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Dissecting heterogeneity in malignant pleural
mesothelioma through histo-molecular gradients
for clinical applications
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Lucile Armenoult1, François Montagne2,3,4,5,12, Robin Tranchant 2,3,13, Annie Renier2,3, Leanne de Koning6,

Marie-Christine Copin5,7, Paul Hofman8,9, Véronique Hofman8,9, Henri Porte4,5,

Françoise Le Pimpec-Barthes2,3,10,11, Jessica Zucman-Rossi 2,3, Marie-Claude Jaurand2,3,

Aurélien de Reyniès1 & Didier Jean 2,3

Malignant pleural mesothelioma (MPM) is recognized as heterogeneous based both on

histology and molecular profiling. Histology addresses inter-tumor and intra-tumor hetero-

geneity in MPM and describes three major types: epithelioid, sarcomatoid and biphasic, a

combination of the former two types. Molecular profiling studies have not addressed intra-

tumor heterogeneity in MPM to date. Here, we use a deconvolution approach and show that

molecular gradients shed new light on the intra-tumor heterogeneity of MPM, leading to a

reconsideration of MPM molecular classifications. We show that each tumor can be

decomposed as a combination of epithelioid-like and sarcomatoid-like components whose

proportions are highly associated with the prognosis. Moreover, we show that this more

subtle way of characterizing MPM heterogeneity provides a better understanding of the

underlying oncogenic pathways and the related epigenetic regulation and immune and

stromal contexts. We discuss the implications of these findings for guiding therapeutic

strategies, particularly immunotherapies and targeted therapies.
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Malignant pleural mesothelioma (MPM) is a rare and
very deadly cancer. Current therapeutic options are
curative in a very small fraction of patients. As for most

cancer types, clinical trials have highlighted MPM diversity in
terms of the prognosis and patient response to anticancer agents1,
suggesting underlying tumor heterogeneity. Better understanding
of tumor heterogeneity in its various dimensions is thus of
paramount importance for the identification of therapeutic stra-
tegies leading to patient cures. Tumor heterogeneity is studied
both at the inter-tumor and intra-tumor levels and considers not
only tumor cells but also their microenvironments. Pathologists
have described three major histological MPM types: epithelioid
(MME), sarcomatoid (MMS), and biphasic (MMB), the latter of
which consists of a mix of MME and MMS. Large-scale molecular
profiling studies have also emphasized MPM heterogeneity2,3,
which may explain the difficulty in defining a unique and specific
biomarker for MPM4. Asbestos, which is the main risk factor for
MPM, may contribute to this molecular heterogeneity, because it
causes a wide variety of molecular aberrations5. Several molecular
stratifications of MPM have been proposed recently and are
related to the histology and prognosis and partly to specific
mutations3,6–8.

According to histological observations, two contrasted tumor
cell populations (epithelioid and sarcomatoid) are found in MPM.
We apply a deconvolution approach to decompose each bulk
MPM molecular profile as a combination of both populations.
This novel approach quantifies tumor heterogeneity and avoids a
strict subtype assignation based on subjective hierarchical classi-
fications, which do not take into account intermediate pheno-
types and show intrinsic limitations regarding intra-tumor
heterogeneity. We also integrate epigenetic data to search for
possible underlying regulatory mechanisms and to identify
potential key regulators. This new way of thinking about the
pathology is a step toward a better understanding of the biology
underlying MPM heterogeneity. Moreover, it provides a sig-
nificant contribution to clinical applications with implications for
prognosis and therapeutic strategies, including immunotherapies
and targeted therapies.

Results
Unsupervised clustering analyses reveal molecular gradients.
First, we performed unsupervised hierarchical clustering, using a
consensus method based on 3 different linkages (ward, complete,
and average) and bootstrap resampling, on our transcriptomic
dataset we generated (Affymetrix array on 63 frozen MPM tumor
samples) and identified two molecular subtypes of MPM (Sup-
plementary Figure 1a). These subtypes were associated with the
histology and prognosis and were independent of the sex, age,
asbestos exposure or stage of the disease (Supplementary Fig-
ure 1a, c, Supplementary Figure 2). These results were consistent
with our previous study based on cell line transcriptomic data,
which showed two MPM subtypes with the same clinical char-
acteristics, i.e., separation of histologic types and a worse prog-
nosis for the C2 subtype6. Centroid-based prediction of the
previous cell line-based subtypes using our frozen tissue series
confirmed the consistency of both classifications (Supplementary
Figure 1a, c). Then, we assessed intra-subtype heterogeneity by
performing unsupervised clustering on the transcriptomic profiles
of the C1 and C2 samples separately. Each subtype was sub-
divided into two groups (C1A and C1B, and C2A and C2B,
respectively) (Supplementary Figure 1b, d, e). Subsequently, we
compared these subtypes with those already published3,6 and
those defined by unsupervised clustering from other public series
(i.e., the Gordon, Lopez and TCGA series)9–11 (Supplementary
Figure 3). We performed a meta-analysis to compare all of the

clusters from the different classifications by correlating the cen-
troids of their corresponding meta-profiles (Fig. 1a). This analysis
highlighted two main groups of highly correlated clusters present
in all datasets that corresponded to the most extreme epithelioid
and sarcomatoid phenotypes, which contained our C1A subtype
and the Epithelioid subtype from the Bueno series3 or our C2B
subtype and the Sarcomatoid subtype from the Bueno series3

respectively. Apart from these two opposite meta-clusters, the
remaining clusters did not form robust meta-clusters shared
across the different classification systems, suggesting that they
might simply reflect various cut-offs of a continuum that com-
bined epithelioid and sarcomatoid components. This important
observation led us to rethink the pathology in terms of molecular
gradients and to consider each sample as a mixture of these two
components. We used weighted in silico pathology (WISP), a
novel deconvolution method aiming at assessing intra-tumor
heterogeneity by estimating the proportion of pure entities in
bulk molecular profiles. WISP is a two-step approach that first
estimates pure population profiles based on predefined pure
samples and then estimates the proportion of these pure popu-
lations in a mixed sample based on the first step output (see
Methods section for more details). We considered a MPM sample
as a mixture in various proportion of epithelioid-like,
sarcomatoid-like and non-tumor component. For a given sample
the sum of these three proportions was therefore equal to 1. The
first step of WISP was performed on representative samples for
each component from our transcriptomic data (Affymetrix array
on 63 tumor samples and 4 normal samples) that were selected as
described in the Method section. The second step aiming at
estimating the proportion of each component was applied on all
available tumor tissue samples (n= 442) from our transcriptomic
data and the different public transcriptomic datasets (Reynies6,
Gordon10, Lopez9, TCGA11, and Bueno3 series). We named these
molecular components E-comp and S-comp to distinguish them
from the epithelioid and sarcomatoid histologically defined
morphologies and their proportions in a given sample as the E-
score and S-score, respectively.

As shown in Fig. 1b, the E-score and S-score estimated in all
available tumor tissue samples (n= 442) from the different
transcriptomic datasets led to opposite gradients for E-comp and
S-comp (Fig. 1b, Supplementary Figure 4a). Of note, 90% of the
samples analyzed shows a tumor content based on WISP
estimations greater than 75% tumor content, suggesting the
presence of few tumor samples with low tumor content, which are
found in all tumor series. These molecular gradients were related
to the histology and the different molecular classifications
predicted in the whole sample set of 442 samples (Fig. 1b–d,
Supplementary Figure 4a, b).

To facilitate a clinical transfer of E-score and S-score estima-
tions, we performed qRT-PCR analysis on the 63 tumors used in
our Affymetrix dataset (CIT exploration series) and 114 new cases
(CIT validation series) (Supplementary Data 1). We reproduced the
results obtained from the Affymetrix data with a signature of 55
genes and a reduced signature of up to 15 genes (Supplementary
Figure 5a, b, c). The E-score and S-score were predicted in the
validation series, from which we could confirm their associations
with the histology types (Supplementary Figure 5d).

Biological characterization of the molecular components. To
gain biological mechanistic information for E-comp and S-comp,
first we identified genes whose expression positively correlated
with these components (Supplementary Data 2). As expected, 110
genes identified in other studies as overexpressed in MME or in
MMS, were significantly positively correlated with the E-score or
S-score. In particular UPK3B, MSLN, CLDN15 were significantly
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positively correlated to the E-score and LOXL2 and VIM to the S-
score3,9. Our study also highlighted new genes such as PDZK1IP1
and AXL that were positively correlated to the E-score or S-score,
respectively. PDZK1IP1 encodes the MAP17 cargo protein; this
protein plays an important role in diseases involving chronic
inflammation, which is a characteristic of asbestos-related can-
cer12. AXL is a receptor tyrosine kinase and a member of the
TAM (Tyro3, Axl, and Mer) family13 (Supplementary Data 2).
Then, we performed enrichment analysis of genes whose
expression levels correlated with the E-score and/or S-score using
KEGG, GO, and Reactome databases. We identified specific
pathways associated with each component (Fig. 2a, Supplemen-
tary Figure 6, Supplementary Data 3). The EMT
(Epithelial–mesenchymal transition), TP53 signaling, cell cycle,
angiogenesis and immune checkpoints were positively associated
with the S-score, whereas pathways involving cell junctions and
complement and several metabolic pathways were positively
associated with the E-score.

Then, we characterized E-comp and S-comp at the genetic level
by focusing on the major altered genes (CDKN2A, NF2, BAP1,
and TP53) during mesothelial carcinogenesis using available
mutation and copy number alteration (CNA) data from the
TCGA series. Significant positive associations were observed
between NF2 and TP53 genetic alterations and the S-score
(Supplementary Figure 7). Interestingly, higher occurrence of
TP53 mutations was reported in MPM tumors with a sarcoma-
toid contingent3.

Next, we characterized E-comp and S-comp at the epigenetic
level using methylome data (HumanMethylation450 Beadchip,
295009 CpG after preprocessing) and at the miRNA level using
miRNome data (Illumina HiSeq 2000, 861 miRNA after
preprocessing). These methylome and miRNome data were

generated from 62 and 60 MPM tumor samples included in
our Affymetrix dataset (CIT exploration series), respectively.
Several component-specific pathways showed a high proportion
of genes whose expression levels correlated with the DNA
methylation level, suggesting that methylation might play a major
role in their regulation (Fig. 2b). We correlated the methylation
levels of CpG sites with the E-score and S-score. Interestingly,
CpG sites whose methylation level correlated with the S-score
were preferentially located in CpG islands, in contrast to those
whose methylation levels correlated with the E-score, which were
mainly located in non-CPG islands (Supplementary Figure 8).
Consistent with this result, we showed that the CpG island
methylator phenotype (CIMP) index was positively correlated
with the S-score as well as with DNMT1 and IDH2 expression,
both of which are known to be associated with hypermethylation,
especially in CpG islands (Supplementary Figure 9)14,15. To the
best of our knowledge, only one study has reported differentially
methylated genes between MME and MMS; a total of 17/72 of
these genes were also identified by our analysis, 4 of which were
associated with expression deregulation and were correlated with
the molecular gradients (Supplementary Data 4)16. Surprisingly,
among the genes known to be frequently hypermethylated in
MPM compared to the normal pleura, we observed heterogeneity
in their methylation profile that correlated with the E-score and
S-score. Among the 502 genes identified by Christensen et al.16,
48 and 25 were positively correlated with the E-score and S-score,
respectively (Supplementary Data 4). Furthermore, other genes
identified as hypermethylated in MPM in different studies
showed methylation profiles that were positively correlated with
the S-score (ESR1, DAPK3, SYK, and TMEM30B) or E-score
(FHIT and KAZALD1)17. We also analyzed known oncogenes
and tumor suppressors and observed a difference in their
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methylation profiles that was dependent on the E-score and S-
score. This result suggests that distinct (intra-cellular) oncogenic
mechanisms are present in E-comp or S-comp related cells.
(Fig. 2c). For instance, the tumor suppressor genes WT1 and
PI3KR1 were hypermethylated and underexpressed in high E-
score tumors whereas RUNX1 and PBRM1 were hypermethylated
and underexpressed in high S-score tumors. The oncogenes ETS1,
ABL1, and IDH2 were hypomethylated and overexpressed along
S-comp. We also identified known epithelial and mesenchymal
markers6 (53 and 24, respectively, Supplementary Data 4) with
gradual methylation and expression along one of the components.
For instance, the mesenchymal marker FBN1 was hypomethy-
lated and overexpressed along S-comp (Fig. 2d). Conversely, the
epithelial marker CDH3 was hypomethylated and overexpressed
along E-comp (Fig. 2d).

In addition, we integrated our miRNA dataset, obtained from
60 MPM included in our Affymetrix dataset (CIT exploration
series), and identified crucial miRNA-target regulation based on
two validated miRNA-target association databases (miRTarbase
and TarBase). As shown in Fig. 2e, d, the miRNA regulatory
networks highlighted central miRNAs that targeted various
component-specific pathways associated with increases in the
E-score or S-score. We identified many miRNAs targeting
epithelial or mesenchymal markers that were downregulated
along the E-comp or S-comp, respectively. Among the hub
miRNAs, miR-21-5p and miR-21-3p were underexpressed along
E-comp and were associated with activation of different path-
ways, including cell junctions and peroxisome. Consistently, miR-
21 was previously described in the literature as underexpressed in
MME compared to the other histological types18 and was
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considered an oncogenic miRNA in several types of cancer19. In
contrast, several central miRNAs were downregulated along S-
comp, including miR-148a-3p, which is known to negatively
regulate the EMT in lung cancer20. miR-148a-3p targets were
implicated in several signaling pathways that were activated with
S-score increases (Supplementary Figure 10). We also identified
hub miRNAs that were previously described in MPM with similar
expression profiles, including miR-101-3p, miR-195-5p and miR-
29c-3p; a lower expression level of the latter predicted a worse
prognosis21.

Our analysis revealed other hub miRNAs that may contribute
to pathway deregulation depending on the E-score and S-score
that were not previously described in MPM but were implicated
in other cancers, such as miR-10a-5p22, miR-24-1-5p23, and miR-
520c-3p24.

Finally, we identified miRNAs with strong positive associations
with the S-score, such as miR-3929-3/5p and miR-1305, or with
the E-score, such as miR-148a-5p, that could be interesting
biomarkers for MMS and MME, respectively (Supplementary
Data 5).

Association with prognosis and drug sensitivity. To investigate
the clinical relevance of the MPM molecular gradients, we
investigated their potential impacts on prognosis and drug
sensitivity.

First, we analyzed the overall survival of patients in the
different series according to their E-score and S-score. Interest-
ingly, the presence of S-comp was associated with a worse
outcome in each series (Fig. 3a) or when all series were analyzed
together (Fig. 3b) using a robust cut-off of 22% of S-score
determined after a bootstrap procedure testing thresholds ranging
from 0.1 to 0.5 (Supplementary Figure 11), even when the series
were restricted to histologically diagnosed epithelioid MPM
(Fig. 3b, Supplementary Figure 12a, b). To validate our findings,
we tested the same cut-off of 22% of S-score in our qRT-PCR
validation dataset and confirmed the prognostic impact of the
S-score (Fig. 3c). Then, we performed a survival meta-analysis on
all available tumor samples by applying a bivariate Cox
proportional hazards regression model adjusted by tumor series
(Fig. 3d). Remarkably, the analysis showed a hazard ratio (HR) of
6.28 (P value= 0.001) for the S-score. Furthermore, a Cox model
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integrating the E-score, S-score, and the histological types showed
the superiority of the S-score for assessment of the MPM
prognosis (Fig. 3d). Similar results were obtained when integrat-
ing pre-existing subtyping systems3,6 into the Cox model, which
strengthened the prognostic value of the molecular gradients
(Supplementary Figure 12c, d). Significance of the S-score was
also observed when performing a cox model restricted to patients
showing high tumor content samples (combined E-score and S-
score > 90%) (Supplementary Figure 12e).

To further assess the clinical relevance of the MPM molecular
gradients, we analyzed the Genomics of Drug Sensitivity in
Cancer (GDSC) database25, in which drug responses were
determined for various compounds on up to 21 MPM cell lines.
A deconvolution signature defined using the transcriptomic data
of the cell lines from our previous publication6 was first used to
estimate E-score and S-score in GDSC cell lines. Interestingly, the
presence of both components in a given cell line supports that
tumor heterogeneity was preserved in cell culture. Other cell types
are also preserved in culture such as cancer stem cells (CSC).
Published data support that CSC are still present in MPM cell
lines26. We identified 22 compounds for which the cell response
estimated by the AUC and IC50 correlated to the E-score and/or
S-score (Fig. 4a, Supplementary Data 6).

Three compounds (the Akt1/2 kinase inhibitor KIN001-102,
the Rho-associated protein kinase (ROCK) inhibitor
GSK269962A, and the Wee1 inhibitor 681640 were selected

based on the correlation between the compound sensitivity (AUC
and IC50) and the E-score or S-score (Fig. 4a). To validate the
correlations between the inhibitor sensitivity and the S-score and
E-score, cell viability was measured on 12–17 MPM cell lines in
cultures treated with the three inhibitors. Normalized AUC and
IC50 values were calculated from the cell viability curves
(Supplementary. Figure 11, supplementary Data 7). The
GSK269962A and 681640 inhibitors had strong effects on cell
viability in some MPM cell lines in culture, in contrast to the
effects of KIN001-102, which induced a slight decrease in viability
at high concentrations in most of the MPM cultures. A significant
positive correlation with the S-score was confirmed for the two
former inhibitors (Fig. 4b, c) but not for KIN001-102 with the E-
score (Supplementary. Figure 12).

Molecular components are related to specific immune contexts.
Recent clinical trials have demonstrated major responses with
anti-PDL-1 or anti-PD1 immunotherapies in many types of
cancers, including MPM27. In this context, we analyzed immune
populations using the Microenvironment Cell Population
Counter (MCP-counter) tool on our transcriptomic dataset28.
This tool aims to provide robust relative quantification of the
abundance of immune and non-immune stromal cell populations
from the transcriptome analysis of a heterogeneous sample. We
validated the performance of MCP-counter in MPM by
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immunohistochemistry (IHC) on immune and stromal popula-
tions (Supplementary Figure 15). Correlation analyses between
the S-score and MCP-counter estimations showed that S-comp
was associated with infiltration of T cells and monocytes as well
as fibroblasts and endothelial cells, which was consistent with the
pathway enrichment analysis showing a link between S-comp and
angiogenesis. Conversely, E-comp was preferentially associated
with natural killer (NK) cells (Fig. 5a, Supplementary Data 8A).

We also investigated the expression of immune checkpoints
using our transcriptomic dataset (Fig. 5b, Supplementary
Data 8A). Most immune checkpoints were positively associated
with the S-score, including TNFSF4 and its receptor TNFRSF4,
CD80, and PDCD1LG2 (which is more commonly referred as
PDL2), and, more importantly, targetable immune checkpoints,
such as CD274 (PDL1) and CTLA4 (Fig. 5b, c, Supplementary
Figure 16). As expected, expression of these immune checkpoints
showed a high correlation with the T cell infiltration score
(Fig. 5b, Supplementary Data 8B). In particular, we validated the
gradual change in PDL-1 protein expression according to the S-
score level by analyzing PDL-1 expression in 30 tumor samples by
reverse phase protein array (RPPA) and confirmed this associa-
tion by immunohistochemical staining in a set of representative
MME and MMS samples (Fig. 5d, e). Similarly, we observed a
positive association between the S-score and expression of the
immune modulator IDO1 (Fig. 5b, c); IDO1 inhibitors are
emerging in the literature and have been described as new players
in the checkpoint blockade process29. In contrast, the E-score was
positively associated mainly with two immune checkpoints
TNFSF14, also known as LIGHT, and VISTA with high
therapeutic potential30 (Fig. 5b, c).

Taken together, these results may guide personalized immune
checkpoint combination therapy in MPM according to the
molecular gradients.

Discussion
We report here one of the first multi-omics studies of MPM
integrating transcriptomic and epigenetic data. We propose a new
way to describe MPM heterogeneity using a bioinformatics
method called WISP, which decomposes MPM molecular profiles
resulting from combinations of distinct cell populations, mainly
epithelioid and sarcomatoid, in addition to those that are not
tumoral. This approach allows both intra-tumor and inter-tumor
heterogeneity to be taken into account and is inspired by the
occurrence of epithelioid and sarcomatoid morphologies in dif-
ferent proportions within MPM.

The WISP method relies on the assumption that distinct
morphological phenotypes correspond to distinct transcriptome
phenotypes. We believe that the deconvolution approach may
have impacts on the potential improvement of clinical manage-
ment with respect to prognosis or therapeutic strategy. The
results emphasize several key points: the combination of different
tumor cell components, their relationships with their micro-
environments, their association with patient survival and their
contribution to define new therapeutic strategies based on tar-
geted therapies and immunotherapies.

In a recent publication, Hmeljak et al. proposed a MPM sub-
typing based on multi-omic data using the TCGA cohort8.
Interestingly, their classifications based on RNA profiles (mes-
senger/micro/long non-coding) best match their integrative
classifications. This result indicates that the transcriptome is a
good surrogate for MPM heterogeneity assessment. Existing
molecular subtyping systems based on transcriptomic data (i.e.,
stratifying MPM into 2–4 subtypes) and histological types are
both remarkably consistent with the WISP-derived epithelioid-
like and sarcomatoid-like proportions. Using thresholds to dis-
cretize these proportions, we can quite fairly recapitulate all
previous tumor stratification systems. This finding indicates that
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our approach offers a more generic and finer-grained solution for
describing tumor heterogeneity. In the current clinical frame-
work, the continuum provided by our approach can be seen as
problematic, unlike discrete classification systems based either on
morphology or molecular parameters (e.g., shaping stratified
clinical trials). However, this inconvenience can easily be solved
by using thresholds. On the other hand, the future of precision
medicine may benefit from the finely tuned information provided
here (e.g., guidance for drug combinations and dosages to target
different tumor cell compartments).

The key strength of our approach compared to existing stra-
tifications is that it provides a very powerful method for precise
analyses of tumor biology due to its ability to capture con-
tinuums. In usual subtyping systems, unrecognized mixed sam-
ples that are located between different classes will greatly impact
the output of statistical tests for differential signal detection,
thereby impeding underlying oncogenic pathway identification.
This major limitation is absent from our approach, because WISP
provides continuous proportions of the different population-
based components of a tumor; these proportions can be directly
correlated to various omics signals, yielding rich information for
pathway analyses. These advantages are conserved when analyz-
ing prognosis and drug response in preclinical tests.

First, we measured correlations of all genes with the E-score
and S-score. As expected, the E-score and S-score were highly
correlated with known biomarkers of MME and MMS, respec-
tively. New genes were also identified, including AXL, which was
correlated with the S-score and was of particular interest, since it
was targetable by several inhibitors13. In addition, AXL inhibition
was shown recently to enhance sensitivity to the current che-
motherapeutic regimen (cisplatin and pemetrexed) in two MPM
cell lines31.

The pathway analysis revealed some additional information.
In the pleura, mesothelial cells form a single layer of polarized
squamous epithelial cells resting on a basement membrane.
This layer is maintained by tight junctions, adherens junctions,
gap junctions, and desmosomes32. The E-score were highly
correlated with genes related to (i) cell junctions, such as
claudins (CLDN12, CLDN15, and CLDN22), which are
involved in tight junctions that link cells at their apical poles,
(ii) cell polarity regulation (PRKCI, PARD6B, F11R, and CRB3)
and (iii) interactions between cells and basement membranes
(LAMB3, ITGB4, KRT5, and CD151). These results suggest
preservation of apical/basal cell polarity in MPM with a high E-
score and thus reduced aggressiveness, which is consistent with
the better survival of MME compared to MMS patients. Con-
versely, the S-score were correlated with gene sets that gen-
erally were associated with tumor aggressiveness, including the
EMT, cell cycle, hypoxia, angiogenesis, and TP53 signaling;
this finding was consistent with the association of TP53
mutations with S-comp. The S-score did not correlate with
genes related to basic epithelial features but instead correlated
with genes whose products either composed or were involved
in communication with the basement membrane and the
extracellular matrix (ECM), such as collagen-binding proteins
and collagen types I, IV, and VI. These results are fully con-
sistent with the known higher aggressiveness of MPM with a
high S-score through the loss of epithelial basic features and
modulation of ECM stiffness33.

These findings shed new light on the oncogenic mechanisms at
work in MPM.

After determining the E-comp-related and S-comp-related
pathways based on the gene expression data, we searched for
potential epigenetic regulation using both miRNome and
methylome data. Very few methylome studies have focused on
tumor heterogeneity, and none have integrated both methylome

and miRNome data. Our analysis identified several epigenetic
biomarkers of E-comp and S-comp. The methylome data suggest
strong regulation of several component-specific pathways, such as
the EMT, cell adhesion, and junction pathways. Furthermore,
analyses of known oncogenes and tumor suppressors revealed
different methylation profiles depending on the E-score and S-
score, which suggested distinct oncogenic mechanisms under-
lying each molecular component. miRNA-target networks high-
lighted candidate master regulators targeting several of the
component-specific pathways. Overall, we identified potential
epigenetic regulation through DNA methylation or miRNAs that
might contribute to the establishment of E-comp-related and S-
comp-related cell entities.

We showed that a higher S-score was related to a poorer
prognosis (Hazard ratio of 6.28, P value < 0.001), even when the
analysis was restricted to MME. This result showed stronger
prognostic information for the S-score than histology. This result
was further demonstrated by multivariate analyses showing that
the S-score largely dominated the ability of the histologically
defined types and the pre-existing subtyping systems3,6 to predict
survival. To facilitate clinical use of the S-score, we determined a
robust cut-off for the S-score (22%) that distinguished patients
with a difference in median OS of more than 10 months on
average (Fig. 3b).

Analysis of the GDSC database allowed us to identify potent
anticancer compounds whose efficacy was correlated with a
high E-score or S-score in MPM. This correlation was validated
for two of these compounds (a ROCK and a Wee1 inhibitor).
GSK269962A is a selective inhibitor of the two Rho-associated
protein kinases ROCK1 and ROCK2, which are the effectors of
the small GTPase RhoA. The effect of GSK269962A on MPM
cell viability was previously described in five commercial MPM
cell lines with IC50 values ranging from 3.4 to 13.2 µM34. Our
study identified MPM in culture with much higher sensitivity
(below 1 µM) for MPM with a high S-score. ROCK inhibitors
modify actin cytoskeleton dynamics, which affects diverse
biological processes, including cell migration and motility, cell
cycle control, cell apoptosis and cell junction integrity. How-
ever, their inhibitory effects are very dependent on the tumor
cell type35. The higher efficiency of GSK269962A in MPM with
a high S-score could be related to the probable loss of cell
junctions in S-comp cells, as mentioned above. Wee1 is a
crucial component of the G2–M cell cycle checkpoint that
prevents entry into mitosis in response to cellular DNA
damage. Impaired cell viability due to Wee1 inhibition has
been shown for several cancer cell lines but not MPM. This
component is most commonly used in combination with a
DNA-damaging agent. Enhanced antitumor efficacy was
observed in p53-deficient cell lines, including sarcomas36,37,
which could explain why MPM with a high S-score was more
sensitive to Wee1 inhibition. Our data support the speculation
that these two types of compounds (especially Wee1 inhibitors,
which are currently in use in cancer clinical trials) may be
considered for MPM with a high S-score. However, further
investigations are clearly required before considering clinical
applications.

The immune microenvironment of MPM is known to be
heterogeneous38. Accordingly, the S-score and E-score are cor-
related with distinct immune population infiltration scores.
Markers of the adaptive immune response are predominant in
tumors with a high S-score, whereas markers of the innate
immune response are found in tumors with a high E-score.

The correlation of the E-score with the complement pathway
and NK infiltration, which are related to innate immunity,
highlighted patients who were potentially suitable for antibody-
based therapy by favoring complement-dependent cytotoxicity
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(CDC) and antibody-dependent cell-mediated cytotoxicity
(ADCC). These types of therapeutic strategies with anti-MSLN
antibodies have been tested in MPM39 and may be improved by
selecting patients based on their E-score. Furthermore, inhibiting
the complement system has been proposed to promote ADCC40

and might be of interest for MPM patients with a high E-score.
Remarkably, the immune checkpoint inhibitor VISTA was cor-
related with the E-score and was also described as being asso-
ciated to the epithelioid icluster 1 in the recent TCGA
publication8. VISTA inhibitors showed promising results in
preclinical models30 and may be of great interest for MPM
patients with a high E-score. The S-score were correlated with the
T cell infiltration score, which was consistent with data reported
elsewhere for the Bueno sarcomatoid molecular subtype3. In
addition, the T cell infiltration score was very highly correlated
with the expression of most checkpoint inhibitors, including
targetable PDL1 and CTLA4. These findings suggest that MPM
with a high S-score are mostly infiltrated by exhausted T cells and
therefore may respond to anti-immune checkpoint therapies
targeting either PDL1 or CTLA4. A recent randomized phase 2
trial (IFCT-1501 MAPS2, http://clinicaltrials.gov/show/
NCT02716272) reported increased progression-free survival in
MPM patients treated with anti-PDL1 without relevant response
markers41. Determining the S-score in this series to assess its
potential as a marker of response to anti-PDL1 therapy would be
interesting.

The evolving technologies will permit researchers to better
characterize the dynamics of the genomic evolution of tumor cell
populations. Characterizing diverse cell populations using s,
pecific biomarkers, microdissection or single cell analysis will be
particularly interesting. Overall, this study largely renews the way
of analyzing MPM biology in relation to clinical parameters,
including prognosis and therapy. Importantly, our findings may
guide personalized therapeutic strategies in MPM, particularly
targeted therapies and immunotherapies, and highlight new
avenues of investigation toward new MPM treatments. To help

future clinical transfer, we provide here a validated qRT-PCR
gene signature that allows determination of the E-score and S-
score in MPM samples.

Methods
Patients. Tumor collection of frozen tumor samples included 63 cases for the
exploration series and 110 cases for the qRT-PCR validation series. Frozen MPM
tumor samples were retrieved from the French Mesobank collection (biobanks of
two French hospitals: CHRU de Lille and CHRU de Nice) and the biobank col-
lection of HEGP (Hôpital Européen Georges Pompidou) in Paris. Patients were
diagnosed from 2003 to 2016 and certified by Mesopath as MPM. The four normal
pleura were obtained after stripping and dissecting the parietal pleura from patients
with lung cancer or pulmonary emphysema. The percentage of tumor cells in
MPM samples was estimated by histologic examination. All patients gave their
written informed consent for the use of their tumor specimen for research. This
study is a part of a research project approved by a Medical Ethics Committee (CPP
Ile-de-France II). All the collected samples and the associated clinical information
were registered in a database (DC-2016-2771) validated by the French research
ministry. Clinico-pathological and epidemiologic data of patients are reported in
Table 1.

DNA and RNA extraction. For CIT exploration series, nucleic acids were extracted
for 63 MPM tumor samples and 4 samples from normal pleura. Genomic DNA
was extracted using a standard isopropanol precipitation procedure. Total RNA
was extracted using trizol and Guanidine Isothiocyanate, and quality was assessed
using a NanoDrop spectrophotometer (Thermo Fisher Scientific) and electro-
phoregram profiles on an Agilent Bioanalyzer (Agilent Technologies)6. For CIT
validation series, total RNA was extracted for 110 MPM tumor samples using all
Prep DNA RNA miRNA Universal Kit (Qiagen).

qRT-PCR and RPPA analysis. For mRNA expression, qRT-PCR analysis was
performed using predefined TaqMan probes (Supplementary Data 1) chosen from
the Thermo Fisher Scientific database (http://www.thermofisher.com). Using the
High Capacity cDNA Reverse Transcription kit (Thermofisher), 1.5 µg of total
RNA was reverse transcribed in a final volume of 50 µl. qPCR reactions were done
using the high throughput BioMark HD system (Fluidigm) following manu-
facturer’s instructions. Pre-amplifications of 6 ng cDNA were performed using
PreAmp Master Mix (Fluidigm) with a primer mix combining each primer used in
the present study except the 18S probe due to it very high gene expression level.
Expression data (Ct values) were acquired using the Fluidigm Real Time PCR
Analysis software. The mean of 5 housekeeping genes (18S, ACTB, CLTC, GAPDH,
and TBP) was used for the normalization of expression data. For protein expres-
sion, preparation of cells lysates from 30 frozen tumor samples and reverse phase
protein array (RPPA) were performed as previously described42. Array was
revealed with the anti-PD-L1 monoclonal antibody (clone E1L3N; Cell Signaling
Technology).

mRNA profiling and analysis. mRNA profiles were obtained using GeneChip®
Human Gene 2.0 ST arrays (Affymetrix), interrogating over 40,000 RefSeq tran-
scripts, for the 67 samples of the study (63 MPM tumors and 4 samples from
normal pleura). GenomEast Platform (Strasbourg, France) carried out experiments.
We used the RMA algorithm (Bioconductor affy package) to normalize the data.
For each gene symbol, probe with the highest expression variance was kept. The
estimation of the abundance of immune cell populations infiltrating MPM was
done by using MCP-counter software28 on the gene expression dataset. mRNA
dataset data is available through ArrayExpress (http://www.ebi.ac.uk/arrayexpress)
under accession E-MTAB-6877.

DNA methylation profiling and analysis. Whole-genome DNA methylation was
analyzed for 62 MPM and 6 samples of normal pleura using the Illumina Infinium
HumanMethylation450 Beadchip. Integragen SA (Evry, France) carried out
experiments following the manufacturer’s instructions. Illumina GenomeStudio
software was used to extract the beta-value DNA methylation score for each locus.
We removed data from probes that contained SNPs or that overlapped with either
a repetitive element or regions of insertion and deletion in the human genome.
InfiniumPurify R package43,44 was used to obtain a matrix of purified beta-values.

The CpG Island Methylator Phenotype (CIMP) index was determined using
methylation Illumina Infinium HumanMethylation450 BeadChip based on
previous work45. In brief, all CpGs in CpG islands found to be unmethylated
(<30% Beta-value) in the 6 pleural samples from our series were selected. The
CIMP index was calculated independently for each sample as the proportion of
methylated (>30% Beta-value) CpGs among the selected normally unmethylated
islands CpGs.

Methylation data are available through ArrayExpress (http://www.ebi.ac.uk/
arrayexpress) under accession E-MTAB-6884.

Table 1 Clinico-pathological characteristics and
epidemiologic data of the series of MPM patients

Exploration series
(n= 63)

Validation series
(n= 110)

Gender (n [%])
Male 47 [75] 85 [77]
Female 16 [25] 25 [23]

Age (years)
Median ± SD 64 ± 10 71 ± 11
Range 39–90 20–89

Histology (n [%])
Epithelioid 49 [78] 81 [76]
Biphasic 7 [11] 15 [8]
Sarcomatoid 5 [8] 8 [7]
Desmoplastic 1 [2] 2 [2]

Lymphohistiocytoid 1 [2] 0 [0]
Asbestos exposure (n [%])
Exposed 47 [78] 75 [74]
Non-exposed 13 [22] 26 [26]

Stage IMIG (n [%])
I 2 [4] 3 [6]
II 7 [14] 8 [16]
III 25 [49] 23 [45]
IV 17 [33] 17 [33]

Survival (months)
Median 16.9 19.7
Range 0.1–165.7 0.4–108.5

MPM malignant pleural mesothelioma
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microRNA profiling and analysis. miRNA-Seq libraries were performed using 60
MPM tumor samples with at least 1 µg of extracted total RNA with a RIN (RNA
integrity number) greater than 7. Before starting, total RNAs were purified with
miRNeasy kit, which allows the selection of the small RNA fraction less than 100b.
From these samples enriched in small RNAs, libraries were performed according to
previously established protocols46. The Illumina HiSeq 2000 sequencing platform
generated the sequencing images. The data were analyzed in three steps: image
analysis, base calling and bcl conversion. CASAVA demultiplexed multiplexed
samples during the bcl conversion into compressed FASTQ files. For quality
controls on raw sequence data, fastqc software was used. Finally, the script “Tri-
m_adapter”, provides by mirExpress software, handled the sequence files, which
contain adapter or not according to the input of adapter sequence. The sequence
adapter was trimmed on sequence data. sRNAbench47 was used to quantify read
counts for each human miRNA referenced in mirBase 20. Only mature miRNA
with at least five read counts in at least 2 samples were kept for further analysis.
Gene counts were normalized using the upper-quartile approach48. miRNA
sequencing data is available through ArrayExpress (http://www.ebi.ac.uk/
arrayexpress) under accession E-MTAB-6895.

To analyze miRNA gene regulations we used two databases, miRTarbase 201649

and TarBase V.750, which describe experimentally validated miRNA-target
interactions. miRNA-target networks were constructed using igraph R package.

Public datasets. Four published datasets were used in addition to the TCGA
dataset:

Reynies—Gene expression datasets were downloaded from the ArrayExpress
repository under accession code E-MTAB-17196.

Bueno—RNAseq gene expression datasets were downloaded from the European
Genome-phenome Archive under accession code EGAS00001001563. The subtype
labels were available for 209 samples profiled by RNAseq3.

Gordon—Gene expression datasets were downloaded from the provided Gene
Expression Omnibus entry GSE254910. All non-cancer samples were removed for
tumor subtype analysis and before any gene-wise data centering.

Lopez—Gene expression datasets were downloaded from supplementary files in
the related publication9.

TCGA—TCGA data were downloaded through the Broad Institute TCGA
GDAC firehose tool11. RNA-seq data were available for 86 samples. Unsupervised
clustering revealed three outliers that were removed for further analyses.

Genetic alterations in MPM TCGA series. Genetic alteration data (copy number
alteration and mutation) for CDKN2A, NF2, BAP1, and TP53 were retrieved from
cBioPortal, an online portal for accessing data from TCGA project (http://www.
cbioportal.org)51,52.

Comparison of the classifications. Centroid profiles were built for each classifi-
cation using an approach described in previous works53,54. Briefly, after gene-wise
centering, a centroid was built for each subtype using up to 500 most discriminant
genes (ANOVA fdr adjusted P values < 0.05, AUC > 0.8). The centroids for each
classification are reported in Supplementary Data 9.

Centroids comparison between two datasets was performed by calculating the
correlation between these centroids, restricted to the subset of genes available in
both datasets.

Classifiers were built for the CIT, Bueno, and TCGA classifications based on the
calculated centroids. Gene expressions of tumor samples were then correlated
(Pearson’s correlation) to all their centroids of a classification system (using only
the subset of genes available in both datasets) and the closest centroid class with the
highest correlation coefficient was assigned.

Gene expression comparison was performed by scaling all datasets by sample to
allow comparison of immune populations and immune checkpoint expressions.

Deconvolution approach. WISP (Weighted In Silico Pathology) is a deconvolu-
tion method aiming at assessing the intra-tumor heterogeneity from bulk mole-
cular profiles (see Code availability). In brief, WISP is a 2 steps approach that (1)
automatically filters for pure entities based on predefined pure population profiles,
(2) estimates the proportions of each pure population in a mixed sample. We
considered a MPM sample as a mixture in various proportion of epithelioid-like,
sarcomatoid-like and non-tumor components. The first step of WISP was per-
formed on a selection of samples from our transcriptomic data (Affymetrix array
on 63 tumor samples and 4 normal samples) representative of each component to
generate pure population profiles defined on their specific markers (deconvolution
signature). Preliminary selection of pure population profiles consisted in our series
of MME samples present in subtype C1A (most extreme epithelioid subtype) for
the epithelioid component, all MMS for the sarcomatoid component and normal
samples available for the non-tumor component. WISP performs an iterative
procedure, where it estimates for each presupposed pure sample the proportion of
the different contingents and removed the samples that do not mainly contain their
corresponding class (WISP default parameters). WISP method uses all the available
genes to find the best markers for each pure population. A first gene filtering is
based on the P values of the ANOVA test comparing gene expression between all
pure populations (FDR adjusted P value < 0.05) and the area under the curve

(AUC) score calculated for each pure population (AUC > 0.8). For each pure
population, genes are then ranked according to their expression fold change, and
the top best markers is retrieved (we chose a maximum number of 50 genes per
class). The resulting deconvolution signature is reported in Supplementary Data 10.
WISP second step consists in weight estimation by using a non-negative least
squares regression model based on the pure population profiles (centroids calcu-
lated on the pure population markers) optimized through a quadratic program-
ming algorithm. This step was applied to the different series (CIT, Bueno, TCGA,
Gordon, and Lopez) (Supplementary Data 11).

As the deconvolution signature was constructed on transcriptomic data
generated from Affymetrix HG-U133 Plus 2.0 array technology, series using other
technologies were scaled by sample as described in the WISP R package. WISP
gives a warning when weight estimations for a sample are unreliable according to
the adjusted R2 and the P value of the F-test (WISP default parameters were used).
Consequently, 3 samples were removed from WISP final results in the Gordon
series and 2 in the Lopez series.

We have built another MPM deconvolution signature dedicated to cell lines.
Indeed, the main difference between cell lines and tissues is the presence of a
complex microenvironment in tissues. Therefore, the non-tumor component based
on tissue expression profiles is not well adapted to cell lines. In addition, the best
markers for E-comp and S-comp defined in tissue samples are not necessarily the
best in cell lines. Therefore, we used specifically for this signature the
transcriptomic data of the cell lines from our previous publication6 and applied the
same approach as for tissue samples. Preliminary selection of pure population
profiles consisted in MME cell lines from C1 subtype, all available MMS cell lines
and 3 normal cell lines. The resulting deconvolution signature is shown in
Supplementary Data 10. This deconvolution signature was used to estimate E-score
and S-score in cell lines in the GDSC expression dataset25.

We generated qRT-PCR data on a prior selection of 68 genes being highly
correlated to the E-score and S-score estimated from the transcriptome in tissues
and/or cell lines or known in the literature for being associated with MPM. Based
on this qRT-PCR dataset, WISP method defined a 55 genes signature
(Supplementary Data 1).

Correlation and enrichment analysis. Pearson’s correlation coefficients were
calculated between the E-score or S-score and the different features (gene
expression, miRNA expression, CpG DNA methylation level). Correlation sig-
nificance was assessed by the Pearson’s correlation test as computed in the cor.test
R function. P values were corrected for multiple testing using FDR correction.

In order to retrieve the pathways associated to the E-score and S-score, we
performed functional enrichment analyses on the genes significantly correlated to
the E-score or S-score using Enrichr tool (Fisher’s Exact test)55. We used KEGG,
GO and Reactome databases. We displayed significant pathways (P values < 0.05)
that were retrieved by at least two of these functional databases.

Unsupervised clustering. Unsupervised clustering analysis was carried out on
gene expression by using an extension of the ConsensusClusterPlus algorithm56. In
brief, using all paired combinations of Pearson distance metric and linkage (Ward,
complete, and average), hierarchical clustering was bootstrapped in 1000 iterations
of features and samples subsampling, keeping 80% of both at each iteration. An
additional level of iteration adjusted the threshold of feature variability ranging
from 1% to 50% most variable probes. The consensus was given by a final hier-
archical clustering using the complete linkage and the number of co-classification
as sample distance.

Survival analysis. Overall survival was defined as the time from diagnostic to
death resulting from any cause. Survival curves were estimated using the
Kaplan–Meier method and compared with the log-rank test. The Cox proportional
hazard regression model was used for both univariate and multivariate analyses
and for estimating the hazard ratio with 95% confidence interval. Multivariate Cox
analysis integrating the CIT, Gordon, TCGA, and Bueno series3,6,10,11 was adjusted
for series. Univariate and multivariate Cox regression analyses as well as
Kaplan–Meier curves were computed using the survival package of the R statistical
suite. Forest plot figures were drawn using the survminer R package.

In order to define a robust S-score threshold that best discriminated patient
survival, we tested thresholds ranging from 0.1 to 0.5 with a step of 0.01 for 80% of
samples randomly chosen in all available samples from the different series. For
each threshold, the log-rank test P value was calculated adjusted for series. The
procedure was repeated 500 times. We generated a graph giving on the
500 simulations the average -log10(P value) for each tested threshold
(Supplementary Figure 11). The value corresponding to the lowest P value is 0.22,
which appears to be the best discriminant threshold.

Drug sensitivity analysis. MPM in culture (17 cases), were primary cell lines
established in Inserm UMRS-1138 laboratory using fresh tumor samples obtained
from several French hospitals (HEGP Paris, CHRU de Lille.). Cell line authenti-
cation is based on specific gene mutations and mycoplasma contamination was
tested. They were used in several previous studies showing their relevance to MPM
primary tumors6,7. Cells were grown in RPMI 1640 culture medium, supplemented
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with 10% fetal bovine serum (Gibco, Thermo Fisher Scientific), and used at low-
passage numbers (<12 passages)57. MPM cells were seeded in triplicate on 96-well
plates (Corning, Falcon) at 0.5–1 × 104 cells per well and treated with gradient
concentrations of compounds diluted in DMSO (Dimethyl sulfoxide) using HP
D300 Digital Dispenser (Tecan). Three compounds were used KIN001-102/Akt
Inhibitor VIII (124018, Merck), 681640/Wee1 Inhibitor (681640, Merck) and a
ROCK1 inhibitor, GSK269962A (S7687, Selleckchem). Cells were fixed with for-
maldehyde solution (252549, Sigma—4%) 72 h after treatment, stained with
Hoechst 33342 (H3570, ThermoFisher—5 µg ml−1) and imaged with a high-
content imaging device (Operetta CLS, Perkin Elmer) using a 10× objective with
four fields per well captured. Number of nuclei was determined using Harmony
software (version 4.6, Perkin Elmer). GraphPad Prism version 6 software was used
to calculate normalized area under curve (AUC) and IC50 (GI50) of inhibitors
assays.

Immunohistochemical staining. Immunohistochemical protocol was adapted
from Ilie et al.58. Specimens were sectioned at a thickness of 3 μm and stained on
positively charged glass slides. Deparaffinization, rehydration, and antigen retrieval
were performed by CC1 (prediluted; pH 8.0) antigen retrieval solution (Ventana
Medical Systems, Inc.), performed on the VENTANA BenchMark ULTRA auto-
mated slide stainer for 32 min at 100 °C. Specimens were incubated with primary
antibodies as noted in Supplementary Table 1 followed by visualization with the
OptiView DAB IHC Detection Kit (Ventana) and OptiView Amplification Kit
(Ventana) for 12 min for PD-L1 detection. The specimens were then counter-
stained with haematoxylin II and bluing reagent (Ventana) and coverslipped. Each
IHC run contained a positive control (on-slide placenta tissue for PD-L1). Mor-
phological characteristics and size of the nucleus were taken into account to esti-
mate the labeling of fibroblasts by vimentin antibodies.

Code availability
WISP is freely available at: https://cit-bioinfo.github.io/WISP/.

Data availability
The mRNA expression data, DNA methylation data and miRNA sequencing data have
been deposited in ArrayExpress database under accession codes E-MTAB-6877, E-
MTAB-6884 and E-MTAB-6895, respectively.
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