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Design of high SERS sensitive 
substrates based on branched Ti 
nanorods
Nosirudeen Abayomi M. Yussuf1,2, Jianlin Li1, Yung Joon Jung1 & Hanchen Huang2*

This paper reports a rational design of branched titanium (Ti) nanorods formed by glancing angle 
physical vapor deposition and their applications as substrates for surface-enhanced Raman scattering 
(SERS). Ti nanorods with branches have larger surface areas than non-branched nanorods. However, 
Ti surface oxidizes easily resulting in very little SERS effect. The SERS sensitivity of the branched 
titanium nanorod is improved by annealing Ti nanorods in nitrogen in an effort to reduce oxidation. 
Additionally, the plasmonic resonance of the branched titanium nanorod is further improved by 
coating the top of the nanorods and branches with silver (Ag). The sensitivity of the SERS substrates 
is about 3700% that of as-deposited branched Ti nanorods with a native oxide layer. Our investigation 
provides a mechanism to fabricate sensitive SERS sensors of Ti nanorods that are known to be 
thermally and chemically stable and compatible with silicon-based electronics.

Surface plasmon resonance involves the collective oscillation of free electrons around the nuclei in the subwave-
length surface when light is incident on a metal  nanostructure1. This oscillation in various modes mediates local 
field enhancement close to nanostructured noble metal surfaces, providing a surface enhancement effect, such 
as surface-enhanced Raman scattering (SERS)2,3. SERS is a non-destructive yet powerful tool for ultrasensitive 
vibrational spectroscopy, and It has been applied in the detection of chemical and biological agents on nano-
structured surfaces since  19704,5.

Branched Ti nanorods from glancing angle deposition (GLAD) are one-dimensional nanostructures that 
result in a large surface area to volume  ratio6 compared to non-branched nanorods. Once exposed to air, the 
surface of Ti nanorods oxidizes to form  TiO2. This oxide is thermally more stable than Ti and reduces coarsen-
ing of Ti nanorods, thereby reducing the degradation of SERS sensitivity in high-temperature  environments7–10. 
However, when used as SERS  substrates11, they exhibit SERS signals with relatively low sensitivity than noble 
metals. For SERS applications, it is desirable for these nanorods to not oxidize easily, possess high thermal stability 
and high SERS sensitivity similar to noble metals like Ag and  Au12–17. Scientists in previous  research18 have shown 
that TiN exhibits localized field enhancement similar to those obtained using nobel metals. In addition, TiN is 
thermally stable and can be produced using the method of Ti nitridation. Therefore, the branched Ti nanorod 
with a large surface area coated with TiN is proposed to enhance the SERS sensitivity of the substrate while the 
coating of a small amount of noble metal additionally, results in very high SERS sensitivity.

In this paper, we experimentally design branched titanium nanorods capped with Ag and investigate their 
sensing performance, with and without nitridation treatment. For our investigations, we choose methylene blue 
(MB) as the probe molecule. MB has been widely used by many research  groups19–25 and is extensively applied 
in industries and household products since it has a high Raman signal and can be easily adsorbed on the metal 
surface. The results indicate that the branched Ti nanorod treated in a nitrogen atmosphere and coated with 
50 nm of Ag exhibit the highest SERS enhancement.

Results and discussion
As the first set of results, we present the scanning electron microscope (SEM) images of as-deposited Ti nanorods 
compared with Ti nanorods annealed in  N2 gas (here on denoted as Ti–TiN), Ti nanorods capped with Ag 
(here on denoted as Ti–AgX, where X is the Ag cap nominal thickness) and Ti nanorods annealed in  N2 gas 
and capped with Ag (here on denoted as Ti–TiN–AgX, where X is the Ag cap nominal thickness). As shown in 
Fig. 1, the morphology of the branched Ti nanorods does not present any apparent changes, especially within 
the Ti and Ti–TiN samples in Fig. 1a,b. The measured diameter of the nanorods is within 150–300 nm, which 
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is comparable to previous  work6. Figure 1c,d shows that the deposition of 100 nm Ag leads to total coverage of 
the top of the nanorods and bridging of the top of the nanorod branches, and in some cases, bridging at the top 
of the nanorods and the top of the branches.

In an effort to understand the relationship between the multiple nanorods and the branched Ti core, Fig. 2, 
shows a projection transmission electron microscope (TEM) images of a Ti–TiN, Ti–Ag, and Ti–TiN–Ag and 
their surface features. The combination of Fig. 2a,d, establishes that annealing Ti in the  N2 atmosphere for 4 h 
produces a polycrystalline TiN layer 10.53 ± 1.87 nm averaged over 40 measurements around several samples. 
Our choice of TiN depth is based on the following two considerations. First, the depth needs to be close to the 
largest depth attainable by our system. Second, the depth of TiN needs to be sufficiently large to maximize the 
surface plasmon resonance properties while reducing the potential for oxidation at high temperatures. With these 
two considerations, we have tested a range of annealing times in  N2: 1, 2, 4, 8, 16, and 36 h, and we found that 
the optimal depth correlates to the annealing time of 4 h. Beyond 4 h, we observe no significant changes in the 
depth which could be a result of a drop in annealing temperature from the sample stage in the presence of  N2. 
Conversely, below 4 h, the depth of the TiN is reduced. Figure 2b,e and c,f shows the projection TEM of Ti–Ag 
and Ti–TiN–Ag nanorods. While the TiN layer is polycrystalline, the Ti core and Ag cap are single crystals.

Going beyond the morphology of the nanorods, we quantify the elemental composition of the branched 
nanorods. Figure 3, shows a high angle annular dark-field (HAADF) image of the Ti–TiN, Ti–Ag, and Ti–TiN–Ag 
samples and their corresponding energy dispersive X-ray (EDX) maps. The EDX maps present the distribution 
of chemical elements on the scanned surface of the nanorods and it unequivocally confirms the presence of Ti, 
N, and Ag respectively on the samples.

The characterization of the crystal orientations of the nanorods using XRD is shown in Fig. 4. We identified 
the { 1010 }, { 1011 } and { 1120 } planes parallel to the substrate for the branched Ti core nanorod. That is, some 
nanorods have one of either plane parallel to the substrate surface. We also identify the presence of Ag {111}, 
{100}, and {110} planes with increasing intensity correlating to the increase in the Ag thickness. In passing, we 
also note that there is a detectable amount of TiN {100} in Fig. 4c, in agreement with the crystalline pattern 
observed in the HRTEM characterization in Fig. 4d where the lattice plane on a randomly selected crystal on 
the surface of the nanorod from Fig. 2d is 0.248 nm confirming a TiN {111} plane of fcc-TiN crystal (JCPDS 
card No. 38-1420)26–31.

Based on the crystallographic variations of the branched nanorods, we expect that these substrates would 
exhibit different SERS sensitivity. Figure 5a shows the SERS spectra of 1.5 ×  10−6 M MB molecules on the Ti–Ag 
nanorods with various thicknesses of Ag deposition in Fig. 1c. The spectrum on the as-deposited Ti nanorods 
substrate is included for comparison. It is clear that the SERS intensity increases with the increase in Ag capping 
thickness until it reaches 50 nm. A further increase to 100 nm of Ag capping thickness leads to a decline in the 
SERS intensity. This decline could be a result of a less strong EM field being generated between the gap regions 

Figure 1.  SEM images of Ti nanorods, (a) as-deposited Ti, (b) annealed for 4 h in an  N2 environment, (c) 
capped with 100 nm of Ag on as-deposited Ti, (d) capped with 100 nm of Ag on Ti annealed for 4 h in  N2.
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Figure 2.  TEM image of branched Ti nanorod, (a) annealed for 4 h in  N2, (b) capped with 100 nm of Ag on Ti, 
(c) capped with 100 nm of Ag on Ti annealed for 4 h in  N2, and (d–f) is the magnified section of the circled spot 
of each nanorod.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11631  | https://doi.org/10.1038/s41598-022-15875-3

www.nature.com/scientificreports/

of the top of the nanorods and their branches caused by the bridging observed in Fig. 1c. Figure 5b shows the 
SERS spectra of 1.5 ×  10−6 M MB molecules on the Ti–TiN–Ag substrates of Fig. 1d. Similar to Ti–Ag substrates, 
the SERS sensitivity increases with the increase in Ag capping thickness until a maximum is reached at 50 nm. 
But it is clear that the SERS intensity is much higher with larger peak intensities than in Fig. 5a.

A comparison of the SERS sensitivity between the as-deposited Ti, Ti–TiN, Ti–Ag, and Ti–TiN–Ag is shown 
in Fig. 5c. Although Ti nanorods are not SERS sensitive and are prone to oxidation, the low Raman intensity 
detected could be a result of a charge transfer mechanism from  TiO2

32–35. The significantly high SERS enhance-
ment from the Ti–TiN–Ag 50 nm is due to a variety of factors. Firstly, the TiN can excite surface plasmon 
resonance resulting in a strong EM  field19. Second, due to the increased surface area of the branched titanium 
nanorods and the annealed film thickness of the TiN, the large surface area of Ti–TiN is conductive for adsorbing 
sufficient analyte molecules. Third, there exists a coupling effect of surface plasma from the combined charge 
transfer from Ag and TiN that provides a further electromagnetic and chemical enhancement for SERS as 
observed in nanoparticles of ZnO–TiN36, and Au–TiN37. Figure 5d shows the SERS peak intensities of the MB 
molecule at 1625  cm−1 which corresponds to the symmetric and asymmetric C–N stretching, as well as the C–C 
ring stretching, normalized by the peak intensity of the as-deposited Ti nanorod as a function of their coating 
compositions respectively on the nanorods. The normalized SERS peak intensity is calculated from the ratio 
of the peak intensity of the various SERS substrate and the peak intensity of the as-deposited Ti nanorods. It is 
encouraging that the annealing of the branched Ti nanorods for 4 h then capped with Ag increases the SERS sen-
sitivity by 3708%, which represents a tremendous improvement over Ti–Ag—649% and Ti–TiN—507% increases.

Conclusion
In this paper, we designed and fabricated various branched titanium nanorods using GLAD technique and suc-
cessive nitridation technique as SERS substrate and analyzed them using SEM, TEM, XRD and by using a diluted 
solution of methylene blue and an excitation wavelength of 532 nm, we were able to analyze the optimal sensing 
performance. Based on these analyses, we make the following conclusions.

Figure 3.  Map of element distribution in a cross-section of the branched Ti nanorods (a) annealed for 4 h in 
 N2, (b) capped with 100 nm of Ag on Ti, (c) capped with 100 nm of Ag on Ti annealed for 4 h in  N2.
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One, we have designed Ti–TiN–Ag nanorods that are oxidation-resistant and SERS sensitive. This design takes 
advantage of the large surface areas of Ti branched nanorods, oxidation resistance of TiN, and SERS sensitivity 
of TiN and Ag nanoparticles.

Two, the TiN layer is uniform between 10 and 11 nm. The deposition of Ag for nominally 50 nm results in 
the optimal SERS sensitivity, and bridging occurs as the deposition reaches 100 nm.

Three, the Ti branched nanorods and the Ag caps are single crystalline, while the TiN layer is polycrystalline 
around the nanorod.

Methods
In this work, Ti nanorods with branches are deposited on Si{001} and microscope glass slide substrates by 
using an electron beam (e-beam) physical vapor deposition system under GLAD conditions. Details about the 
deposition method and conditions have been discussed in the previous  report6. Before deposition, Si{001} and 
glass slide substrates are ultrasonically cleaned in a sequential bath of acetone, isopropyl alcohol, and deionized 
water for 30 min each and are then set to dry in atmospheric air. The cleaned Si{001} and glass slide substrates 
are attached to the stage set at a glancing angle of 87° with the direction of the incident flux and a temperature of 
625 K. The nominal deposition rate is set to 0.5 nm/s. This rate is monitored with a quartz crystal microbalance 
(QCM) and it is achieved with a voltage of 10 kV and an emission current ranging from 70–120 mA. During 
deposition, the temperature of the substrate is increased by 3 K during deposition. The total nominal film thick-
ness (with no porosity) is 1500 nm.

In the case of Ag capping, after the deposition of branched Ti nanorods, the source material target is switched 
to Ag in the deposition chamber without breaking the vacuum. The glancing angle is set to 87°, The substrate 
stage temperature is set to 625 K, and the deposition rate is decreased to 0.1 nm/s. The total nominal film thick-
ness of Ag is 10, 20, 50, and 100 nm, respectively for each test. The branched Ti nanorods capped with Ag (rep-
resented as Ti–AgX—where X is the Ag cap nominal thickness) are set aside for characterization. To optimize 
the SERS sensitivity even further, another set of substrate samples was produced. Similar to Ti–AgX, after the 
deposition of branched Ti nanorods,  N2 gas is introduced into the chamber for 15 min after shutting off both the 

Figure 4.  XRD intensity of nanorods (a) capped with Ag of 10, 20, 50, and 100 nm in thickness on Ti, (b) 
capped with Ag of 10, 20, 50, and 100 nm in thickness on Ti annealed for 4 h in  N2, and (c) XRD intensity 
comparison as a function of angle 2θ for Ti–TiN, Ti–Ag and Ti–TiN–Ag nanorods of Fig. 1. (d) HRTEM image 
of a section of Fig. 2d showing the lattice d-spacing evidencing the presence of TiN.
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turbomolecular pump and roughing pump. The branched Ti nanorod is annealed in  N2 for 4 h with the substrate 
stage temperature still at 625 K. After 4 h, the roughing and turbomolecular pump are turned on so as to bring 
the chamber back to vacuum condition again and the source material target is switched to Ag in the deposition 
chamber. The glancing angle is kept at 87°, and the deposition rate is set to 0.1 nm/s. The total nominal film 
thickness of Ag is set as 10, 20, 50, and 100 nm, respectively for each test. The branched Ti nanorods annealed 
in  N2 gas and capped with Ag (represented as Ti–TiN–AgX—where X is the Ag cap nominal thickness) are set 
aside for characterization.

The morphology and microstructural analysis of the prepared nanorods is performed using a high-resolution 
field scanning electron microscope (Hitachi S-4800, Tokyo, Japan). Under the accelerating voltage of 3 kV and 
with a working distance of 8 mm, the spatial resolution is 2 nm. The structure and elemental composition are 
characterized using a Cs-corrected transmission electron microscope (Thermo Fisher, TEM/STEM, FEI Titan 
Themis 300, Waltham, MA, USA). Under 300 kV, the spatial resolution reaches 0.07 nm and a diffraction detec-
tion diameter of 200 nm. Texture analysis is performed using X-ray diffraction (XRD, CuKa radiation of wave-
length 0.154 nm, 40 kV, 44 mA, Rigaku ultima IV, Tokyo, Japan) for a sample size of 900  mm2 in area and 1.01 mm 
in total thickness of the Ti and the glass slide substrate. The nanorod dimensions are analyzed, measured, and 
processed using the ImageJ Processing  Program38,39. SERS performance is characterized using a Raman Spec-
troscopy (Horiba Jobin Yvon HR800, Lille, France) at room temperature, with 1.5 ×  10−6 M Methylene Blue (MB) 
as an analyte probing molecule. Raman spectra are collected based on an excitation laser of 532 nm, hole size of 
~ 100 μm in diameter, acquisition parameters of 5 s exposure time, and reduced laser power of ~ 0.211 mW. The 
acquisition time and laser power were selected to avoid molecular degradation of the probing molecule induced 
by photochemical or thermal effects. Before SERS characterizations, all substrates are immersed into the MB 
solution for 30 min and then dried naturally in atmospheric air. The data collection time from each spectrum is 
set to be 5 s and each SERS spectrum is obtained by measuring and averaging the signals collected from three 
different spots on the same substrate.

Data availability
The generated and processed data for this study were provided as supplementary materials.

Figure 5.  SERS spectra of 1.5 ×  10–6 M MB molecules on Ti nanorods (a) capped with Ag of 0, 10, 20, 50 and 
100 nm in thickness on Ti, (b) capped with Ag of 0, 10, 20, 50 and 100 nm in thickness on Ti annealed for 4 h 
in  N2, (c) SERS spectra intensity comparison between as-deposited Ti, Ti–TiN, Ti–Ag 50 nm, and Ti–TiN–Ag 
50 nm, and (d) normalized SERS peak intensities of MB molecules at 1625  cm−1 on as-deposited Ti, Ti–TiN, 
Ti–Ag 50 nm, and Ti–TiN–Ag 50 nm.
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