heighten ADA response 
(Fig. 2). Furthermore, the complex, unpredictable nature 

of protein aggregates alludes to potential for changes in 
composition and size distribution once introduced to the 
body. Upon dilution in human serum, subvisible IgG aggre-
gates formed by pH-related stress immediately became 
smaller and more numerous; then, incubation at 37 °C led 
to formation of large, subvisible aggregates, with evidence 
suggesting association of serum components [164]. The 
type or composition of aggregates, host immune tolerance 
status, and immunogenicity of the monomer itself could 
impact immunogenic risk [165]. Because a minute amount 
of aggregates could enhance immune response and current 
analytical techniques could overlook these particles, it will 
be important to prevent or moderate aggregate formation 
[166, 167].

2.3.3  Dosage Form Considerations

Presence of product impurities or contaminants can exac-
erbate immune response following SC administration by 
introducing danger signals (Fig.  2). Host cell proteins, 
leachates, and endotoxins are adjuvant-like contaminants 
that could enhance DC migration and antigen presentation, 

Fig. 2  Product-related risk factors for immunogenicity of subcutane-
ously administered therapeutic proteins. Structural or conformational 
modifications related to instability pathways or proteolytic degrada-
tion could generate new/modified epitopes. Protein aggregates or pre-
cipitates present in the formulation or formed post-injection can have 
longer SC retention time. Charge interactions between slight positive 
charge on mAbs at local physiological pH and negative charge den-
sity in ECM may increase SC retention time. Enhanced retention time 

of protein could confer immunogenic risk by increasing opportuni-
ties for encounter with invading dermal DCs and LCs post-injection. 
Innate immune stimulation by adjuvant-like drug product impurities 
(e.g., host cell proteins, leachates, and endotoxins) at the injection 
site can trigger maturation and migration of dermal DCs and LCs. Ag 
antigen, DC dendritic cell, ECM extracellular matrix, LC Langerhans 
cell, LN lymph node, mAb monoclonal antibody, SC subcutaneous
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demonstrated experimentally by lipopolysaccharide (LPS) 
[24, 168, 169]. Even a small amount of residual impuri-
ties present in the drug product may activate the innate 
immune system, for example, via TLR stimulation, to pro-
mote immunogenicity [170, 171]. Immune response could 
also be exacerbated by pre-existing inflammatory/autoim-
mune conditions that increase sensitized APCs or if patient 
skin-resident DC populations are activated by DAMPs from 
tissue inflammation/injury [73, 88]. An additional dosage 
form consideration for SC immunogenicity is the presence 
of proteinaceous or non-proteinaceous particulates, possibly 
enhanced by use-related stress. Adalimumab samples shaken 
in siliconized syringes contained a significant concentration 
of silicone oil droplets and soluble to subvisible particles; 
these samples were more immunogenic upon SC adminis-
tration to BALB/c mice compared to unstressed or non-sil-
iconized syringe stressed samples [172]. Besides agitation, 
freeze–thaw cycles or continuous low temperature storage 
(96 h) increased subvisible particle concentration in multi-
ple TNFα inhibitors [173]. The potential immunogenic risk 
of subvisible particle concentration in therapeutic protein 
preparations requires further investigation.

Solubility challenges are a key dosage form considera-
tion for SC administration due to requirement for high pro-
tein concentration in small injection volumes [28]. Protein 
crowding and aggregation are concerns for high concentra-
tion formulations, and excipients and stabilizers are added 
to maintain conformational and colloidal stability [28, 174, 
175]. Low solubility within skin ECM is also an issue, and 
precipitation at the injection site is a possible consequence. 
mAbs with poor solubility at neutral pH and formulated at 
high concentrations could spontaneously precipitate due to 
pH change after SC dosing [176]. Following SC administra-
tion of such a mAb, precipitated antibody was retained at the 
injection site, but cellular immune response within lymph 
nodes and ADA development were not enhanced. Precipita-
tion in this case may be reversible upon dilution in vivo due 
to concentration-dependent solubility as the driving factor. 
Also, precipitated antibody could be cleared by phagocytic 
cells without inducing a strong immune response; co-local-
ization of the mAb with  CD68+ cells (likely macrophages or 
monocytes) in the skin was observed along with no increase 
in systemic cytokine response [176]. No correlation between 
immunogenic risk and protein precipitation after SC deliv-
ery was established. To avoid solubility challenges, depot 
formulations with hyaluronidase (rHuPH20) and protein 
stabilizers can facilitate administration of increased injec-
tion volumes [177]. The use of hyaluronidase could address 
slow and incomplete absorption of proteins to limit immuno-
logical exposure, and pre-existing or induced anti-rHuPH20 
antibodies have not impacted efficacy or safety in tested 
products [73, 118].

3  Existing and Future Strategies to Minimize 
Subcutaneous Immunogenicity

3.1  Immune Suppression and Lymphocyte 
Manipulation

Conventional strategies to mitigate immunogenicity of biolog-
ics, whether dosed subcutaneously and/or intravenously, have 
varying degrees of success clinically and rely on immune sup-
pression using small molecule drugs, such as methotrexate, 
rapamycin, bortezomib, and cyclophosphamide (Fig. 3) [7]. 
The immunomodulatory drugs azathioprine and methotrexate 
have been used in combination with TNFα blockers infliximab 
and adalimumab [178]. Kishnani and colleagues have com-
bined rituximab with methotrexate and IV gamma globulin 
to successfully prevent and reverse anti-rhGAA antibody 
response in infantile Pompe disease patients [179, 180]. Anti-
rhGAA titer development has been prevented by anti-CD3 
antibody treatment in preclinical models, which also provided 
modest reduction of pre-existing titers [181]. This non-FcR-
binding anti-CD3ε F(ab’)2 fragment protects HA mice from 
total and inhibitory anti-FVIII antibody formation, the mecha-
nism of which involves increased CD25 expression on periph-
eral effector  CD4+CD25− cells [181, 182]. The importance 
of antigen-specific  Treg cells  (CD4+CD25+) inspired a strat-
egy to transduce FVIII-specific  CD4+ T cells with forkhead 
box P3 (FoxP3), thus imparting a  Treg-like phenotype [183]. 
In addition to preventing inhibitor formation upon adoptive 
transfer, combination with anti-murine CD20 (anti-mCD20) 
antibody provided modest reversal of pre-existing inhibitors. 
However, inhibitors rise upon discontinuation of anti-mCD20 
therapy. Note that important  CD20− cell populations survive 
anti-CD20 therapy, particularly long-lived plasma cells [184]. 
To achieve FVIII-specific B cell depletion, cytotoxic  CD8+ 
T cells have been engineered with B cell antibody-targeting 
receptor (BAR) expressing immunodominant FVIII A2 and 
C2 domains [185]. Lymphocyte manipulation strategies 
should ideally deliver a long-lasting, antigen-specific protec-
tive effect.

3.2  Inhibition of Skin‑Derived Immune Cell 
Migration

Theoretical mitigation strategies for SC immunogenicity 
could co-administer inhibitors or function-blocking antibod-
ies directed against chemokine receptors CCR7 and CXCR4 
to interrupt cutaneous DC migration to DLNs during the 
second wave of antigen presentation [25]. The small mol-
ecule drug cosalane, identified by high-throughput screen-
ing, inhibits CCR7-mediated mouse and human cell chem-
otaxis in vitro in response to CCL19/CCL21 stimulation 
[186].  CD11c+ DC maturation markers and CCL21-directed 
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migration in vitro are also impaired by etanercept (TNF 
inhibitor) [187]. Collagen-induced arthritic mice treated 
with etanercept had significantly reduced myeloid and 
plasmacytoid DCs in lymph nodes compared to controls 
while peripheral blood DC numbers remained unchanged, 
and CXCR4 downregulation partially explains reduced DC 
migration [187]. IL-4 also modulates DC migratory capac-
ity. DCs matured by TNFα in the presence of IL-4 have 
reduced CCR7 expression and impaired CCL19/CCL21-
directed migratory activity [188]. Interrupting DC migration 
from the injection site will not impact antigen presentation 
by lymph node-resident DCs, thus ADA development could 
still occur.

3.3  Reduction of Product‑Related Risk Factors

Reduction of protein aggregates and impurities, such as 
residual host cell proteins or endotoxins, could alleviate 
potential product-related immunogenic risk factors [168, 
169]. Protein samples can be screened in human ex vivo 
cell-based assays for impurities and contaminants [189]. 
Prediction of aggregation propensity and susceptible sites 
for PTMs would help mitigate immunogenic and hypersen-
sitivity risks of aggregates and non-human glycosylation 
[189]. Sequence-based prediction tools can be employed to 
identify potential aggregation-prone sequence and structural 
motifs on proteins [190]. Prevention of aggregation during 

Fig. 3  Selection of existing and theoretical strategies to minimize 
immunogenicity of subcutaneously administered therapeutic proteins. 
a Conventional strategies rely on nonspecific immune suppression 
using small molecule drugs, such as methotrexate, rapamycin, bort-
ezomib, and cyclophosphamide. A combination approach uses the 
lymphocyte depletion agent rituximab (anti-CD20) with methotrexate 
and intravenous Ig. b Example lymphocyte modulation strategies are 
anti-CD3 antibody, engineered antigen-specific  FoxP3+  Treg cells, and 
cytotoxic BAR  CD8+ T cells. c Reduction of product-related factors 
by ex vivo human cell-based assay screening, removal of non-native 
IgG aggregate precursors by specific absorption to AF.2A1 magnetic 
beads, and chaperone molecules to improve protein stability. d Inhi-
bition of CCL19/CCL21 directed DC migration to lymph nodes by 
the small molecule CCR7 inhibitor cosalane (anti-HIV agent). e mAb 

humanization by incorporation of fully human content apart from 
complementarity-determining regions. In silico prediction of T or B 
cell epitopes on proteins to perform de-immunization or incorpora-
tion of  Treg cell epitopes (Tregitopes). f Peripheral tolerance induction 
by co-administration of OPLS with therapeutic protein subcutane-
ously to induce tolerogenic DCs and antigen-specific  Treg responses 
[7, 178, 179, 183, 185, 186, 191, 192, 197, 209]. BAR B  cell anti-
body-targeting receptor, CDR complementarity determining region, 
DC dendritic cell, DLN draining lymph node, FoxP3 forkhead box 
P3, HIV human immunodeficiency virus, IDO indoleamine 2,3-diox-
ygenase, Ig immunoglobulin, IL interleukin, mAb monoclonal anti-
body, MHC major histocompatibility complex, OPLS O-phospho-
L-serine, RA retinoic acid, TCR  T cell receptor, TGFβ tumor growth 
factor-β, Treg regulatory T cell
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long-term storage is ideal, but small aggregate precursors are 
not removed by 0.22-μm filtration during manufacturing. A 
specific approach for IgG formulations removes non-native 
IgG molecules and small aggregate precursors by adsorption 
to magnetic beads conjugated with AF.2A1 protein [191]. 
Addition of chaperone molecules to protein formulations 
could prevent aggregation; a chaperone molecule (miglustat) 
for rhGAA that improves PK and protein stability in circu-
lation is under investigation as a replacement therapy for 
Pompe disease [192]. FVIII is also prone to form aggregates 
with high immunogenic risk; however, onset of aggregation 
is delayed by the stabilizing interaction of O-phospho-L-
serine (OPLS) with the aggregation-prone, immunogenic 
region on FVIII [193, 194]. Moreover, FVIII-OPLS complex 
was significantly less immunogenic than free protein upon 
SC administration.

3.4  Protein Modification and Re‑engineering

Less immunogenic therapeutic proteins could be designed 
through de-immunization or tolerization. Protein modifica-
tion is especially relevant for immunogenicity driven by 
non-self recognition, for example, replacement therapies in 
patients that lack central tolerance to endogenous protein 
or proteins with non-human sequences [195]. Humaniza-
tion incorporates fully human sequences into mAbs with-
out changing the complementarity-determining regions, 
but inadequacy of humanization is revealed by unfortunate 
ADA rates for fully human adalimumab [114, 196, 197]. 
Zurdo et al. reviewed quality by design methodologies and 
early risk assessment for immunogenic potential of proteins 
in development [189]. De-immunization or T cell epitope 
removal should limit high-affinity, long-lived ADA devel-
opment by abrogating T cell responses [189]. De Groot and 
Martin developed web-accessible tools to perform in silico 
protein re-engineering and screen then rank candidate pro-
tein sequences for immunogenic potential [198]. Less immu-
nogenic, but efficacious, versions of FVIII and immunotoxin 
LMB-2 (anti-CD25) were engineered by de-immunization of 
immunodominant T cell epitopes [199, 200]. Additionally, B 
cell epitope modification is expected to interfere with bind-
ing of pre-existing ADA or memory B cells [201]. Beyond 
de-immunization, sequences known to be regulatory T cell 
epitopes, i.e., Tregitopes, can be introduced into the protein 
to promote tolerogenic responses [197].

3.5  Tolerance Induction

Tolerance induction to therapeutic proteins would avoid 
severe issues associated with immune suppression, such 
as susceptibility to secondary infections [7]. Strategies 
can take advantage of natural peripheral tolerance mecha-
nisms involving antigen presentation by migratory DCs to 

antigen-specific  CD4+ T cells in the context of MHC II but 
with low co-stimulatory signals [202–206]. Regulatory 
mediators produced by tolerogenic DCs, such as IL-10, 
TGFβ, IL-35, and indoleamine 2,3-dioxygenase (IDO), 
induce the generation of antigen-specific  Treg cells [206]. 
Retinoic acid, another important mediator of  Treg induction, 
is produced by skin  CD103−CD11b+ DCs in mice [207]. 
Strategies for antigen-specific tolerance induction, including 
those employing SC administration, have been reviewed by 
Luo et al. [208]. Certain skin-resident migratory cell popu-
lations, including dermal  CD103+ DCs and LCs, have been 
targeted in such strategies to induce or expand  Treg cells 
[205]. A reverse vaccination strategy employs SC pre-expo-
sure to low-dose protein in the presence of OPLS to induce 
tolerance, and mice were rendered hyporesponsive upon re-
exposure to protein alone [209, 210]. OPLS co-administra-
tion generates DCs with a tolerogenic profile including high 
secretion of regulatory TGFβ and normal migratory capabil-
ity (Fig. 4). SC co-administration of OPLS and rhGAA in a 
mixed formulation induced hyporesponsiveness to rhGAA in 
Pompe disease mice [211]. Furthermore, reverse vaccination 
by SC pre-administration of Lyso-phosphatidylserine (Lyso-
PS)-containing nanoparticles loaded with FVIII significantly 
reduced anti-FVIII antibody response during re-exposure 
to FVIII intravenously, the mechanism of which involved a 
specific PS receptor, TIM-4 [212].

4  Conclusion

The SC route of administration provides convenient and 
non-inferior delivery of therapeutic proteins compared to 
IV infusion, but unwanted ADA response can occur upon 
repeated administration. Based on available preclinical and 
clinical studies, there is evidence both supporting and refut-
ing the notion that the SC route of administration increases 
risk of immunogenicity. Mechanistic insight into molecular 
and cellular contributors that may drive immunogenicity of 
subcutaneously administered therapeutic proteins is criti-
cal to rationally develop safe and efficacious protein-based 
therapies. A key contributor may be the large population 
of dynamic APCs in the skin with high antigen process-
ing efficiency and migratory activity. Product-related fac-
tors of immunogenicity are also particularly relevant to SC 
formulations. Molecular characteristics, presence of protein 
aggregates, and impurities have the potential to increase SC 
retention time, upregulate immune cell migration, and/or 
enhance local inflammation. Current mitigation strategies for 
immunogenicity are lacking antigen-specific, long-lasting 
effects. Mechanistic insights and risk factors for SC immu-
nogenicity inspire future approaches to prevent or reduce 
immunogenicity, which merit further investigation.
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