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Background. High levels of branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs) were associated with an
increased risk of hyperglycemia and the onset of diabetes. This study is aimed at assessing circulating valine concentrations in
subjects with type 2 diabetes (T2D) and in T2D patients and high-fat diet- (HFD-) fed mice treated with the hypoglycemic
agent sitagliptin (Sit) and analyzing the association of valine concentrations with metabolic parameters. Methods. Metabolomics
in HFD-fed mice were analyzed by gas chromatography-mass spectrometry (GC-MS) systems. Plasma valine concentrations
were detected with a commercial kit in 53 subjects with normal glucose levels (n = 19), newly diagnosed T2D (n = 20), placebo-
treated T2D (n = 7), or Sit-treated T2D (n = 7). Biochemical parameters were also assessed in all participants. Results. Sit
treatment markedly changed the pattern of amino acid in HFD-fed mice, especially by reducing the level of the BCAA valine.
Compared with the healthy controls, the plasma valine concentrations were significantly higher in the T2D patients (p < 0:05).
Correlation analysis showed that the plasma valine concentration was positively correlated with the level of fasting plasma
glucose (p < 0:05). Moreover, the plasma valine concentrations were notably reduced after Sit treatment in T2D patients
(p < 0:05). Conclusions. Our findings demonstrate an important effect of Sit on the BCAA valine in T2D patients and HFD-fed
mice, revealing a new hypoglycemic mechanism of it. Furthermore, the results suggest that the circulating valine level might be
a novel biomarker for T2D and restoring the level of valine might be a potential strategy for diabetes therapy.

1. Introduction

The intestinal gut microbiota is an intricate ecosystem. Exist-
ing evidence has indicated that the gut microbiota is involved
in regulating the homeostasis of the host metabolism [1]. The
dysbiosis of the gut microbiota is associated with metabolic
diseases, including diabetes [2], obesity [3, 4], and insulin
resistance [5]. Although it is now commonly accepted that

the microbiome is closely related with glucose metabolism,
the molecular mechanism revealing the regulation of glucose
metabolism by bacteria is still not clear. Emerging evidence
has suggested that short chain fatty acids (SCFAs), bile acids,
and amino acids may be the potential mechanism [6–8].

Our recent study reported that the commonly used
oral hypoglycemic agent, dipeptidyl peptidase-4 inhibitors
(DPP-4i), markedly changed the composition of the gut
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microbiota and the pattern of metabolites in high-fat diet-
(HFD-) fed mice and that the DPP-4i sitagliptin- (Sit-)
altered microbiome from type 2 diabetes (T2D) patients
improved the glucose intolerance induced by HFD in
germ-free mice [9]. Sit treatment resulted in a trend
toward an increase in SCFAs, but with no significance.
Therefore, we set out to focus on the alteration of other
metabolites, such as amino acids, to explain the functional
mechanism of DPP-4i-altered microbiome in modulating
the glucose metabolism in the further study.

Accumulating studies have indicated that obese individ-
uals have higher concentrations of branched-chain amino
acids (BCAAs) (isoleucine, leucine, and valine) and aromatic
amino acids (AAAs) (phenylalanine and tyrosine), and these
amino acids have been correlated with blood glucose and
insulin levels [10–13]. In addition, it has been reported that
BCAA and AAA levels are associated with the extent of insu-
lin resistance [14–19]. Moreover, a prospective study found
that fasting concentrations of amino acids were elevated up
to 12 years prior to the onset of diabetes and that the risk
of diabetes increased at least 4-fold among individuals with
high concentrations of plasma amino acids [12]. Recently, it
has been reported that the classic hypoglycemic agent met-
formin could change the pattern of amino acids in random-
ized clinical trials [20, 21]. Based on these studies, amino
acids might be associated with the improvement of glucose
metabolism modulated by DPP-4i-altered microbiome.

In the current study, we analyzed the alteration of amino
acids in the Sit-treated HFD-fed mice, and further analyzed
the alteration of valine induced by Sit treatment in HFD-
fed mice and newly diagnosed T2D patients, and analyzed
the correlations between circulating valine levels and meta-
bolic parameters among study participants.

2. Subjects and Methods

2.1. Study Subjects

2.1.1. T2D Patients and Healthy Controls. Thirty-nine indi-
viduals were recruited for our study. The T2D patients
were newly diagnosed based on the World Health Organi-
zation 1998 diagnostic criteria [22]: fasting plasma glucose
ðFPGÞ ≥ 7:0 mmol/L, 2-hour postprandial plasma glucose
ð2hPGÞ ≥ 11:1 mmol/L, or both. The exclusion criteria were
as follows: (i) pregnancy, (ii) smoking and alcohol con-
sumption history, (iii) presence of acute or chronic compli-
cations of diabetes, and (iv) presence of gastrointestinal
disorders or a history of chronic physical/mental diseases,
such as Alzheimer’s disease or Parkinson’s disease. The
experimental protocol was approved by the Ethics Com-
mittee of Xinqiao Hospital, Third Military Medical Univer-
sity, and registered online (Clinical trial registry number
ChiCTR-ROC-17010719).

2.1.2. Sitagliptin-Treated Subjects. Briefly, fourteen newly
diagnosed T2D participants were randomized into two
groups: one group was treated with sitagliptin (Sit; n = 7),
and the other group was treated with placebo (n = 7). Sit
(Merck Sharp & Dohme, USA) was administered at a dose

of 100mg/d. Moreover, all individuals were recommended
to maintain a reduced daily caloric intake of 25 kcal/kg and
perform regular physical exercise (2.5 hours/week) through-
out the entire study [23]. The detailed inclusion and exclu-
sion criteria for T2D patients were described in our
previous study [9]. Informed written consent was obtained
from all participants. The experiment was approved by the
Ethics Committee of Xinqiao Hospital, Third Military
Medical University. The clinical trial registration is depos-
ited in the Chinese Clinical Trial Registry (ChiCTR-OPC-
17010757).

2.2. Animal Study. C57BL/6 male mice were purchased from
the Model Animal Research Center of Nanjing University
and were fed a high fat diet (HFD; 60% fat, 20% protein,
20% carbohydrate (kcal/100 g), D12492; Research Diets,
New Jersey, USA) for 14 weeks. Then, the mice were
divided into different groups: Sit-treated group and control
group. The Sit-treated group was administered 4 g/kg of Sit
mixed with HFD for 4 weeks, and the controls were only
fed a HFD during the experiment. The metabolites were
extracted from fecal samples according to the manufac-
turer’s instructions (Majorbio Bio-Pharm Technology Co.,
Ltd., Shanghai, China) and assayed using a 7890A-5975C
gas chromatography-mass spectrometry (GC-MS) detection
system (Agilent Technologies, Santa Clara, CA). The
detailed protocol of the animal study was described in our
previous study [9].

2.3. Measurement of Plasma Valine Levels. Plasma valine
levels were measured by a commercial enzyme-linked immu-
nosorbent assay kit according to the manufacturer’s instruc-
tions (General Valine ELISA kit, catalog no: E2143Ge, EIAab
Science Co. Ltd., China). The detection range of the kit was
1.56~100nmol/mL. The intra-assay coefficient of variation
was 4.6%, and the interassay coefficient of variation was
7.1%. All plasma samples were diluted 20 times before detec-
tion. There was no significant cross-reactivity or interference
throughout the assay.

2.4. Statistical Analyses. The significance of differences
between two groups was evaluated using Student’s t-test.
The amino acid concentrations of the HFD-fed mice were
numerically transformed before heat map analysis. The
correlations between plasma valine levels and metabolic
characteristics were estimated using the Pearson correlation
coefficient. A p value < 0.05 was defined as statistically sig-
nificant. The statistical analyses were performed with SPSS
software version 16.0 (IBM, Armonk, NY).

3. Results

3.1. Sitagliptin Treatment Reduces the Valine Level in HFD-
Fed Mice. In a recent study, we demonstrated that metabo-
lites were markedly changed after Sit treatment in HFD-fed
mice [9]. To further explore the alterations of amino acids
induced by Sit treatment in HFD-fed mice, principal compo-
nent analysis (PCA) and heat map analysis were performed
based on the amino acid concentrations detected by GC-
MS. As shown in Figures 1(a) and 1(b), there was a difference
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in the distribution of the amino acids between the Sit-treated
(HFD_Sit) and HFD groups. In addition, most amino
acids presented a decreasing trend in the HFD_Sit mice
(Figure 1(c)). Among these amino acids, the relative con-
centration of valine was the highest and was significantly
reduced after Sit treatment (Figure 1(d)). These results
suggested that Sit promoted a pattern shift of amino acids
and that amino acids, especially valine, might contribute to
the hypoglycemic effect of Sit.

3.2. The Plasma Valine Level Was Higher in T2D Patients. To
observe whether the concentration of valine is associated
with diabetes, a total of 20 newly diagnosed T2D patients
and 19 healthy controls were enrolled in this study. The main
clinical characteristics of the groups with healthy or T2D
individuals are shown in Table 1. There were no significant
differences in sex, age, BMI, insulin, total cholesterol (TC),
or low-density lipoprotein cholesterol (LDL-C) between the
two groups. In comparison with the healthy controls, the
T2D patients had higher HbA1c, fasting plasma glucose
(FPG), HOMA-IR, and triglyceride levels (p < 0:001, p <
0:001, p < 0:001, and p = 0:037, respectively), while the levels

of HOMA-β and HDL-C were significantly lower in the T2D
group (p = 0:010 and p = 0:018, respectively).

As expected, when compared to healthy controls, the
T2D group displayed a significant increase in plasma valine
levels (Table 1, Figure 2(a), p = 0:040). In addition, we ana-
lyzed the association between valine concentration and met-
abolic parameters. As shown in Table 2 and Figure 2(b), the
plasma valine levels were positively associated with fasting
plasma glucose (p = 0:046, r = 0:322). After adjusting for
age and sex, the correlation remained significant (p < 0:05).
The correlations between valine concentrations and other
parameters, such as insulin and HbA1c, were not statistically
significant, which might be due to the small sample size.

3.3. Sitagliptin Treatment Decreased the Plasma Valine Level
in T2D Patients. Next, to further investigate whether the
hypoglycemic agent DPP-4i could change the valine concen-
tration in the clinical setting, we detected the plasma valine
level in another subset of T2D patients who were either
treated with Sit or not treated with any antidiabetic agent.
This subset of individuals was enrolled in our previous study
[9]. As shown in Figure 3, the plasma valine level decreased
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Figure 1: Sitagliptin treatment reduced the valine levels in HFD-fed mice. (a, b) Cluster analysis of the HFD-fed and HFD_Sit mice based
on the amino acid concentrations using PCA. The principal components (PC1, PC2, and PC3) from the PCA are plotted for each sample.
The percentage of variation covered in the plotted principal components is marked on the axes. Each group is labeled by a different
symbol, and each spot represents one sample. (c) Heat map analysis of amino acid levels in the HFD and HFD_Sit groups. Each
column in the heat map represents the group, and each row represents one amino acid. The color bar showing green to red indicates
the relative level of each amino acid. (d) The relative level of valine in the HFD and HFD_Sit groups. (a–d) n = 8; data in (d) are
presented as the means ± SD, t-test.
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notably after Sit monotherapy (p = 0:034). Taken together,
these results demonstrated that valine levels were higher in
T2D patients and were decreased after Sit treatment. It sug-
gests that valine might be a potential biomarker for T2D
and restoring the level of valine might be a potential strategy
for diabetes therapy.

4. Discussion

High circulating concentrations of BCAAs (isoleucine, leu-
cine, and valine) and AAAs (phenylalanine and tyrosine)
have recently been shown to be associated with an increased
risk of hyperglycemia and the onset of diabetes [12, 13, 24].
Valine (2-amino-3-methylbutyric acid), a BCAA, is an essen-
tial amino acid in humans. To our knowledge, this is the first
study to analyze valine levels in T2D patients and HFD-fed

mice after Sit treatment. We observed that Sit treatment
markedly changed the pattern of amino acids and decreased
the valine level in HFD-fed mice. Furthermore, compared
with the healthy controls, the valine level was higher in
T2D patients, while it decreased after Sit monotherapy. These
results suggest that valine might be involved in the pathogen-
esis of T2D and might be related to the hypoglycemic therapy
for T2D. It also demonstrates a novel effect of DPP-4i on the
BCAAs, which might be a new hypoglycemic mechanism of
this drug.

The gut microbes act as bioreactors that ferment die-
tary components to produce health-promoting metabolites,
such as amino acids [25–27], short-chain fatty acids
(SCFAs) [28, 29], and vitamins [30, 31]. Essential amino
acids (e.g., arginine and BCAAs) cannot be synthesized by
humans; these essential amino acids originate from dietary

Table 1: Clinical characteristics of enrolled healthy and T2D individuals.

Health (n = 19) T2D (n = 20) p value

Sex (M/F, n/n) 7/12 11/9 0.341

Age (years) 48:58 ± 3:19 51:90 ± 3:18 0.466

BMI (kg/m2) 23:15 ± 0:81 25:04 ± 0:89 0.125

HbA1c (%, mmol/mol) 5:66 ± 0:06 8:31 ± 0:50 <0.001
FPG (mmol/L) 5:14 ± 0:09 9:00 ± 0:43 <0.001
2hPG (mmol/L) 4:64 ± 0:12 9:75 ± 0:56 <0.001
Insulin (mU/L) 6:37 ± 1:27 8:80 ± 1:02 0.144

HOMA-IR 1:47 ± 0:31 3:44 ± 0:40 <0.001
HOMA-β 78:92 ± 14:71 36:82 ± 5:96 0.010

Total cholesterol (mmol/L) 4:75 ± 0:19 4:60 ± 0:20 0.586

Triglycerides (mmol/L) 1:26 ± 0:15 1:96 ± 0:28 0.037

HDL-C (mmol/L) 1:59 ± 0:12 1:22 ± 0:09 0.018

LDL-C (mmol/L) 2:70 ± 0:19 2:77 ± 0:21 0.824

Valine (μmol/L) 137:56 ± 11:77 172:59 ± 11:48 0.040

BMI, body mass index; FPG, fasting plasma glucose; 2hPG, 2-hour postprandial plasma glucose; HOMA-IR, homeostasis model assessment for insulin
resistance; HOMA-β, homeostasis model assessment for beta-cell function; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein
cholesterol. Data are presented as means ± SEM. p value was calculated by t-test.
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Figure 2: The plasma valine level was higher in T2D patients. (a) The plasma level of valine in healthy controls (n = 19) and T2D patients
(n = 20). (b) The correlation between plasma valine level and fasting plasma glucose concentration (n = 39). The data in (a) are presented
as the means ± SD, t-test.
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components that are metabolized by microbes in the ileum
[32]. The concentration of amino acids is partially corre-
lated with the structure of microbial community [33]. In
an analysis of the host metabolism and gut microbiota in
individuals with insulin resistance, increased levels of
BCAAs were correlated with the abundance of the gut
microbiota, especially the abundance of Prevotella copri
and Bacteroides vulgatus. These two kinds of bacteria were
identified as the main species with the potential to bio-
synthesize BCAAs. P. copri could increase the serum levels
of BCAAs in HFD-fed mice [5]. Thus, the alterations of gut
microbial composition in the context of diabetes might be
an important reason for the increase in BCAAs.

The altered BCAAs seem to be related to the specific
intestinal flora community in diabetes, while the composition
of gut microbiota was found to be influenced by antidiabetic

therapy, especially hypoglycemic agents. Therefore, there
may be a potential link between BCAAs and antidiabetic
therapy. A previous study found that BCAA levels decreased
rapidly following glipizide treatment in T2D patients [24]. In
addition, metformin also tended to reduce BCAA concentra-
tions, although the change was not statistically significant
[21]. In our study, the concentrations of BCAAs were also
presented decreasing trend in the Sit-treated HFD-fed mice,
and the level of BCAA valine decreased significantly after
Sit treatment in newly diagnosed T2D patients and HFD-
fed mice. Taken together, these studies demonstrated that
BCAAs might be a potential biomarker for diabetes and that
restoring circulating levels of BCAAs might be a novel strat-
egy for diabetes therapy. Our results also suggest that the
reduction of BCAA valine might be one of the mechanisms
of improving glucose metabolism by DPP-4i.

A prospective observational study reported that the ele-
vation of BCAAs is associated with the risk of T2D [12, 34],
and recent genetic studies have suggested the important role
of BCAA metabolism in the development of diabetes [35].
The molecular mechanism of the involvement of BCAAs in
the pathogenesis of diabetes is still unclear. Branched-chain
alpha-ketoacid dehydrogenase (BCKD), responsible for the
rate-limiting step of BCAA catabolism, is markedly lower in
individuals with T2D [36, 37]. In addition, BCKD could be
activated by its regulatory phosphatase PPM1K, and the
expression of PPM1K was also downregulated in individuals
with T2D [38]. It has also been reported that BCAAs
are related to insulin resistance [14, 39]. Moreover, 3-
hydroxyisobutyrate (3-HIB), a catabolic intermediate of
valine, is viewed as a link between BCAA catabolism and
insulin resistance. 3-HIB, as a new paracrine regulator of
transendothelial fatty acid transport, could also activate
transendothelial fatty acid transport, promote fatty acid
uptake and accumulation in the muscle, and lead to insulin
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Figure 3: Sitagliptin treatment decreased valine levels in T2D
patients. The relative level of valine in the T2D_Placebo and
T2D_Sit groups. Data are presented as the means ± SD, t-test.

Table 2: Correlation coefficient of clinical characteristics associated with plasma valine concentration in the study individuals.

Plasma valine Plasma valine (age- and sex-adjusted)
r p value r p value

Age (year) 0.008 0.963 — —

Sex (M/F) 0.133 0.421 — —

BMI (kg/m2) -0.225 0.168 -0.210 0.212

HbA1c (%, mmol/mol) 0.231 0.156 0.273 0.103

FPG (mmol/L) 0.322 0.046 0.340 0.040

2hPG (mmol/L) 0.277 0.088 0.301 0.071

Insulin (mU/L) -0.123 0.456 -0.126 0.457

HOMA-IR -0.026 0.873 -0.027 0.873

HOMA-β -0.279 0.085 -0.299 0.073

Total cholesterol (mmol/L) 0.069 0.674 0.076 0.654

Triglycerides (mmol/L) 0.063 0.703 0.070 0.679

HDL-C (mmol/L) 0.019 0.907 0.002 0.989

LDL-C (mmol/L) 0.054 0.743 0.074 0.664

BMI, body mass index; FPG, fasting plasma glucose; 2hPG, 2-hour postprandial plasma glucose; HOMA-IR, homeostasis model assessment for insulin
resistance; HOMA-β, homeostasis model assessment for beta-cell function; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein
cholesterol. Correlations between valine concentration and clinical characteristics were analyzed by Pearson’s analysis or an age- and sex-adjusted partial
correlation test, while the correlation between valine concentration and sex was analyzed by Spearman’s analysis.

5Mediators of Inflammation



resistance [40]. In addition, BCAAs have been shown to
modulate insulin secretion, except for insulin resistance [41,
42], and another possible mechanism by which elevated
BCAAs promote diabetes is via hyperinsulinemia leading to
pancreatic beta cell dysfunction [12]. However, some studies
support the idea that elevated BCAAs are the result of insulin
resistance, not the cause of it [43]. The role and functional
mechanism of BCAAs, especially valine, in glucose metabo-
lism requires further investigation.

The current study has some limitations that require
emphasis. First, our study used a cross-sectional design, so
the causality between valine levels and T2D cannot be clari-
fied. Second, as the sample size for detecting valine levels in
T2D patients was small, the correlations between valine levels
and various metabolic parameters were not statistically sig-
nificant. Therefore, clinical studies with larger sample sizes
should be performed to confirm the correlation between
valine levels, the progression of T2D, and the hypoglycemic
effect of DPP-4i. Further molecular experiments should be
performed to explore the molecular mechanism of valine in
regulating glucose metabolism.

In conclusion, our study demonstrated that hypoglyce-
mic agent DPP-4i treatment markedly changed the pattern
of amino acids in HFD-fed mice, especially by reducing the
level of the BCAA valine. Moreover, the circulating valine
levels were significantly higher in T2D patients and were
decreased by DPP-4i treatment. The plasma valine concen-
trations were closely correlated with fasting plasma glucose.
Thus, the circulating valine level might be a biomarker for
T2D and might be a potential therapeutic target for T2D.
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