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Abstract: Alzheimer’s disease (AD) is a chronic, progressive, and fatal neurodegenerative disor-
der affecting cognition, behavior, and function, being one of the most common causes of mental de-
terioration in elderly people. Once thought as being just developed because of β amyloid deposi-
tions or neurofibrillary Tau tangles, during the last decades, numerous AD-related targets have
been established, the multifactorial nature of AD became evident. In this context, the one drug-one
target paradigm has resulted in being inefficient in facing AD and other disorders with complex eti-
ology, opening the field for the emergence of the multitarget approach. In this review, we highlight
the recent advances within this area, emphasizing in hybridization tools of well-known chemical
scaffolds endowed with pharmacological properties concerning AD, such as curcumin-, resvera-
trol-, chromone- and indole-. We focus mainly on well established and incipient AD therapeutic tar-
gets, AChE, BuChE, MAOs, β-amyloid deposition, 5-HT4 and Serotonin transporter, with the aim
to shed light about new insights in the AD multitarget therapy.

Keywords: Alzheimer disease, multi-target directed ligands, cholinesterase inhibitors, serotonin transporter, 5-HT receptors ,
β – amyloid aggregation, tau protein, monoamine oxidase.

1. INTRODUCTION
According  to  the  World  Alzheimer  Report  (2019),

around  50-60%  of  the  overall  dementias  correspond  to
Alzheimer’s disease (AD). Although it has been for years a
major health concern in developed economies, it is increas-
ing in the developing countries as life expectancy increases.
Even though WHO estimates that around 47 million people
currently suffer from AD, this number is expected to double
every 20 years; thus, the AD population could reach 75 mil-
lion by 2030 [1]. Despite multiple efforts carried out within
the last decades by universities, foundations, research cen-
ters and pharmaceutical companies, the detailed pathogene-
sis  of  AD  is  still  unclear,  and  the  underlying  mechanism
leading to this disease is not yet fully understood. Unfortu-
nately, given the continuous failures in clinical trials, phar-
maceutical  companies  are  pulling  out  AD research,  and  it
has been 17 years since the last drug, memantine, reached
the market in 2003 [2].

AD is a progressive neurodegenerative disease resulting
in the irreversible loss of neurons, particularly in the cortex
and hippocampus  [3].  Symptoms may include  progressive
loss of memory, cognition, motor, and functional capacity,
often accompanied by behavioral disturbance such as aggres-
sion, depression and wandering [4], being the most common
cause of dementia among elderly people [5].
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Many  authors  defined  AD  as  a  heterogeneous  disease
caused by a combination of environmental and genetic fac-
tors, being the age one of the most important risk factors for
the development of the disease [6, 7]. Some of the predispos-
ing factors of this pathology include vascular disease [8], dia-
betes  [9],  depression  [10],  and  hypertension  [11].  On  the
other hand, many lifestyle modifications such as physical ac-
tivity, sleep, feeding, smoking, alcohol, and intellectual stim-
ulation are thought to have an impact cognitive impairment
[12] even though more evidence is still needed. So far, AD
has been related to several altered brain functions, including
extracellular  plaques  containing  abnormal  deposits  of  be-
ta-amyloid peptides [13-16], the hyperphosphorylated form
of  the  microtubular  Tau  protein  involving  twisted  fibers
[17-20], inflammation [21-24], oxidative stress [25-28], cho-
linergic  neuron  damage  (cholinergic  hypothesis)  [29-31],
serotonin misregulation (serotoninergic hypothesis) [32-34],
and many others [35-39].

Despite many years of evidence suggesting a connection
between  amyloid  plaques  or  neurofibrillary  tangles  as  the
earliest  lesions  in  AD,  the  role  of  such  processes  remains
controversial [40] even though there is no doubt that those
aggregates  promote  inflammation  responses  and  activate
neurotoxic  pathways,  leading  to  dysfunction  and  death  of
brain cells. In this line, the inflammatory process significant-
ly contributes to AD pathogenesis [41]. In a recent review
[42], the importance of understanding the inflammation pro-
cess  was explained,  suggesting that  the control  of  interac-
tions between the immune and nervous system could be a
key to the prevention or delaying of most late-onset central
nervous system (CNS) diseases, including AD. Authors con-
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cluded  that  the  brain  can  no  longer  be  viewed  as  an  im-
mune-privileged organ.

At  present,  only  4  drugs  have  been  approved  for  AD
treatment, acetylcholinesterase inhibitors donepezil, rivastig-
mine,  galantamine and the  N-methyl-D-aspartate  (NMDA)
receptor  antagonist  memantine  (Fig.  1),  and they only  ad-
dress associated symptomatology without halting or revers-
ing the disease progression [43]. To this day, AD has also
been related to additional targets/functions, whose misregula-
tion has been proposed to lead to AD onset. These include
ApoE [44], dopamine D2 receptor [45], γ-aminobutyric acid
receptor [46], acetylcholinesterase and butyrylcholinesterase
[4], β- and γ-secretases [47, 48], serotonin 5-HT6 and 5-HT4

receptors  [49,  50],  serotonin  transporter  [51],  or  SRFP1
[52]. After providing this big picture, the only clear issue is
that we are facing a multifactorial disorder, which cannot be
managed by drugs acting at just a single level.

The “one drug-one target” paradigm has not succeeded
and does not provide a solution in the treatment of complex
and multifactorial diseases like AD [7, 53]. In this context,
the multitarget approach has recently emerged as a potential
solution  by  using  multi-target  directed  ligands  (MTDLs)
[54, 55]. Thus, the aims of this proposal are based on the de-
sign of new drug candidates simultaneously modulating dif-
ferent biological targets involved in the neurodegenerative
AD cascade. Due to the complex etiology and multifactorial
nature  of  this  disease,  various  hypotheses  have  been  pro-
posed in an attempt to address it, although none of them is
able to explain the onset and progression of the disease on
its own [56].

1.1. Cholinergic Hypothesis
The cholinergic  hypothesis  is  based on the association

between low levels of acetylcholine (ACh) and a decline in
learning,  cognitive  function  and  memory  in  AD  patients
[57-60]. It has been demonstrated that the dysfunction and
neuronal loss in basal forebrain regions are directly related
to  the  expression  and  activity  of  choline  acetyltransferase
(ChAT) and acetylcholinesterase (AChE), specific enzymes
related to CNS functions. Their activities play an essential
role in cholinergic transmission, showing variations in the
cerebral cortex and the hippocampus in AD-suffering sub-
jects [61]. The presynaptic cholinergic deficit is associated
with  a  marked  loss  of  cholinergic  cells  from  the  nucleus
basalis of Meynert, decrease of ACh releasing and reuptak-
ing [62]. The cholinergic hypothesis has not had widespread
support because the AChE inhibitor-based AD treatment on-
ly brings a slight symptomatic improvement, failing in cur-
ing or preventing the disease progression [57, 60].

1.2. Amyloid Hypothesis
Another  plausible  and  widely  studied  cause  of  AD  is

based on the amyloid cascade hypothesis. The accumulation
of the hydrophobic amyloid-beta (Aβ,  Aβ40  and Aβ42) pep-
tides resulting in self-aggregation and insoluble plaques for-
mation is still considered to be the main feature of AD etiolo-
gy [63-65]. It is originated from the proteolytic cleavages of

the transmembrane amyloid precursor protein (APP) by spe-
cific secretases (β-, and γ-secretase) [66, 67]. Aβ fibrils accu-
mulation  is  thus  considered  an  early  toxic  event  that  acti-
vates neurotoxic pathways. Some studies suggest that these
oligomers can destroy the integrity of the cell membrane and
disrupt  the  steady-state  of  brain  cells  [68-70],  leading  to
brain cell dysfunction and death [71]. Some authors indicate
that Aβ aggregates can also induce oxidative stress [72, 73],
initiate an inflammatory response [41, 74, 75], and alter cal-
cium homeostasis [70, 76]. Furthermore, Selkoe [77] empha-
sizes that the word “cause” of AD pathology cannot neces-
sarily be directly applied to the Aβ accumulation, due to the
existence of some genetic mutations or polymorphisms that
can produce an increase in other peptide accumulation (pre-
senilin or apolipoprotein E) [78, 79]. Despite what was previ-
ously indicated, the self-aggregation of Aβ itself is insuffi-
cient to explain the accumulation of the peptide in specific
brain regions of AD patients. The “metal hypothesis of AD”
is based on the effects of Aβ accumulations (as senile plaque-
s) promoted by Aβ-metal interactions. The metal ion content
of the brain are essential trace elements that are stringently
regulated with virtual no passive flux of metals from the cir-
culation to the brain, but interestingly, elevated concentra-
tion of copper, zinc, and iron have been detected in amyloid
plaques, which induces the protein to precipitate into met-
al-enriched masses [80]. However, the mechanism of how th-
ese metals  bind to  and promote its  aggregation is  still  un-
known [80-82]. A plausible approach may be modulating th-
ese interactions by metal chelators, and indeed, this is consid-
ered another promising strategy for AD treatment.

1.3. Tau Hypothesis
The Tau protein is an important component of the neuro-

nal cytoskeleton, being its principal activities related to stabi-
lizing microtubules [83], cell shape maintaining and axonal
transport [84]. In the normal brain, the balance between Tau
phosphorylation  and  dephosphorylation  is  a  dynamic  pro-
cess that causes conformational and structural changes, regu-
lating the stability of the cytoskeleton and axonal morpholo-
gy [85-88]. The imbalance in the action of different kinases
and phosphatases is one of the possible proposals of Tau hy-
perphosphorylation  [89,  90].  During  the  development  of
AD, Tau begins to phosphorylate in a massive way, which
triggers  its  collapse  and  intracellular  aggregation  to  form
neurofibrillary tangles (NFTs) [91]. A progressive neuronal
degeneration is the start of alteration leading to degradation
of  the  cytoskeletons.  In  other  words,  these  fibrils  create  a
physical  barrier  within  the  neuron  that  generates  a  toxic
medium with a high concentration of NFTs. Some authors
[92-94] exposed that NFTs are inert and do not have influ-
ence in microtubules assembly, but they choke the affected
neurons and facilitate cell death by acting as a space-occupy-
ing lesion. In a review [90], the authors summarize the evi-
dences and therapeutic approaches that linked Tau misregula-
tion to AD pathogenesis. One approach is the use of kinase
inhibitors and phosphatase activators [95, 96], however, th-
ese enzymes are present in nearly every cell in the body and
the problem would be finding molecules that alter the activi-
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Fig. (1). Approved drugs for AD treatment.

ty  specifically  of  the  target  enzyme  without  affecting  the
others. Identifying key sites of Tau in order to develop small
molecule anti-aggregators is still a hopeful field of research
[97].

Certainly, another proposed approach involving Tau and
Amyloid hypotheses is immunotherapy, which is the use of
immunity-enhancing  techniques  as  a  medical  treatment.
Huge advances in immunotherapy AD research have been
achieved within the last decade [98, 99], supported by sever-
al  Clinical  Trials  and  the  recent  FDA  approval  of  Adu-
canumab. However, in order to stick to the script, such an in-
teresting approach will not be considered here as it falls far
beyond the scope of this review.

Indeed,  it  is  worth mentioning that  the Tau hypothesis
alone  is  inadequate  to  explain  all  the  symptomatic  condi-
tions observed in AD, so it is not surprising that drugs target-
ing  Tau  protein  itself  have  not  achieved  any  relevant
progress.

1.4. Serotonergic Hypothesis
Depression may be one of the initial symptoms of neu-

rodegenerative disorders, and it is regarded as a risk factor
for later development of dementias, being depressed mood
in  elders  associated  with  an  increased  risk  of  AD  [100].
Nowadays, our concept of the nature of the relationship be-
tween  cognitive  impairment  and  the  serotonin  system  is
evolving, thus the serotonergic hypothesis of AD is slowly
emerging [101], as long as more and more researchers world-
wide  are  suggesting  AD modulators  based  on  monoamine
oxidase (MAO) inhibitors, serotonin reuptake inhibitors (SS-
RIs) [102-104], and 5-HT4 and 5-HT6 modulators [49, 105].
According to many authors,  the accumulation of  Aβ-amy-
loid could be a secondary effect of reduced monoamine neu-
rotransmitters [101].

The MAO enzyme exists as two isoforms, MAO-A and
MAO-B, and their principal activities are related to catalyz-
ing the oxidation of  monoamines and are thus responsible
for the metabolism of neurotransmitters such as serotonin,

noradrenaline, and dopamine [106]. They are located in the
CNS and in  peripheral  tissues.  Some studies  revealed that
MAOs are associated with psychiatric and neurological dis-
orders, including AD [107-110]. MAO-A inhibitors are used
as antidepressants and anti-anxiety agents, while MAO-B in-
hibitors have been revealed to be useful in neurodegenera-
tive disorders such as Parkinson´s disease and AD, also in-
hibiting their associate oxidative damage [111, 112]. In sum-
mary,  simultaneous  inhibition  of  both  MAOs,  have  been
suggested  to  provide  additional  benefits  in  AD  therapy.
Along with MAO, 5-HT4 receptor (5-HT4R) ligands have al-
so been proposed in AD research since many studies have
shown the  involvement  of  5-HT4R in  cognitive  processes.
Moreover,  many  authors  provided  important  findings
suggesting that 5HT4R agonists may also affect the amyloid
β-peptide pathway, supporting the serotonergic approach in
AD [113].

The  scope  of  this  review  is  to  describe  some  widely
studied bioactive structures: curcumin-, resveratrol-, chro-
mone-,  and  indole-derivatives  as  MTDLs  for  Alzheimer’s
Disease, mainly oriented to interact with the aforementioned
targets, included or not in the previously described hypothes-
es.  This  literature  review  is  focused  in  identifying  small
molecular fragments as promising starting points for biologi-
cal target modulation [7], 114] with the aim of shifting the
current paradigm towards a disease-modifying strategy.

In this review, we summarize the latest medicinal chem-
istry  goals  in  AD-related  MTDLs  development:  small
molecule  fragment  with  known  biological  activities  com-
bined through hybridization or fine chemical tuning, in order
to  develop  true  MTDLs  to  face  such  devastating  disease
from a multifactorial point of view.

2. CURCUMIN AND CURCUMINOIDS HYBRIDS
The  major  curcuminoids  present  in  turmeric  (curcuma

longa)  are  curcumin,  demethoxycurcumin  and  bis-
demethoxycurcumin [115] (Fig. 2), being curcumin the most
bioactive  component   [116].  Curcuminoids  from  turmeric
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Fig. (2). Chemical structures of (A) curcumin, (B) demethoxycurcumin and (C) bisdemethoxycurcumin.

Fig. (3). Multi-target directed ligands based on donepezil and curcumin scaffolds reported by Yan et al.

have shown anti-inflammatory, antioxidant, anticancer, an-
timicrobial, and neuroprotective effects, among others [117].
These  compounds  display  different  chemical  functions:  a
methoxy  phenolic  group;  α,  β-unsaturated  β-diketo  linker,
and keto-enol tautomerism having a predominant keto form
in acidic and neutral solutions, and stable enol form in alka-
line  medium.  The  aromatic  groups  confer  hydrophobicity,
the linker brings flexibility and tautomeric structures also in-
fluence the hydrophobicity and polarity [118]. However, cur-
cumin exhibits several limitations, such as chemical instabili-
ty,  poor  solubility  in  water,  low  bioavailability,  and  fast
metabolism under physiological conditions, thereby result-
ing in a rapid systematic elimination and limiting its applica-
tion as a drug candidate [119]. In this sense, it is reasonable
to design curcumin analogs able to enhance the aforemen-
tioned  drawbacks.  Several  groups  tested  curcumin  deriva-
tives using cells and mouse models of AD and reported that
curcumin derivatives have strong anti-amyloid beta aggrega-
tion property, are able to cross the blood-brain barrier (BB-
B), ameliorates cognitive decline, and improve synaptic func-
tions in a mouse model [120-124]. Besides, curcumin itself
also exert MAO-B inhibitory capabilities, in addition to the

ability  to  degrade  Tau  neurofibrillary  tangles  [125],  al-
though the mechanism of action of such processes are not
fully understood.

Yan et al. [126] reported the synthesis and biological ac-
tivities of MTDLs based on chimerical structures consistent
in  donepezil-curcumin  fused  scaffolds.  The  most  active
studied compounds 1, 2, and 3 were evaluated in AChE and
butyrylcholinesterase (BuChE) inhibition, BuChE /AChE se-
lectivity,  Aβ1-42  self-aggregation inhibition and antioxidant
effects (Fig. 3). Compound 1 was revealed as potent AChEi
(IC50 = 187 nM) compared to the rest of the series (donepezil
(DPZ) AChE IC50 = 37 nM as reference), and the highest se-
lectivity ratio (BuChE /AChE: 66.3) which was significantly
better than Tacrine and Galantamine (selectivity: 0.15 and
25.3, respectively) although still far away from DPZ (selec-
tivity: 85.4). Inhibitory activity against Aβ1-42 self-aggrega-
tion was evaluated employing curcumin as reference (54.9%
at 20µM). Compounds 1, 2 and 3 displayed 45.3%, 30.4%
and 22.0%, respectively, evidencing the importance of the
hydroxy group in the Aβ1-42 self-aggregation inhibitory activi-
ty. They also conducted an oxygen radical absorbance capac-
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ity  assay  (ORAC),  evaluating  their  antioxidant  activity  in
vitro  with  Trolox  as  standard.  All  compounds  exhibited
good  ORAC values  of  1.01  –  3.07  Trolox  equivalent  (ex-
pressed  as  µM of  Trolox eq/  µM tested  compounds).  It  is
known that curcumin (2.52 Trolox eq.) displays potent an-
tioxidant  activity,  but  compound  1,  featuring  a  hydroxyl
group at the meta position, displayed a stronger one.

Due to the poor solubility and oral bioavailability of cur-
cumin, scientists have seen the need to modify its structure
to improve these deficiencies. In this way, Wang et al. [127]
designed and synthesized L-lysine-functionalized curcumin
derivatives to improve their water-solubility and inhibition
of  amyloid  fibrillation  in  vitro,  using  Hen  egg-white  ly-
sozyme (HEWL) as a model protein (Fig. 4). They used Nα-
Fmoc-Nε-Boc-L-lysine as a novel water-soluble amino acid
derivative. Compounds 4 and 5 exhibited enhanced solubili-
ty (3.32 x 10-2 g/mL and 4.66 x 10-2 g/mL, respectively) in
water compared to curcumin (1-10 µg/mL) [128]. Moreover,
these compounds showed amyloid fibrillation inhibition of
HEWL when  the  concentration  of  4  and  5  reach  to  20.14
mM and 49.62 mM, respectively. In addition, the lag phase
duration of 4 (e.g., 7.3 days) is longer than 5 (e.g., 6.2 days),
the authors attributed it to the phenolic hydroxyl group and
the  charged  amino  acid,  concluding  that  it  is  an  effective
way to improve its solubility.

In  a  recent  work,  Cui  et  al.  [129]  studied  and  synthe-
sized water-soluble curcumin derivatives based on Boc-L-i-

soleucine (Fig. 5). The inhibitory potency of the monosubsti-
tuted derivative 6 on the formation of HEWL amyloid fibrils
was superior to the disubstituted counterpart 7 at low concen-
tration,  suggesting  the  importance  of  the  free  hydroxyl
group in the aromatic ring (20% and 3.5% at 0.1 mM; both
reached to 70-80% at 0.5 mM). Regarding the solubility pro-
file,  both  derivatives  exhibited  enhanced  solubility  3.05
mg/mL and 2.12 mg/mL in water respect to curcumin [128].
It is worth mentioning that both derivatives displayed low cy-
totoxicity  in  HeLa cell  line,  above  70% viability  at  10-50
µM.

Many authors proposed that the intractable nature of the
Aβ plaques and tangles stimulates a chronic inflammatory re-
action to clear this debris [22, 130-139]. These plaques depo-
sitions in the brain stimulate an inflammatory response gen-
erating  the  overexpression  of  proinflammatory  mediators,
such as the neuroinflammatory interleukin [140], playing a
key role in inflammatory and anti-inflammatory processes in
AD.  Interleukin-6  (IL-6)  is  a  soluble  mediator  with  a
pleiotropic  effect  on  inflammation,  immune response,  and
hematopoiesis [141-144]. Inhibition of IL-6 secretion is fre-
quently used as a readout of anti-inflammatory activity. In
this  line,  Lakey-Beitia  et  al.  [140] reported new curcumin
derivatives synthesized by etherification, and esterification
of curcumin and benzyl bromide, acetyl chloride, 4-(benzy-
loxy)-4-oxobutanoic acid, and 4-(cyclopentyloxy)-4-oxobu-
tanoic acid, displaying anti-aggregation capabilities and an-
ti-inflammatory activity (Fig. 6). In order to evaluate the IL-

Fig. (4). Water-soluble functionalized curcumin derivatives reported by Wang et al.

Fig. (5). Functionalized curcumin derivatives described by Cui and coworkers.
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Fig. (6). Curcumin derivatives reported by Lakey-Beitia et al.

6  production,  lipopolysaccharide-stimulated  macrophages
were used. Compounds 8, 9, and 11 exhibited more potent
anti-inflammatory  activity  compared  to  curcumin  (IC50  =
8.25  µM),  while  compound  10  displayed  a  similar  effect.
The introduction of a benzyl moiety liked through an ether
bond in one of the curcumin rings (8) led to the most potent
anti-inflammatory derivative, but the presence of a bulky di-
ester group was conducted to less active derivatives 10 and
11.  They  concluded  that  hydroxyl  groups  on  the  aromatic
rings of the curcumin were the pharmacophore required to di-
minish the IL-6 production. Regarding the anti-aggregation
profile in vitro, compounds 8, 9, and 11 inhibited the Aβ ag-
gregation  in  a  concentration-dependent  manner,  with  IC50

values ranging from 1.32 to 2.05 µM, showing an amyloid
anti-aggregation effect  in the same magnitude as the stan-
dard curcumin (IC50 = 1.4 µM) but, surprisingly compound
10 did not present anti-aggregation activity.

To delve into this concept, Okuda et al. [145] designed a
series of asymmetric curcumin derivatives by different strate-
gies,  and  the  most  active  compounds  are  summarized  in
(Fig.  7).  Firstly,  a  compound  series  were  synthesized  by
changing the hydroxyl and methoxyl substitution pattern on
one of the aromatic moieties (12), showing that the inhibito-
ry  activity  on  Aβ  aggregation  increased  when  these  sub-
stituents were located in meta position to each other, display-
ing higher inhibitory activity compared to curcumin (IC50 =
5.4  µM).  Next,  by  only  exchanging  one  aromatic  ring  for
other cyclic structures, curcumin derivative 13 was achieved
with interesting results, suggesting that a bicyclic structure
may increase the inhibitory activity, especially in Tau aggre-
gation. Combining the aforementioned results, compound 14
was designed and synthesized. Taking into account that in
animal  models  [146-150],  curcumin  undergoes  rapid
metabolic reduction and conjugation, resulting in poor syste-
matic bioavailability after oral administration [151], they in-
troduced  various  residues  in  order  to  protect  the  residual

phenolic  hydroxyl  group (14)  from being metabolized,  al-
though just one compound (15) exerted comparable inhibito-
ry activity to 14. Additional performed experiments were re-
lated  to  obtaining  the  pharmacokinetic  profile.  Each  com-
pound was orally administered to rats at 50 mg/kg. The Cmax

of 15 was found to be 20-fold lower than that of curcumin
(5.7 ± 3.3 ng/mL at 30 min and 125 ± 65 ng/mL at 15 min),
but the concentration in the brain was 13-fold lower com-
pared to curcumin itself. In order to achieve a more conve-
nient pharmacokinetic profile, many structural changes were
necessary. They modified the central diketone skeleton in 15
by introducing a pyrazole ring (16). Although the IC50 = 1.2
µM for Aβ aggregation and IC50 = 0.66 µM for Tau aggrega-
tion cannot be denoted as a stunning result, the concentra-
tion of 16 in the brain was 300-fold higher than that of 15
and 20-fold higher than that of curcumin.

Li et al.  [82] synthesized and evaluated MTDLs based
on rivastigmine and curcumin hybrids. Rivastigmine demon-
strated unique central selective towards AChE and BuChE
inhibitory activity free of hepatic metabolism, while curcu-
min  represents  a  neuro-protective  agent,  with  a  variety  of
functions (Fig. 8). Compound 18 was the most potent AChE
inhibitor by 20-fold compared to the reference compound (ri-
vastigmine, IC50 = 2.07 µM). Regarding the AChE inhibito-
ry  profile,  the  position  of  the  aminoalkyl  group  in  the
benzene  ring  resulted  crucial  for  the  inhibition  potency.
While the derivate 17 displayed only moderate micromolar
activity,  shifting this  group to  the  4-position conducted to
nanomolar IC50 values, as shown in (Fig. 8) (compounds 18
and 19). On the other hand, all compounds exerted good in-
hibitory activity regarding BuChE with compounds 17 and
19 showing 40-50-fold improvement respect to rivastigmine
(BuChE IC50 = 0.37 µM). Aβ aggregation inhibitory profile
of compounds 17,  18,  and 19  were qualitatively evaluated
by Transmission Electron Microscopy (TEM). As depicted
in this work,  after incubating  Aβ1-40 along with the  selected
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Fig. (7). Curcumin asymmetric derivatives as amyloid β and tau aggregation inhibitors.

Fig. (8). Multi-target direct ligands based on rivastigmine and curcumin hybrids investigated by Li et al.

molecules, the reduction in Aβ1-40 deposition was evident, as
only a few fibbers could be observed, which was similar to
curcumin  and  indicated  that  all  compounds  were  also  en-
dowed with potent Aβ anti-aggregation capabilities. Interest-
ingly, the addition of rivastigmine had little effect on its ag-
gregation. In a further assay designed to shed light on initial
metabolism, compound 18 was incubated with rat cortex ho-
mogenate  (AChE)  and  the  extract  was  analyzed  by  HPL-
C-PS after 24 h, in which the prodrug activation process was
confirmed  by  obtaining  compound  20.  This  compound
showed  potent  ABTS  [2,20-azinobis-(3-ethylbenzothiazo-
line-6-sulfonic  acid)]  radical  cation  scavenging  capacity

(IC50 = 2.91 µM) respect to melatonin control (IC50  = 1.92
µM), and moderate copper ion chelating activity in vitro.

In 2017, Liu et al. [152] reported the synthesis and bio-
logical  evaluation  of  tacrine-curcumin  derivatives  as  MT-
DLs (Fig. 9) along with a deep molecular modeling study in
order to rationalize their results. They evaluated in vitro the
AChE  and  BuChE  inhibition  and  the  most  active  com-
pounds were selected for further investigation. The AChE in-
hibitory  activity  of  21  and  23  was  higher  than  the  tacrine
(IC50  = 0.10 µM). Compound 21  showed higher inhibitory
activity against  both enzymes compared to the other com-
pounds. The authors  attributed this  result to the  absence of
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Fig. (9). Fusion of tacrine and curcumin as actives hybrids.

the aromatic ring at the end of the side chain and the smaller
structure, making it suitable for the accommodation into the
catalytic gorge of AChE, since this is relatively narrow and
with  large  steric  hindrance.  Regarding  the  composition  of
AChE and  BuChE,  they  mainly  differ  in  their  amino  acid
composition at the mid gorge level. While AChE has several
aromatic residues, those in BuChE are replaced by smaller
aliphatic counterparts resulting in a larger pocket in the lat-
ter. The molecular modeling study of compound 21 showed
interactions with Trp84 and Phe330 through a π- π staking
due to the relatively small side chain on the tacrine deriva-
tive and could smoothly enter the catalytic active site (CAS)
pocket.  On  the  other  hand,  compound  23  has  an  aromatic
ring at the end of the side chain, resulting in a stabilized in-
teraction by hydrogen bonding between the carbonyl group
and Tyr121 residue, so that the ligand can be perfectly locat-
ed in the gorge of AChE with the benzene ring binding to
CAS, and the tacrine moiety binding to the peripheral anion-
ic site (PAS). It is, therefore, understandable why 23 present-
ed  the  most  potent  activity  in  the  AChE enzymatic  assay.
The antioxidant  capabilities  of  21,  22,  and  23  were  deter-
mined by ORAC, using curcumin and tacrine as positive and
negative controls, respectively. Curcumin was a potent scav-
enger of peroxyl radical (3.1 trolox eq.). Compounds 22 and
23 showed potent ability to scavenge reactive oxygen spe-
cies (2.0 and 2.4, respectively) while compound 21 exhibit-
ed a weak ROS scavenger profile (0.4) in the same order to
tacrine (0.3).

By taking advantage of the aforementioned properties of
curcumin derivatives as MTDLs, Dias et al. [153] designed
a series of compounds based on the combination of feruloyl
subunit present in curcumin, and N-benzylpiperidine (a phar-
macophoric subunit from DPZ) with the aim to obtain MT-
DLs as promising leads prototypes for AD (Fig. 10). Com-
pounds  were  evaluated  as  EeAChE  inhibitors,  resulting  in
two active compounds (24, 25) in relation to curcumin as ref-
erence  (EeAChE IC50  =  132.12  µM),  even though still  far
from DPZ (EeAChE IC50 = 0.026 µM). On the other hand,
compound 24 was also active in equine serum butyrylcho-
linesterase (eqBuChE), exhibiting a discrete value compared
to  standard  DPZ (eqBuChE IC50  =  4.69  µM for  DPZ)  but

more active than curcumin (eqBuChE IC50 > 300 µM for cur-
cumin). The authors found in a substrate competition assay
that  compound  24  followed  a  non-competitive  inhibition
mechanism (complemented by molecular docking studies),
and interestingly, they conclude that the substitutions on the
aromatic ring of the N-benzylpiperidine lead to a decrease in
the AChE activity independent of its ability to donating or
withdrawing electrons, or its size. The antioxidant activity
of  compounds  was  evaluated  in  vitro  by  using  the  radical
scavenging  DPPH  assay;  compounds  24,  25,  and  26  dis-
played antioxidant profile and were effective in scavenging
free radicals compared to Ferulic acid, iso-ferulic acid, and
trolox as standards (DPPH EC50 = 35.54 µM, > 100 µM, and
40.86 µM, respectively).  It  is  worth mentioning that  com-
pounds  bearing  a  ferulic  acid  moiety  displayed  100-fold
more potency in radical scavenging compared to its iso-fer-
ulic acid counterparts, settling the evidence about the impor-
tance of curcuminoid framework as an antioxidant. The neu-
rotoxic effects of compounds 24  and 25  were evaluated in
SH-SY5Y cells  and they showed the absence of  cytotoxic
and pro-oxidant effects, and authors suggest that the ferulic
acid  subunit  contributes  to  counteract  the  ROS formation.
The  ability  of  compounds  24-26  to  chelate  biometals  was
studied by UV-Vis spectroscopy: all compounds were able
to chelate only Cu+2 and Fe+2, but no Fe+3 and Zn+2. Taking th-
ese results into consideration, selected compounds were eval-
uated in vivo, and they showed that compound 24 displayed
significant  anti-inflammatory  activity  in  different  animal
models, highlighting this compound as a potential multifunc-
tional lead for AD treatment.

3. RESVERATROL HYBRIDS
Resveratrol  is  a  stilbene  which  contains  two  aromatic

rings linked by an ethylene bridge. This compound exists in
two geometric  isomers,  cis-(Z)  and  trans-(E),  as  shown in
(Fig. 11). This compound is found in many vegetables such
as peanuts, pistachios, grapes, red and white wine, blueber-
ries, cranberries, and even cocoa and dark chocolate. Some
of its studied biological properties include anti-cancer, an-
ti-inflammatory,  anti-aging,  cardioprotective,  antioxidant,
chelating,  and  scavenging  capability  towards  reactive  ox-
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Fig. (10). Feruloyl-donepezil hybrids as MTDLs synthesized by Dias et al.

ygen species. Multiple studies detail the ability of resvera-
trol and its derivatives to inhibit amyloid β aggregation, al-
though their underlying mechanism of action is not well un-
derstood [154]. The versatile function of these compounds
in plant defense mechanisms as phytoalexins to fight fungal
infection,  ultraviolet  radiation,  stress,  and  injury  confers
them  promising  potential  as  pharmaceutical  agents.  This
framework has attracted lots of interest in order to unders-
tand their biosynthetic pathways and their biological proper-
ties. One major limitation in the use of resveratrol as a thera-
peutic agent is associated with their inherent poor aqueous
solubility  and  low  bioavailability  [155].  The  studies  of
resveratrol and several other stilbenes in AD models suggest
that stilbenes may be very effective modulators of AD devel-
opment and progression, depending on their bioavailability
and activity in vivo [156]. To solve the bioavailability and
solubility concerns of resveratrol, several drug delivery sys-
tems have recently been developed, such as encapsulation in
liposomal formulations [157-160], use of cyclodextrin com-
plex  as  a  drug  carrier  for  enhanced  binding  to  the  protein
[161-164],  and  solid  lipid  nanoparticles  to  enhance  ma-
trix-based  delivery  [165-168],  among  others  [169].

Fig. (11). Isomers of resveratrol.

Resveratrol is also associated with the activation of si-
lent information regulator-1 (SIRT1), and it plays a critical
role  in  neuronal  protection  as  it  regulates  reactive  oxygen
species (ROS), nitric oxide (NO), proinflammatory cytokine
production, and Aβ expression in AD patients brains [170].
SIRT1 was found to be essential for synaptic plasticity, cog-
nitive functions [171-173], modulation of learning and mem-
ory function [174-176]. In a recent review, the importance
of the neuroprotective role of resveratrol towards the activa-
tion of SIRT1 was discussed, even though the mechanisms
of action are still unclear and the anti-inflammatory and an-
tioxidant  action  of  this  molecule  may  be  independent  of
SIRT1 [170]. The challenge of devising resveratrol deriva-
tives  is  mainly  focused  on  obtaining  compounds  with  im-

proved  efficiency,  low  toxicity,  better  bioavailability,  and
solubility for developing more active drugs for clinical appli-
cation [177].

In a recent paper, Pan et al. [178] described the synthesis
and evaluation of resveratrol-based compounds as MTDLs.
Inhibitory activities against AChE and BuChE were tested
along to tacrine and galantamine as reference standards (Fig.
12). Compounds 27, 28, and 29 displayed higher inhibitory
activity against cholinesterases than resveratrol (AChE IC50

= 165.24 µM, BuChE IC50 = 752.46 µM), indicating that the
introduction  of  amino  group  side  chains  may  result  in  in-
creasing the inhibitory capability of the target compounds.
In their original contribution, the authors evaluated different
chain lengths and found that a six-carbon linker between the
trans-stilbene moiety and the amino group was the optimal
length for biological activity. Besides, they explored differ-
ent terminal amines resulting in compound 28  as the most
potent (almost 8-fold more potent than 27), concluding that
the methylene group could increase the lipophilicity leading
to a rise in AChE inhibitory potency [179, 180]. Compound
28 was selected for kinetic measurements using Lineweaver-
Burk plots, the authors found in the graphical representation
of  the  steady-state  for  the  inhibition  of  AChE  that  both
slopes and intercepts were increased at increasing concentra-
tion  of  the  inhibitor,  concluding  that  compound  28  was  a
mixed-type inhibitor, which could bind to the CAS and the
PAS sites of AChE. Besides, the inhibition of Aβ42 self-in-
duced aggregation was compared with resveratrol (68.51%
at  20  µM)  and  curcumin  (52.21% at  20  µM)  as  reference
compounds, while 28 and 29 displayed a similar inhibition
profile.  Compound  29  endowed  with  the  terminal  cyclic
amine displayed stronger inhibitory activity compared to the
open-chain  amino  derivative  28.  Authors  also  pointed  out
that MAO-A inhibitory ability of compounds was not rele-
vant and apparently lacked a structure-activity relationship,
while their MAO-B inhibitory activity was relatively potent
and could be related to the length of the alkyl chain, result-
ing in a n = 3 carbon spacer compound (data not shown) ex-
erting the best MAO-B inhibition (IC50 = 5.01 µM). While
compounds  27  and  28  did  not  display  relevant  activity
against MAOs compared to iproniazid as reference (MAO-A
IC50 = 6.58 µM; MAO-B IC50 = 7.82 µM). Eventually, com-
pound  29  displayed  significant  inhibition  towards  both
MAO-A and MAO-B at the same time, it showed no toxicity
in  the   SH-SY5Y  neuroblastoma  cell   line   at   1-50  µM.
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Fig. (12). Resveratrol derivatives as MTDLs against AD.

Fig. (13). Fusion of resveratrol and clioquinol as MTDLs.

Considering that biometal (Fe, Cu, and Zn) ions may be
crucial participants in pathological processes of AD, Lu et
al. [181] combined resveratrol and clioquinol, a well-known
metal chelator, to obtain a novel series of derivatives expect-
ed to behave as biometal chelators, antioxidants, and inhibi-
tors of Aβ aggregation (Fig. 13). Compounds 30 (79.50% at
20 µM) and 31 (78.06% at 20 µM) exhibited stronger Aβ ag-
gregation inhibition than curcumin (52.77% at 20 µM, IC50

= 12.35 µM) and resveratrol (69.73% at 20 µM, IC50 = 15.11
µM). Regarding the antioxidant activity, compounds 30 and
31 exhibited strong but lower antioxidant capacity compared
to resveratrol (5.92 trolox eq.) as a reference compound. Me-
tal-Chelating  properties  of  compounds  were  studied  by
UV−vis spectroscopy and the ability of 30 and 31 to com-
plex biometals such as Cu (II), Fe (II), Fe (III) and Zn (II)
was measured. Their results indicated the formation of 30-
Cu  (II)  and  31-Cu  (II)  complexes,  with  3:1  and  1:1  stoi-
chiometry, respectively. Moreover, the ability of these com-
pounds  to  inhibit  Cu  (II)-induced  Aβ  aggregation  was  in-
vestigated by ThT fluorescence and TEM. In the presence of
Cu (II) well-defined Aβ fibrils were observed, while fewer
fibrils were present when compounds 30 and 31 were added
to the samples,  demonstrating its  capabilities  in  disassem-
bling the  highly  structured fibrils  induced by Cu (II).  The
MAO inhibitory ability of compounds was evaluated using
ladostigil as reference (MAO-B inhibitor, IC50 = 37.1 µM)

and clorgyline (MAO-A irreversible and selective inhibitor,
IC50 = 4.1 nM), and both displayed a strong balance in MAO
inhibitory activity. Furthermore, compounds 30 and 31 ex-
hibited moderate AChE inhibitory activity. Intracellular an-
tioxidant activity was evaluated in the SH-SY5Y cell line, re-
sulting in 30 and 31 activity more potent than Trolox, indi-
cating that resveratrol derivatives have the potential to be ef-
ficient  multifunctional  agents.  Finally,  compound  30  was
able to cross the blood-brain barrier in vitro and did not ex-
hibit  any  acute  toxicity  in  mice  at  doses  of  up  to  2000
mg/kg.

Jeřábek  et  al.  [182]  fused  the  cholinesterase  inhibitor
drug tacrine with resveratrol, designing a series of new MT-
DLs. All compounds carried a 6-chlorotacrine fragment con-
nected to a resveratrol derivative moiety. Among other se-
lected compounds (Fig. 14) only 32 and 33 showed signifi-
cant AChE inhibitory activity compared to tacrine as refer-
ence (tacrine AChE IC50  =  0.5  µM; 6-chlorotacrine AChE
IC50 = 0.07 µM; data taken from ref [183].). Compound 34,
with a double bond, has a higher degree of structural rigidity
in  contrast  with  the  other  derivatives,  displaying  a  weak
AChE  inhibition.  Additionally,  docking  investigation  re-
vealed that chlorine in 6-position allows compounds to estab-
lish Van der Waals interactions in with AChE hydrophobic
residues of the active site. Since chlorine can decrease the
electron density on the aromatic ring in tacrine moiety, it fa-
vors π electron  interaction with nearby residues  [183, 184].
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Fig. (14). Resveratrol-Tacrine hybrids reported by Jeřábek et al.

All compounds evaluated in BuChE displayed no enzyme in-
hibition when tested at 10 μM. In this sense, compounds 33
and 34  were the most active inhibitors even though it  was
not possible to establish a correlation between the rigid frag-
ment and the anti-amyloid properties, however, the presence
of  resorcinol  ring  (1,3-dihydroxybenzene)  seems  to  be 
important for the possibility of establishing hydrogen-bond
interactions. This is clearly seen in compound 32, endowed
with a 2,4-dimethoxy substituent on the phenyl ring, exhibit-
ing lower inhibitory activity on Aβ self-aggregation. Howev-
er, compounds 33 and 34 with a resorcinol moiety displayed
a similar Aβ42 inhibitory profile than resveratrol as reference
(Aβ42 self-aggregation % inhibition = 30.0%). The antioxi-
dant activity of compounds 32, 33, and 34 was assessed us-
ing 2,2-diphenyl-1-picrylhydrazyl (DPPH) in an antioxidant
assay, expressed as the concentration that causes a 50% de-
crease in the DPPH activity (EC50 values) with Trolox as a
reference compound. Compounds 33 and 34 carrying free hy-
droxyl  groups  on  the  phenyl  ring  were  detrimental  to  the
free radical scavenging efficacy, nevertheless, derivative 32
with two methoxyl groups, showed reasonable antioxidant
activity although lower than that of resveratrol (EC50 = 25.6
µM). A clear cytotoxic effect was evident for compound 32
when  assessing  cerebellar  granule  neurons  of  rat  at  5  µM
concentration, compound 33 showed neurotoxic only at the
highest tested concentrations (25 and 50 µM). Compound 34
showed no clear neurotoxicity at all tested concentrations. Fi-
nally, the authors found general hepatotoxicity for all deriva-
tives,  attributing  it  to  the  presence  of  hepatotoxic  tacrine
fragment.

In 2018, a significant advance was conducted by Cheng
et al. [185] reporting the synthesis and in vitro evaluation of
hybrids merging maltol and resveratrol as MTDLs (Fig. 15)
[186-188]. The ABTS radical scavenging method was used

to determine the antioxidant capacity. Compounds 35 and 36
exhibited  excellent  antioxidant  activity  even  higher  than
trolox (IC50 = 3.89 µM), showing that a modification in the
substitution pattern of the benzene ring by fluoro, ethoxy, or
methoxy  resulted  in  a  decrease  of  the  antioxidant  activity
(compounds not included in this discussion). The Aβ1-42 self-
-aggregation inhibition profile  of  35  and 36  resulted to be
more potent than resveratrol and curcumin, used as positive
controls (IC50=11.89 and 18.73 μM, respectively). Biometals
(copper, iron, and zinc) were able to facilitate Aβ aggrega-
tion thought binding to three histidines (H6, H13, and H14) of
the Aβ1-42 peptide [189]. The TEM experiment demonstrated
a disaggregation of Aβ fibrils, indicating that compounds 35
and  36  can  efficiently  chelate  Fe+3,  Cu+2,  and  inhibit
Fe+3/Cu+2  –induced  Aβ  aggregation.

Synthesis and evaluation of prenylated resveratrol deriva-
tives were recently discussed by Puksasook et al. [190] (Fig.
16).  Prenylation consists  of  the  addition of  a  hydrophobic
prenyl  chain,  as  a  natural  active  moiety  of  a  β-secretase
(BACE1) inhibitor [191, 192]. The Aβ1-42 aggregation inhibi-
tion was evaluated using curcumin as a positive control (IC50

= 0.77 µM, Anti Aβagg. 87.98% at 100 µM). The best result
was obtained from derivative 39, bearing a geranyl group at
the C-4 position on the resorcinol ring, showing a similar ef-
fect than curcumin, followed by 37 bearing a prenyl group at
the same position. Authors confirmed by molecular docking
study that prenyl group at C-4 was less effective than a ger-
anyl group at the same position, this may be due to the short-
ed alkyl side chain leading to less hydrophobic interactions.
The inhibition of BACE1 was carried out using β-secretase
inhibitor IV (Calbiochem®) as a reference compound (IC50 =
0.015 µM, β secretase inhibition 96.51% at 50 µM). Com-
pound  40  was the most potent  BACE1  inhibitor. The  free
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Fig. (15). Novel maltol-resveratrol hybrids as MTDLs reported by Cheng et al.

Fig. (16). Prenylated and geranylated resveratrol derivatives.

radical scavenging activity was evaluated using DPPH ac-
cording to a modified version of the Brand-Williams method
[193]. Compounds 38, 39, and 40 showed stronger activity
than 37. Authors attributed this result to the free -OH groups
that were essential for the antioxidant activity because these
can donate hydrogen atoms and stabilize electrons by conju-
gation [194]. The IC50  values were compared to vitamin C
(IC50  = 21.63 µM, antioxidant DPPH inhibition 95.78% at
100 µM) used as a positive control resulting in compound
40 as the most potent antioxidant. Neuronal viability assay
was  carried  out  using  the  P-19-derived  neuron  cell  line.
Compound  37  (>100% neuron  viability  at  1  nM to  10µM
concentrations), promoted high viability of the cultured neu-
rons, while compounds 38, 39, and 40 geranylated resvera-
trol derivatives showed stronger neurotoxicity at 1 nM (% vi-
ability 51.25 ± 13.12, 70.07 ± 36.33 and 34.17 ± 29.98, re-
spectively).  The  prenyl  substituent  at  the  C-4  position  in
compound 37 might play an important role in neuronal via-
bility. The neuroprotective ability of compound 37 was eval-
uated in a serum deprivation model using P-19 derived neu-

rons cultured in a concentration of 1 nM and 10 µM. Com-
pound  37  significantly  protected  the  cultured  neurons
against  serum  deprivation  at  50.59  ±  3.98  and  53.19  ±
12.48% viability, respectively (assumed ROS toxicity from
serum-depravation  induced  oxidative  stress),  and  it  was
more  effective  than  resveratrol  (37.41  ±  4.40%  viability),
and  comparable  to  that  of  the  quercetin  positive  control
(58.04 ± 9.20% viability). Finally, the neuritogenic activity
of  compound  37  caused  more  branching  numbers  (9.33)
than  the  control  (2.12),  and  longer  neurites  (109.74  µM)
than the positive control quercetin (104.33 µM).

Tang  et  al.  [195]  designed  and  studied  isoprenylated
resveratrol dimers (Fig. 17). The inhibitory activities against
MAOs were evaluated in vitro using p-tyramine as a nonse-
lective  substrate  of  MAO-A  and  MAO-B.  Compounds  41
and 42  displayed enhanced inhibition towards MAO-B re-
spect to the A isoform. In addition, in order to evaluate the
antioxidant activities of those, three independent approaches
were used:  DPPH and  ABTS  radical  scavenging  methods
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Fig. (17). Isoprenylation-Resveratrol dimer derivatives described by Tang et al.

and  Ferric  ion  reducing  antioxidant  power  (FRAP)  assay.
DPPH radical scavenging revealed that compounds 41 and
42 are endowed with significant antioxidant activity in rela-
tion to Trolox (IC50 = 49.77µM). ABTS and FRAP antioxi-
dant analysis showed a similar trend of free radical scaveng-
ing  activity.  Potential  toxicity  effects  were  evaluated  in
PC12 and BV2 cells. Compounds 41 and 42 were tested in
their  capacities  of  protecting  PC12  cells  against  oxidative
stress associated death by H2O2. The results showed that th-
ese compounds could significantly inhibit cell death at con-
centrations ranging from 6.25 to 25 μM. Both compounds ex-
hibited very low toxicity in PC12 and BV2 cell lines. The
neuroprotective  effect  was  evaluated  against  oxidative  in-
juries in PC12 cells by using oligomycin-A and rotenone as
toxic lesions simulation [196-198]. Both compounds exerted
relatively poor neuroprotective activity against rotenone-in-
duced cell damage, while they showed moderate to high neu-
roprotective activity against  oligomycin-A. As depicted in
(Fig. 17), compound 41 displayed improved biological activi-
ties while its BBB crossing capabilities were enhanced re-
spect to 42.

Xu et al. [199] integrated resveratrol and deferiprone (a
known iron metal chelator) scaffolds in a novel series, with
the aim of developing new MTDLs for AD. (Fig. 18). The
Aβ self-induced aggregation inhibition profile was tested by
using the ThT based fluorometric assay. Compound 44 dis-
played stronger Aβ inhibitory activity in relation to resvera-
trol and curcumin (64.08% and 56.44%, respectively), while
compound 43 exhibited similar behavior. The antioxidant ac-
tivity  was  determined  by  the  ABTS  radical  scavenging
method employing Trolox as a positive control. Compound
43 showed higher antioxidant activity in relation to the refer-
ence (IC50 = 3.89 µM), while compound 44 exerted a similar
effect.  As expected, compound 43  demonstrated improved
antioxidant properties. The pFe(III) values were determined
by  fluorescence  spectroscopy  along  to  deferiprone,  which
was  used  as  a  reference  compound  [200].  Compounds  43
and 44 displayed closely related Fe(III) scavenging proper-
ties in relation to deferiprone (pFe(III) = 20.60).

Yang  et  al.  [201]  investigated  a  series  of  pyri-
doxine-resveratrol hybrids by introducing Mannich base moi-

eties. According to them, hybrids containing phenolic Man-
nich base moieties may exhibit good antioxidant properties
[202], AChE inhibitory activity [203], and metal chelating
properties [204]. Vitamin B6 (pyridoxine) has a critical func-
tion  in  cellular  metabolism  and  stress  response.  Further-
more, it also behaves as a potent antioxidant that effectively
quenches reactive oxygen species  [205].  The inhibition of
cholinesterases was evaluated in vitro using AChE from elec-
trophorus electricus (EeAChE) and BuChE from rat serum
(Fig.  19).  Compound  45  was  inactive  as  EeAChEi,  while
compound 48 displayed the strongest EeAChE inhibitory ac-
tivity in the series even if lower than DPZ (IC50 = 23.0 nM).
On the other hand, compound 46  bearing a piperidine unit
showed stronger inhibition in EeAChE than the structurally
related compound 47, differing only in oxygen in the mor-
pholine moiety. In order to explore the mechanism of action
of  these  hybrids,  a  kinetic  study was  carried  out  for  com-
pound 46, indicating a mixed-type inhibition and supporting
a dual-site binding to both CAS and PAS of AChE. All com-
pounds  were  inactive  or  weak  as  BuChE  inhibitors.  The
MAOs  inhibition  activity  were  evaluated  using  clorgyline
(MAO-B IC50 = 8.85 µM; MAO-A IC50 = 7.9 nM), rasagi-
line (MAO-B IC50  = 0.044 µM; MAO-A IC50  = 0.71 µM),
and  iproniazid  (MAO-B  IC50  =  4.32  µM;  MAO-A  IC50  =
1.37 µM) for comparative purposes. All tested compounds
showed much stronger inhibitory activities towards MAO-B
than  MAO-A.  The  intermediate  45  showed  the  highest
MAO-B inhibition activity, followed by 47, suggesting that
the Mannich base moiety was detrimental for MAO-B inhibi-
tion (reminding us all the key importance of extending the bi-
ological assays to the intermediates). The antioxidant activi-
ty of those was evaluated by the ORAC fluorescein method.
All compounds exhibited good ORAC values ranging from
1.76 – 2.56 compared to resveratrol  (ORAC = 5.60 trolox
eq.),  also  isopropylidene-protected  derivative  48  showed
slightly weaker antioxidant activity than 46, what could be
related to the hydroxyl of lacking the latter.

4. CHROMONE DERIVATIVES
Chromones  are  a  group  of  oxygen-containing  hetero-

cyclic compounds (Fig. 20), widespread  and naturally occu-
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Fig. (18). Deferiprone-resveratrol hybrids.

Fig. (19). Pyridoxine-Resveratrol hybrids Mannich base derivatives.

rring. It represents an unusual group of structurally diverse
secondary metabolites, derived from the convergence of mul-
tiple  biosynthetic  pathways  that  are  widely  distributed
through  the  plant  and  animal  kingdoms  [206].  Chromone
scaffold ((4H)-1-benzopyran-4-one) has also been extensive-
ly recognized as a key pharmacophore [207-214]. The chro-
mone ring is the core fragment of several flavonoid deriva-
tives, such as flavones and isoflavones [215]. The structural
diversity of chromones in nature allows their division into
simple  and  fused  chromones.  These  heterocycles  have  at-
tracted much attention because they show a variety of phar-
macological  properties  such  as  anti-inflammatory  effect
[216,  217],  analgesic  [218,  219],  metal  chelating  ability
[220], antioxidant [221, 222], antimicrobial [223-225], anti-
fungal  [226,  227]  and  neuroprotective  effects  [228,  229],
among  others  [230-232].  In  recent  years,  many  research
groups optimized their chemical structure in order to devel-
op new derivatives for the potential AD therapy, being the
main hallmark related to its neuroprotective capability, cho-

linesterases (ChEs) inhibitory capabilities, MAO inhibition,
and amyloid β aggregation inhibitory activities [228, 233].
Furthermore,  Reis  and coworkers [234] showed that  chro-
mone is a privileged scaffold for the development of novel
MAO-B inhibitors, highlighting the effect of the substituent
nature  located at  C3-  and/or  C6-positions  of  the  benzopy-
rone ring. Otherwise, chromone derivatives have also been
applied  to  the  preparation  of  fluorescent  probes  due  to  its
photochemical properties [214]. The chromone core is found
in flavones and isoflavones and they are preferential  scaf-
folds for the development of MAO inhibitors [235].

Fig. (20). Chromone.
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Li  et  al.  [236,  237]  reported  the  synthesis  of  tacrine-
flavonoids hybrids as multifunctional ChEs inhibitors. Their
results showed that the chromone framework contributes to
the bioactivities of flavonoids hybrids. Based on such find-
ings, in recent work, Wang et al. [238] reported a series of
chromone-donepezil hybrids (Fig. 21) and their inhibitory ac-
tivity against eqBuChE and EeAChE were evaluated. Com-
pound 49, carrying a 6-methoxy substituent at the chromone
moiety displayed the stronger inhibition, similar to DPZ in
AChE but much stronger in BuChE (eqBuChE: IC50 = 2.47
μM, EeAChE: IC50 = 0.032 μM). Compound 50 exerted sig-
nificant inhibitory activity to both ChEs even though the ef-
fect was less. Indeed, since the only difference between both
is  the  OBn  group,  the  steric  drawbacks  of  the  latter  turns
clear. Both compounds endowed with N-ethylcarboxamide
linker between the benzylpiperidine and chromone moieties
exhibited higher inhibitory activity than the others lacking
this spacer (data not shown). Regarding the MAOs, the posi-
tion and nature of the substituents resulted in a shift of its in-
hibitory profile. Compounds 49 and 50 showed weak inhibi-
tion  of  MAO-A.  However,  in  MAO-B  the  inhibitory
strength  was  directly  related  to  the  length  of  the  alkylene
chain. Compound 50 displayed higher MAO-B inhibitory po-
tency respect to iproniazid (IC50 = 6.93 µM) and similar to
pargyline (IC50 = 0.12 µM) as reference compounds. Com-
pound 50 was selected for kinetic study to the inhibition of
ChEs and MAO-B. Interestingly, a mixed-type inhibitory be-
havior was found in AChE while in BuChE, a competitive
mechanism was pointed out. In addition, the kinetic profile
of 50 towards MAO-B was compatible with competitive in-
hibition. Molecular modeling supported the aforementioned
outcomes. Moreover, compound 50 could penetrate the BBB
to target the enzyme in the CNS and showed low cell toxici-
ty in rat pheochromocytoma (PC12) cells in vitro. These re-
sults shed light on these multifunctional agents that may con-
tribute to the field of multitarget directed ligands for poten-
tial AD therapy.

Pachón-Angona et al. [239] combined donepezil + chro-
mone + melatonin as scaffolds, prepared by multicomponent
reaction  (MCR)  synthetic  strategy,  transforming  three  or
more starting material into new products in a one-pot proce-
dure (Fig. 22) [240, 241]. In a first trial, the antioxidant be-
havior of such compounds was carried out by the ORAC-FL

method.  Ferulic  acid  and Melatonin were used as  positive
references  (ORAC  values  of  3.74  [242]  and  2.45  [242],
Trolox eq. respectively). Compound 51 exhibited strong an-
tioxidant power, higher than melatonin and similar to Fer-
ulic  acid.  However,  the  other  compounds  with  a  linker
length of n = 1,2 displayed more potent antioxidant capabili-
ties than Ferulic acid (ORAC = 6.52 Trolox eq.; n = 2 and R
= H).  The  MAO activity  was  evaluated  in  vitro,  by  using
clorgyline  and  pargyline  as  references.  Compound  51
showed moderate MAO-A inhibition, less active than clorgy-
line (IC50 = 0.05 µM), and lower MAO-B inhibitory activity
compared to pargyline (IC50 = 0.08 µM). The ChEs inhibito-
ry activity was evaluated for EeAChE and eqBuChE using
DPZ and tacrine as references. Compound 51 showed strong
eqBuChE  inhibition,  stronger  than  DPZ  (IC50  =  840  nM)
even though diminished respect to tacrine (IC50 = 5.1 nM).
Regarding the structure-activity relationship, considering the
same substituent, the most potent inhibitor was those with a
n = 2 linker  (IC50  =  6.29 nM, and R  =  OCH(CH3)2)  while
those with n = 3, and n = 4 displayed lower potency. On the
other  hand,  51  resulted  a  moderated  AChE  inhibitor.  The
most potent compounds were those bearing propoxy or iso-
propoxy substituents at the indole ring (IC50 = 0.08 µM and
IC50 = 0.09 µM, respectively). Finally, in molecular docking
simulation was noticed that in ChEs the chain ending in pyr-
role and chromone ring were crucial for the binding to the ac-
tive site of the enzyme. Furthermore, the MAO analysis re-
vealed that the N-benzylpiperidine chain was a required fea-
ture to achieve good inhibitory profiles.

In 2017, Li et al. [229] described the synthesis of chro-
mone derivatives combining the pharmacophore moiety L1,
a previously reported to regulate metal-induced Aβ aggrega-
tion, ROS production, and neurotoxicity in vitro [243], and
clioquinol (Fig. 23). The inhibitory activities against MAOs
were measured and compared to those of rasagiline (MAO-
A IC50 = 49.7 µM and MAO-B IC50 = 7.47 µM) and iproni-
azid (MAO-A IC50 = 6.46 µM and MAO-B IC50 = 7.98 µM).
Compound 52 displayed strong inhibitory values as MAOs
inhibitors. The nature of substituent and their position gener-
ated  changes  regarding  the  structure-activity  relationship.
The most potent and selective MAO-A inhibitor was com-
pound 53 (IC50 = 1.65 µM, R1 = Cl, R2 = H, R3 = H, and R4 =

Fig. (21). Chromone and benzylpiperidine moieties of donepezil as multifunctional agents.
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Fig. (22). Donepezil + chromone + melatonin hybrids as multitarget agents for AD.

Fig. (23). Chromone derivatives reported by Li et al.

H). Moreover, 54 (IC50 = 0.634 µM, R1 = H, R2 = H, R3 = Cl,
and R4 = CH3) displayed the most potent inhibitory activity
towards MAO-B. Compound 52 exhibited moderate Aβ ag-
gregation inhibition even though stronger than curcumin and
resveratrol  (46.5% and 57.2%,  respectively).  The  stronger
Aβ  aggregation  inhibitor  was  compound  55,  exhibiting
89.5% inhibition (R1 = H, R2 = H, R3 = CH3, and R4 = Br)
even  though  it  does  not  meet  a  multi-target  feature.  ThT
binding assay and TEM were used to identify the degree of
Aβ aggregation [244]. On the basis of the results, they con-
cluded that compound 52 was capable of inhibiting Cu+2 in-
duced Aβ aggregation, exhibiting significant antioxidant ac-
tivity, metal chelation capabilities, H2O2-induced intracellu-
lar ROS accumulation reduction properties, and was able to
cross the BBB (showed Pe values > 4.0). It is worth to men-
tion that it did not show significant toxicity in PC12 cells,
suggesting that further investigation and comprehension of
this scaffold may achieve advancements in AD multitarget
therapy.

Reis et al. [234] reported a series of chromone 2- and 3-
phenylcarboximide derivatives (Fig. 24). Regarding the in-
hibitory activity towards ChEs, compound 56 displayed sub-
micromolar  activity  towards  AChE and  inactivity  towards
BuChE. Furthermore, compound 57 displayed bifunctional
ChEs inhibitory activity in the low micromolar range, while

compound 56 bearing a methyl group in the para position of
the chromone exocyclic phenyl ring and two methyl group
linked  to  the  tertiary  amine,  also  showed  submicromolar
MAO-A values and micromolar MAO-B values even though
still far from clorgyline (IC50 = 0.0045 μM), and rasagiline
(IC50 = 0.050 μM).

Compared with previous works of this group regarding
similar structures, this result was less remarkable in regard
to MAO-B inhibitory activity [245-248]. Compound 57 car-
rying no substituent at the exocyclic ring, resulted inactive
in MAO-A and while acted as a selective MAO-B inhibitor.
A kinetic study was performed in both MAO-A and MAO-
B. The results showed that 56 and 57 behave as competitive
MAO  inhibitors.  The  evaluation  of  the  AChE  inhibition
mechanism of 56 showed a mixture of competitive and non--
competitive mechanisms. Most promising chromones were
screened  towards  human  BACE-1,  however,  none  of  the
compounds displayed relevant potency (IC50 > 10 μM). The
cytotoxicity  profile  was  evaluated in  differentiated  human
neuroblastoma  (SH-SY5Y)  and  human  hepatocarcinoma
(HepG2)  cell  lines,  being  both  clinically  relevant.  Com-
pound  57  presented  a  wider  safety  profile  and  promising
safety margin.

Starowicz  et  al.  [249]  studied  the  ability  of  various
spices and herbs that are  characteristic  of  European cuisine
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Fig. (24). Chromone 2- and 3-phenylcarboximide derivatives.

Fig. (25). MTDLs based on chromen-4-one reported by Singh et al.

to inhibit the formation of advanced glycation end products
(AGEs) and their antioxidant capacity. Glycation is defined
as  a  reaction that  leads  to  the  formation of  an  irreversible
structure  called  AGEs  and  a  high  concentration  of  those
could initiate  actions leading to various disorders,  such as
AD,  atherosclerosis,  diabetes,  kidney disease,  and chronic
heart failure [250, 251]. The research group of Singh and co-
workers [59] focused their efforts on the design and synthe-
sis of chromen-4-one derivatives, making modifications at
different positions of the “skeleton key” [252]. The inhibi-
tion towards AChE was determined and compound 58 (Fig.
25)  exhibited  the  stronger  inhibitory  profile,  higher  than
DPZ (IC50  = 12.7 nM) as standard.  However,  a  further in-
crease in carbon spacer (n = 6, 8) reduced the activity by 3--
folds (IC50 range from 48.1 to 67.2 nM). Thus, n = 2 and n =
3 spacer chain length was optimal considering cyclic ami-
noalkyl groups for AChE inhibitory profile. Anti-glycation
assay was performed according to the method reported by
Matsuura et al. [253] with slight modifications. Compound
58  displayed  significant  inhibitory  activity  compared  to
aminoguanidine as reference drug (AGEs IC50 = 40.0 µM).
Respect  to  in  vitro  antioxidant  activity,  compound  58
showed lower antioxidant activity compared to ascorbic acid
(EC50 = 20.0 nM). Furthermore, the authors concluded that
the conjugation system of chromen-4-one moiety appears to
be crucial to their radical scavenging behavior. The kinetic
study  of  compound  58  exhibited  a  mixed-type  inhibition,
which could bind with both CAS and PAS of the enzyme.
Likewise, docking studies revealed the dual binding proper-
ty as it interacted with both CAS as well as PAS via a hydro-
gen bond, π-π aromatic, and hydrophobic interactions, com-
plementing the previous information.

Coumarin and chromone are two structural isomers that
exhibit relevant pharmacological activities [230, 254, 263,
255-262]. Fonseca and coworkers [264] performed a compar-
ative  study  of  coumarin-  and  chromone-3-phenyl  carbox-
amide scaffolds and its structure-activity relationship (SAR)
as MAOs inhibitors (Fig. 26). Firstly, the authors carried out
a docking study of ligand-target recognition using the princi-
pal  skeleton  of  both  series  of  compounds.  The  binding
modes analysis did not reveal significant differences in cou-
marin- and chromone- scaffolds. Consequently, the design
of new derivatives was focused on i) the effects of the differ-
ent substituents at the benzopyrone ring; ii) substituent posi-
tion and its capabilities as electron-donating or withdrawing
entities;  iii)  whether  the  position  of  the  carbonyl  group in
the isomeric structures display some impact. Compounds 59
and 60 bearing a meta chlorine substituent at the benzamide
portion  showed  stronger  MAO-B  inhibition  compared  to
standard drugs deprenyl (IC50 = 16.73 nM) and safinamide
(IC50  =  23.07  nM).  The  SAR  analysis  of  remaining  com-
pounds (not presented here), bearing para substituents result-
ed in a decrease of activity, and the presence of a hydroxyl
group either in meta or para position also resulted in activity
decreasing. The position of the carbonyl group in coumarin
or chromone moiety was apparently not relevant. Both com-
pounds were inactive towards MAO-A. Eventually, the kinet-
ic study of both compounds revealed a noncompetitive inhi-
bition mechanism.

In a recent article, Shaikh et al. [265] designed a series
of chromone-derived aminophosphonates in a one-pot reac-
tion,  catalyzed  by  porcine  pancreatic  lipase  under  solven-
t-free  conditions.  The α-aminophosphonates  are  a  class  of
compounds with promising  biological and  pharmacological
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Fig. (26). Coumarin versus chromone scaffold reported by Fonseca et al.

Fig. (27). α-Aminophosphonate -functionalized chromone as MTDLs.

importance as anti-AD agents [266]. Compound 61 (Fig. 27)
was  the  most  potent  AChE  inhibitor  compared  to  tacrine
(IC50 = 0.29 µM), galantamine (IC50 = 3.64 µM) and rivastig-
mine  (IC50  =  5.21  µM),  showing  higher  activity  towards
AChE than BuChE. As an important observation regarding
ChEs  inhibitory  activity,  aliphatic  amines  displayed  a
stronger  inhibitory  profile  towards  AChE,  while  aromatic
ones showed better performance in BuChE inhibition. The
kinetic  study  of  ChEs  revealed  a  mixed-type  inhibition,
which  is  in  agreement  with  the  molecular  docking  results
[237].  Besides,  the  antioxidant  activity  was  evaluated
against  DPPH and hydrogen peroxide scavenging method.
Compound 61 exhibited the greatest radical elimination and
high  scavenging  activity  comparable  to  Ascorbic  acid
(DPPH IC50 = 42.28 µM; H2O2 IC50 = 51.45 µM). Finally, 61
showed significant DNA damage protection activity.

5. INDOLE DERIVATIVES
Indole  is  a  planar  heterocyclic  molecule  in  which  a

benzene ring is fused to a pyrrole ring through 2 and 3 posi-
tions of the latter (Fig. 28). Due to the delocalization of π-
electrons,  it  undergoes  electrophilic  substitution reactions,
being a widely used chemical scaffold in medicinal chem-
istry. Its relevance in biological systems relies on being built
into  proteins  through  the  indolic  amino  acid  tryptophan
[267]. Thus, indole moiety is considered a biologically ac-
cepted pharmacophore in medical compounds [268, 269].

Indole  is  a  prominent  phytoconstituent  across  various
plant species and is produced by a variety of bacteria [270].
The indole-derived phytoconstituents and bacterial metabo-
lites are a result of biosynthesis via the coupling of trypto-
phan  with  other  amino  acids.  For  this  reason,  it  is  a  con-

stituent of flower perfumes, pharmacologically active indole
alkaloids, and some animal hormones or neurotransmitters
such as serotonin [271] and melatonin [272]. Some naturally
occurring  indole  alkaloids  have  gained  FDA approval,  in-
cluding vincristine, vinblastine, vinorelbine, and vindesine
for its anti-tumor activity [273, 274], ajmaline for its anti-ar-
rhythmic activity [275-277], and physostigmine for glauco-
ma [278]. Taking inspiration from these natural compounds,
several synthetic drugs were synthesized having reached the
patient's bedside, such as indomethacin (NSAID) [279], on-
dansetron  (chemotherapy-induced  nausea  and  vomiting)
[280], fluvastatin (hypercholesterolemia) [281], zafirlukast
(leukotriene receptor antagonist) [282], etc. The success of
the  above-mentioned  compounds  indicates  the  importance
of the ring system in multi-disciplinary fields, including the
pharmaceutical and agrochemical industry.

Fig. (28). Indole structure.

Luo et al. [283] reported the synthesis of multifunctional
hybrids  based  on  melatonin-benzylpyridinium  bromides
(Fig. 29) and their cholinergic activities were evaluated. The
most promising derivative was compound 63, showing signi-
ficant inhibitory activity in AChE even though 10-fold low-
er  than  DPZ  as  reference  compound  (IC50  =  0.014  µM).
Otherwise, hybrid 62 exhibited a stronger inhibitory activity
to BuChE, resulting in 70-fold higher than DPZ (IC50 = 5.6
µM). The authors  highlighted the  relevance of  substituents
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Fig. (29). Melatonin-benzyl pyridinium bromides derivates synthesized by Luo et al.

Fig. (30). MTDLs based on donepezil and indole scaffolds reported by Bautista-Aguilera et al.

at the main moieties, as different substitutions with varied
electronic properties showed a little fluctuation on the inhibi-
tory activity, except for the introduction of -cyano group at -
para position in the benzylpyridinium moiety (AChE: IC50 =
22.9 µM; BuChE: IC50 >100 µM). On the other hand, regard-
ing the indole moiety, 5-methoxy  substituent had no influ-
ence on the inhibitory activity of ChEs compared to the cor-
responding unsubstituted hybrid. The evaluation of the an-
tioxidant activity was carried out by using oxygen radical ab-
sorbance  capacity  by  fluorescence  (ORAC-FL)  method
[284]. Melatonin, an endogenous neurohormone with strong
antioxidant  properties  [285],  was tested as reference (2.34
trolox eq.), and compound 62 exhibited a comparable activi-
ty. Compound 63, with an extra double bond within the spac-
er of both moieties, showed the most potent antioxidant ac-
tivity.  Furthermore,  derivatives  bearing  such  5-methoxy
group displayed enhanced activity respect to the unsubstitut-
ed one. A kinetic study was performed for compound 63. In
AChE, the Lineweaver-Burk plots indicated a mixed-type in-
hibition, which suggested that compound 63 could be able to
interact with CAS and PAS of AChE. A different behavior
was obtained for BuChE, showing different Km and Vmax at
different  concentrations;  in  this  case,  compound  63  might
act as a competitive inhibitor of the BuChE isozymes. Cell
viability and neuroprotection studies were assayed in the hu-
man  neuroblastoma  cell  line  SH-SY5Y.  MTT  assay  was
used to examine the potential cytotoxic effects with no toxic-
ity  displayed for  62  and 63  at  the  range of  concentrations
studied (1-50 μM). Furthermore, both compounds were test-
ed  for  their  capacity  to  protect  human  SH-SY5Y  cells
against  oxidative stress-associated death induced by H2O2.
Compounds  62  and  63  showed  neuroprotective  effects  at
concentrations ranging from 1 to 10 µM. While compound
62 showed higher protective capability in comparison with
the reference melatonin (at 10 µM).

In  addition  to  the  aforementioned,  another  target  that
could  play  significant  roles  in  the  pathophysiology  of  the
neurological diseases correspond to monoamine oxidase in-
hibitors  (IMAOs).  MAO  is  the  enzyme  that  catalyzes  the
oxidative deamination of a variety of biogenic and xenobiot-
ic amines [286], due to alterations in other neurotransmitter
systems, especially serotoninergic and dopaminergic, which
are  also  thought  to  be  related  to  many  behavioral  distur-
bances observed in AD patients [287]. In this line, Bautis-
ta-Aguilera et al. [288] described the synthesis and pharma-
cological  evaluation  of  novel  hybrids  designed  through  a
combination of the previously reported [287] N-[(5-benzy-
loxy-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-
1-amine  and  1-benzylpiperidine,  fragment  present  in  DPZ
(Fig. 30). Among the synthesized hybrids, the most promis-
ing derivative exhibited potent and moderated values as both
MAOs  enzymes  and  ChEs  inhibitors,  respectively.  Com-
pound 64 resulted to be the stronger MAO-A and MAO-B in-
hibitor compared to DPZ (MAO-A IC50 = 850 µM; MAO-B
IC50 = 15 µM) and as well as and BuChE inhibitor in rela-
tion  to  the  same  reference  (EeAChE  IC50:  0.013  µM;
eqBuChE  IC50:  0.84  µM).  The  resulting  pharmacological
evaluation indicated the 1-benzylpiperidin-4-yl unit plays a
key role in the AChE inhibitory activity, suggesting that this
moiety  mediates  the  binding  to  the  enzyme.  According  to
the design, the results showed that the linker length did not
seem  to  be  a  decisive  factor  for  the  inhibitory  potency
against ChEs, whereas it seems to have a relevant effect in
MAOs.  Otherwise,  the  replacement  of  piperidine  for  bioi-
sostere piperazine had a drastic reduction in the inhibitory ac-
tivity,  resulting  in  inactive  compounds  for  ChEs (data  not
shown).  A  number  of  dual  binding  site  AChE  inhibitors
have been found to exhibit a significant inhibitory activity
on Aβ self-aggregation, thus compound 64 exhibits a signifi-
cant inhibitory effect of Aβ-self-induced aggregation and hu-
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man AChE-dependent aggregation, being more potent (hu-
man AChE-dependent) than the parent compound DPZ. The
inhibition  values  of  Aβ  inhibition  for  compound  64  were
47.8%  self-induced  and  32.4%  AChE-induced.  This  be-
havior may be explained through the kinetic study that ex-
hibited  a  mixed-type  inhibition.  Molecular  modeling
suggests  that  64  mimics  the  binding  mode  of  DPZ  in  the
crystal structure of AChE.

Several studies have documented the key activity of me-
latonin in scavenging a variety of reactive oxygen species,
and moderate inhibition of Aβ aggregation affecting the syn-
thesis and maturation of APP [289], which play an impor-
tant role in AD. In this line, Wang et al. [290] described the
synthesis and biological evaluation of donepezil-melatonin
derivatives (Fig. 31), focused on taking advantage of the po-
tential neurogenic profile of melatonin-based hybrids, which
are endowed with additional anticholinergic properties. The
activity of compound 65 against EeAChE showed a signifi-
cant inhibitory profile, higher than tacrine (IC50 = 0.23 µM),
although lower than DPZ (IC50 = 0.04 µM). Furthermore 65
showed  a  strong  eqBuChE inhibition  respect  to  donepezil
(IC50 = 3.36 µM) and similar to tacrine (IC50 = 0.05 µM). Ac-
cording to the mentioned results,  a modification in the in-
dole ring with a methoxyl group showed a higher inhibitory
potency  than  the  compound  without  substituent  (data  not
shown). Besides, the effect of the alkyl linker length influ-
ences the observed activities (n in (Fig. 30). Kinetic analysis
and molecular modeling studies revealed that compound 65
acted as a mixed-type AChE inhibitor, binding simultaneous
CAS and PAS of the enzyme. The inhibition of Aβ1-42 self-
-aggregation  of  65  was  improved  respect  to  curcumin
(45.2% at 20 µM) and resveratrol (43.5% at 20 µM). For the
remaining  compounds  (not  considered  in  this  discussion),
the effect of an electron-donating group at the benzene ring
(A) might not be favorable for Aβ1-42 aggregation inhibition.
Likewise, compound 65 exhibited significant antioxidant ac-
tivity by ORAC assay respect to melatonin (2.3 trolox eq.),
it  may  chelate  metal  ions,  reduce  oxygen  stress  induced
PC12 cell death, and penetrate the BBB.

Several studies reported that Phosphodiesterase’s (PDE)
inhibitors,  such  as  sildenafil  [291],  tadalafil  [292],  and
icariin [293], also displayed potent anti-AD effects in differ-
ent mouse models of AD, significantly reversing cognitive
impairment and improving learning and memory [294]. To il-
lustrate this, Puzzo et al. [295] reported that sildenafil was
beneficial against a mouse model of amyloid deposition, giv-

en that it produced amelioration of synaptic function and me-
mory associated with a reduction of Aβ levels. In 2012, Gar-
cía-Osta et al. [296] revised Phosphodiesterase 5 (PDE5) in-
hibitors  properties,  and  could  act  via  anti-amyloid  mech-
anisms, exhibit good BBB penetration, decrease p-Tau lev-
els, shed light in their pharmacokinetics, safety and efficacy
in vivo in animal models, but highlighted the lack of clinical
trials  in  AD  patients.  Furthermore,  Fiorito  and  coworkers
[297]  proposed  PDE5  inhibitors  as  promising  therapeutic
agents for the treatment of AD. They synthesized quinoline
derivatives with prominent outcomes in PDE5 inhibition and
promising result in an in vivo mouse model of AD. In addi-
tion, Prickaerts et al. [298] carried out a study of rats in the
object recognition task, suggested that PDE5 inhibitors im-
prove  processes  of  consolidation  of  object  information,
while AChE inhibitors improve processes of consolidation
of object information. Therefore, AChE/PDE5 dual inhibi-
tors could play a synergistic anti-AD effect and may supply
a new perspective and breakthrough for the treatment of AD
[294].

According to the aforementioned information, Mao et al.
[294] described a series of novel tadalafil derivatives in or-
der to seek dual-target AChE/PDE5 inhibitors as candidate
drugs for potential AD therapy. The design of such derivates
was based in PDE5 inhibitory activity presented in the ta-
dalafil scaffold, by only varying the different substituent at-
tached at the N-atom of piperazine-2,5-dione, incorporating
different  moieties  such  as  morpholine,  benzylpyridine,
dimethylamine,  benzylamine,  and  benzylpiperidine  deri-
vates.  These results  showed that  the substituents  in the R1

group (Fig. 32) and absolute configuration (R, R) remarkab-
ly  affected  the  AChE inhibitory  activities.  Compounds  66
and 67 exhibited the strongest AChE inhibitory values, with
nanomolar  IC50  values.  The  results  showed  that  the  chain
length (n= 2)  between both moieties,  tadalafil,  and 1-ben-
zylpiperidine, played a pivotal role in the AChE activities,
so  the  optimal  chain  length  was  established  as  two
methylenes  (n  =  2).  Furthermore,  the  influence  of  stereo-
chemistry on AChE inhibition was considered a key factor.
The  diastereoisomers  66  and  67  showed  almost  the  same
AChE  inhibitory  activity,  comparable  in  potency  to  DPZ
and huperzine A (IC50 = 0.013 µM and IC50 = 0.084 µM, re-
spectively).  However,  both  derivatives  exhibited  weak
BuChE inhibitory activity. PDE5 inhibitory activity was de-
termined  by  an  IMAP-FP  (immobilized  metal  ion  affini-
ty-based fluorescence polarization) assay [299, 300].

Fig. (31). Donepezil-melatonin derivatives reported by Wang et al.
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Fig. (32). Tadalafil derivates as AChE/PDE5 dual inhibitors.

The results showed that most of the tested compounds pre-
sented values ranging between 0.032 - 23.20 µM. In this con-
text,  the  chain  length  presented  no  obvious  influence  on
PDE5 type PDE5A1 inhibition. Moreover, compounds bear-
ing aryl methyl and pyridyl substituents at piperidine nitro-
gen exhibited higher  inhibitory  activity  than unsubstituted
ones.  Finally,  66  and  67,  exhibited  good  to  moderate
PDE5A1 inhibitory activity respect to the other derivatives
studied.  Besides,  the  BBB  crossing  capabilities,  7.67  and
9.25 Pe (10-6 cm s-1) respectively, indicated that both com-
pounds  could  be  considered  as  potential  dual-target
AChE/PDE5  inhibitors.

The  serotonergic  system  has  been  widely  studied  and
well documented related to AD progression [301]. The mod-
ulation  of  5-HT4  and  5-HT6  receptors  have  been  recently
proved to enhance cognition in AD models [302]. 5-HT4 re-
ceptors (5-HT4R) control brain functions, such as learning,
memory, feeding, and mood behavior. In the AD context, ac-
tivation of 5-HT4R can promote the nonamyloidogenic cleav-
age (APP), leading to the formation of a neurotrophic pro-
tein, sAPPa [303-305]. On the other hand, 5-HT6 receptors
(5-HT6R) play a role in functions like motor control, cogni-
tion, and memory [302].

A new proposal for combining 5HT4 affinity along with
nanomolar AChE inhibition was reported by Lecoutey et al.
[105] in 2014 with the design and synthesis of donecopride
(Fig.  33).  RS67333 [306]  is  a  potent  5HT4  antagonist  that
had  been  investigated  as  a  potential  antidepressant  [307],
nootropic [308], and as a potential treatment of AD [308]. In-
terestingly, RS67333 was also established as a low micromo-
lar  AChE  inhibitor  by  the  aforementioned  authors  [105].
This finding led them to pharmacomodulate it in order to en-
hance AChE inhibition profile with no significant effect on
5HT4 antagonism, while micromolar BuChE inhibition was
also achieved (AChE IC50 = 16.0 nM; BuChE IC50 = 3.5 µM;
5HT4Ki = 6.6 nM). Moreover, sAPPα increasing capabilities
of  donecopride  were  also  demonstrated  (EC50  =  11.3  nM)
[105]. According to the authors, donecopride is able to exert

not only a symptomatic effect but also a disease-modifying
effect  against  AD.  Among  a  wide  number  of  tested
molecules  [309],  donecopride  was  selected  for  studies  in
vivo, showing no effect on the spontaneous locomotor activi-
ty at the maximum dose of 10 mg/kg. At 0.3 and 1 mg/kg a
precognitive effect with an improvement in memory perfor-
mances was observed, along with an antiamnesic effect by
scopolamine-induced spontaneous alternation deficit. More-
over, they also suggested a slight antidepressant effect by a
decreased  time  of  immobility  during  a  forced  swimming
test. Later on, donecopride was found to display potent an-
ti-amnesic properties in AD animal models, preserving learn-
ing capabilities, including working and long-term spatial me-
mories. Clinical trials will soon be undertaken to confirm th-
ese findings in a First in Human study [310].

Lalut et al. [305] designed a series of derivatives based
on donecopride fine-tuning [105, 311] (Fig. 34). By replac-
ing the benzene ring by an indole residue, they obtained MT-
DLs with enhanced biological activities. Compounds 68, 69,
70, and 71 were evaluated in their capacity to inhibit hAChE
and  to  bind  guinea  pig  (gp)5-HT4R.  All  compounds  dis-
played a decreased affinity for  5-HT4R respect  to  doneco-
pride (Ki = 9.5 nM) being 71, which showed the strongest in-
hibitory profile. The SAR analysis revealed that a cycloalkyl
or an alkyl substituent on the piperidine ring improved the
affinity  for  this  receptor  compared  to  N-benzyl  ring.  Be-
sides,  substituents (chloro and methoxy) present in the in-
dole moiety, did not significantly influence the activity. For
AChE inhibition compounds 69,  70,  and 71  displayed low
IC50 values, in the same order of donecopride (IC50 = 16 nM)
and  DPZ  (IC50  =  6.0  nM).  In  this  case,  N-Bn  substituent
greatly increased AChE inhibition in relation to a cycloalkyl
or alkyl substituents. While substitution pattern or nature at
the indole moiety seems to have little influence on activity,
N-substituents can dramatically decrease it. Concerning ki-
netic studies, compounds showed non – competitive inhibi-
tions type, therefore interacting with PAS and anionic sub-
site of AChE. Finally, compound 69 displayed a protective
effect against dizocilpine-induced impairment in the passive
avoidance test in mice [312, 313].
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Fig. (33). Donecopride, RS67333 and donepezil hybrid designed by Lecoutey et al.

Fig. (34). Donecopride derivates as MTDL reported by Lalut et al.

Previous studies reported that C5-Substituted indole com-
pounds  containing  a  propyl  spacer  connected  to  different
moieties such as piperazines and arylpiperazines, were en-
dowed  with  serotoninergic  activity  [314-316].  Likewise,
other studies have also reported AChE inhibitory activity in
compounds containing these skeletons [104, 234, 317, 318].
Intending to combine such discoveries, Rodriguez-Lavado et
al. [104] recently reported the synthesis, and in vitro evalua-
tion of a new series of indolylpropyl benzamidopiperazines
as promising MTDLs with dual activity against hSERT and
hAChE (Fig. 35). Compounds 73 and 74 displayed an inhibi-
tory profile in AChE in the same order of magnitude as DPZ
(IC50 = 2.17 nM). The substituents R1 and R2 remarkably af-
fected the inhibitory profile in AChE. In this sense: i) the un-
substituted compound (R1 = R2 = H) showed no inhibitory re-
sponse; ii) almost all compounds with a methoxyl group at
the 5-indolic position were inactive; iii) R1 = F or H resulted
in  a  moderate  to  very  active  compounds  depending  on  R2

substituent, as in the case of compounds 73 and 74. The au-
thors thus explained how the appropriate substitution pattern

can make a difference between inactive and very active com-
pounds. On the other hand, compounds 72 and 75 showed a
high affinity towards SERT, similar to citalopram (IC50 = 3.0
nM),  both  of  them  carrying  R1  =  F  (a  small  and  elec-
tron-withdraw atom) and R2 = 2-Br or 4-Br (bulky atom).

As  expected,  C5-Fluorine  indole  derivatives  displayed
nanomolar SERT affinity, being this an extensively reported
property of fluorinated indoles [315, 319-321]. Interestingly,
such fluorinated derivatives were also among the most ac-
tive  towards  hAChE.  None  of  the  most  active  dual  com-
pounds  resulted  to  be  toxic  at  the  studied  concentration
range in both HEK-293 and SH-5YSY cells. Molecular dock-
ing studies for both targets strongly supported the experimen-
tal results. Unfortunately, just one compound of the series re-
sulted  in  significant  β-amyloid  self-aggregation  inhibition
(data not shown).

For  clarity  purposes,  activities  for  some selected com-
pounds endowed with promising multitarget capabilities are
summarized in Table (1).



854   Current Neuropharmacology, 2021, Vol. 19, No. 6 Alarcón-Espósito et al.

Fig. (35). Indolylpropyl benzamidopiperazines derivates with AChE and SERT activities reported by Rodríguez-Lavado et al.

Table 1. In Vitro Values for Selected MTDLs.

Comp. AChE IC50 (µM) BuChE IC50 (µM) MAO-A IC50 (µM) MAO-B IC50 (µM) ORAC
(Trolox Equivalent)

Other Activity Refs.

1 0.187 12.4 n.d. n.d. 3.07 Aβself agg. 45.3% [126]

2 0.228 9.78 n.d. n.d. 2.49 Aβself agg. 30.4% [126]

3 0.149 2.33 n.d. n.d. 1.10 Aβself agg. 22.0% [126]

21 0.09 0.16 n.d. n.d. 0.4 n.d. [152]

22 0.29 1.5 n.d. n.d. 2.0 n.d. [152]

23 0.08 0.22 n.d. n.d. 2.4 n.d. [152]

24 0.46a 24.97b n.d. n.d. n.d. DPPH EC50 = 49.41 µM [153]

27 11.70 26.38 90.35 40.29 n.d. Aβself agg 49.8% [178]

28 1.56 3.64 89.65 58.31 n.d. Aβself agg 53.5% [178]

29 6.55 8.04 17.58 12.19 n.d. Aβself agg 57.8% [178]

30 36.04 n.d. 8.19 12.16 4.72 Aβ IC50 = 7.56µM [181]

31 6.27 n.d. 7.08 14.09 4.70 Aβ IC50 = 6.51µM [181]

46 2.11a 16.7 12.8c 12.4 2.56 n.d. [201]

47 37.09a n.a. 16.0c 2.68 1.99 n.d. [201]

48 1.56a 8.9 21.3c 14.01 1.76 n.d. [201]

49 0.033a 0.45b 72.4c 11.23 n.d. n.d. [238]

50 0.37a 5.24b 67.2c 0.272 n.d. n.d. [238]

51 1.73
0.48a

1.19 x10-2

4.34 x10-2b

2.78 21.29 3.04 n.d. [239]

62 1.30 0.08 n.d. n.d. 2.04 n.d. [283]

63 0.11 1.1 n.d. n.d. 3.41 n.d. [283]

64 0.19a 0.83b 5.5 x10-3 150 x10-3 n.d. n.d. [288]

65 0.19a

0.27
0.07b

4.76
n.d. n.d. 3.28 Aβself agg 56.3% [290]

66 0.036 9.83 n.d. n.d. n.d. PDE5A1
IC50 = 0.15 µM

[294]

67 0.032 3.88 n.d. n.d. n.d. PDE5A1
IC50 = 1.53 µM

[294]

n.d.: non determined, n.a.: not active, a. Electrophorus electricus Ee,b. equine,c. MAO-A inhibition %.
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CONCLUSION
AD is still an incurable disorder mainly due to its multi-

factorial nature and complex etiology. The more efforts are
made by research groups and pharmaceutical companies to
understand  the  underlying  mechanism  and  find  a  disease-
modifying treatment, the more AD-related targets are discov-
ered. Therefore, there is no reason we can expect a solution
provided by the ‘one drug-one target’ paradigm. Within the
last years, the so-called multitarget paradigm has emerged to
stay.  In  order  to  shed  some  light  on  the  recent  advances
within this field, four biologically active scaffolds (curcum-
in-, resveratrol- chromone- and indole-) have been selected
pointing to the simultaneous interaction towards many AD-
related  targets/functions,  emphasizing  on  cholinesterases
(AChE and BuChE), MAOs (MAO-A/B), 5-HT4, SERT, β-
amyloid  self-aggregation  and  radical  scavenging  activity.
While  many  of  them  are  well  known  AD-related  targets,
others have not still been so deeply explored. We sincerely
hope that this review will help other researchers worldwide
to  develop  future  improvements  within  this  exciting  field
since much more efforts are needed to make this multitarget
approach evolve into new drugs that can eventually be used
in clinical trials and finally reach the market for the overcom-
ing of such devastating disease.

LIST OF ABBREVIATIONS

WHO = World Health Organization
AD = Alzheimer’s Disease
CNS = Central Nervous System
NMDA = N-methyl-D-aspartate
MTDL = Multi-target Directed Ligands
ACh = Acetylcholine
ChAT = Choline Acetyltransferase
AChE = Acetylcholinesterase
Aβ = Amyloid beta
APP = Amyloid Precursor Protein
NFTs = Neurofibrillary Tangles
MAO = Monoamine Oxidase
SRRIs = Serotonin Reuptake Inhibitors
5-HT4R = 5-HT4R 5-HT4 Receptor

BBB = Blood-brain Barrier
BuChE = Butyrylcholinesterase
DPZ = Donepezil
ORAC = Oxygen Radical Absorbance Capacity Assay
HEWL = Hen Egg White Lysozyme
IL-6 = Interleukin-6
TEM = Transmission Electron Microscopy
ABTS = [2,20-Azinobis-(3-Ethylbenzothiazoline-6-sulfonic

Acid)]

CAS = Catalytic Active Site
PAS = Peripheral Anionic Site
SIRT1 = Silent Information Regulator 1
ROS = Reactive Oxygen Species
NO = Nitric Oxide
DPPH = 2,2-Diphenyl-1-Picrylhydrazyl
FRAP = Ferric ion Reducing Antioxidant Power
EeAChE = Electrophorus Electricus AChE
ChEs = Cholinesterases
eqBuChE = Equine BuChE
MCR = Multicomponent Reaction
AGEs = Advanced Glycation End Products
SAR = Structure-Activity Relationship
NSAID = Indomethacin
PDE = Phosphodiesterase’s
PDE5 = Phosphodiesterase 5
IMAP-FP = Immobilized Metal ion Affinity-based Fluores-

cence Polarization
GP = Guinea Pig.
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