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*Corresponding author: Department of Statistics, Universitas Negeri Yogyakarta, Indonesia. kismi@uny.ac.id (K.); Facultad de Telemática, Universidad de Colima,
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Abstract

Genomic selection (GS) is revolutionizing plant breeding since the selection process is done with the help of statistical machine learning
methods. A model is trained with a reference population and then it is used for predicting the candidate individuals available in the testing
set. However, given that breeding phenotypic values are very noisy, new models must be able to integrate not only genotypic and
environmental data but also high-resolution images that have been collected by breeders with advanced image technology. For this
reason, this paper explores the use of generalized Poisson regression (GPR) for genome-enabled prediction of count phenotypes using ge-
nomic and hyperspectral images. The GPR model allows integrating input information of many sources like environments, genomic data,
high resolution data, and interaction terms between these three sources. We found that the best prediction performance was obtained
when the three sources of information were taken into account in the predictor, and those measures of high-resolution images close to the
harvest day provided the best prediction performance.

Keywords: high-resolution images; genomic data; plant breeding; generalized poisson regression; genomic selection; count data

Introduction
In traditional breeding programs, recognizing the phenotypic ap-
pearance of traits is frequently done to obtain the best candidate
genotypes. Doing this procedure is costly since all combinations
of genotypes must be seen in the field. To solve this problem, a
statistical machine learning procedure, known as genomic selec-
tion (GS), was introduced. GS became essential since it can find
the most desirable genotypes by learning the relationship be-
tween the information about the genotype and the phenotype of
the training set (Meuwissen et al. 2001). Then, the trained model
is used to predict the breeding values or phenotypes of candidate
genotypes, based on the available genotypic information. Other
variables such as environmental covariates, pedigree informa-
tion, and their interactions could be included in the model to
provide more explanations about the phenotypic variability.

Another way to gain better prediction performance is by applying
the current development in high-resolution imaging technology.
Modern cameras can provide hundreds of reflectance data at differ-
ent wavelengths. Continuous examination of this information dur-
ing the growing season yields much information about the
physiological, agronomic, and disease traits of the crops. Moreover,
imperfect phenotypic measurements can be generated at very early
stages before harvesting (Araus and Cairns 2014). Along with large-
scale multi-environmental tests, these conditions yield new

opportunities for genetic improvement. Some opportunities are: (i)
to increase in the capability of screening large number of genotypes
in the field, with nondestructive, repeated, objective observations,
without the requirement of an extensive labor force (Rouphael et al.
2018), (ii) to facilitate the study of plants’ responses to various types
of environmental stresses (Humplı́k et al. 2015), (iii) to unraveling
complex questions of plant growth, development, responses to envi-
ronment, as well as selection of appropriate genotypes in molecular
breeding strategies (Humplı́k et al. 2015). The use of high-resolution
phenotyping and GS simultaneously can decrease the cost of pheno-
typing (which often delays the genetic improvement), and allows the
expansion of field trials that are logistically and economically viable
(Cabrera-Bosquet et al. 2012). However, as one reviewer pointed out
temporal phenotype information resulting of hyperspectral images
used in GS can mostly give different accuracies depending on the
phenotypes belonging to different growing periods of the crop.
However, early growth-related gene effects have been overlooked so
far because of traditional or low number of phenotyping. For this
reason, thanks to using high-resolution phenotyping data, GS can
perform better since GS also will use the marker(loci) effects from
early generation that has been overlooked so far.

Nowadays, numerous crops with hundreds of genotypes can
be examined through high-performance phenotyping platforms
at a reasonable cost (Montes et al. 2007). In the beginning, these
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platforms made use of cameras mounted on tractors or drones
and developed for controlled environments (Granier et al. 2006;
Montes et al. 2007). Later, the presence of unmanned aerial
vehicles promoted the development of high-performance pheno-
typing for large-scale field trials (Araus and Cairns 2014; Aguate
et al. 2017). One of the uses of hyperspectral image data was to
determine the vegetative indexes (VI), which are effective algo-
rithms for quantitative and qualitative evaluations of vegetation
cover, vigor, and growth dynamics, among other applications
(Xue and Su 2017). These VI can be computed using some bands
of the available images, for example, Red normalized difference
vegetation index (RNDVI), Simple ratio (SRa), Ratio analysis of re-
flectance spectra chlorophyll a (RARSa), Normalized Green-Red
Difference Index (NGRDI) (Gitelson et al. 2002), etc. To see which
bands are used for the computation of each index see Table 1 of
the paper of Montesinos-López et al. (2017b). The use of a modern
camera might give more information that can be used to calcu-
late the VI. Despite these facts, most of the VI are valid for several
specific crops.

Since the existing indexes did not use all available bands,
some authors such as Montesinos-López et al. (2017a) and Aguate
et al. (2017) introduced the simultaneous use of hundreds of
available bands as predictors to increase the model’s predictive
capacity. They found that the simultaneous use of all bands
yields more accurate predictions than the use of VIs or those
bands that presented higher heritability. In the beginning, the
bands were used as the only covariates in the predictor of the
proposed model. Later, genotype � environment (G�E) interac-
tion and band � environment (band�E) interaction were included
in the model using the functional regression method
(Montesinos-López et al. 2018), which significantly improve the
predictive capacity. Although this method can increase the pre-
dictive capacity significantly, this method proposed by
Montesinos-López et al. (2018) is only appropriate for a Bayesian
framework and continuous response variables.

It is generally accepted that there is no statistical machine
learning model that exhibits the best performance for all types of
data. Consequently, some types of data should be analyzed using
specific models (Wolpert and Macready 1997). For example, logis-
tic regression performs well for binary data with linear patterns,
while multinomial regression is suitable for categorical response
variables with linear relations (Stroup 2012). Poisson or negative
binomial regression performs well when the response variable is
a count (Stroup 2012). Also, Poisson or negative binomial regres-
sion should be preferred because they guarantee that all predic-
tions are nonnegative (which is not guaranteed with a Gaussian
model) (Montesinos-López et al. 2015, 2016, 2017a). When

Gaussian regression is used instead of Poisson regression, nega-
tive outputs of the Gaussian regression must be truncated to
zero, and it is unclear how this affects the optimality of the pre-
dictive distribution (Montesinos-López et al. 2015, 2016, 2017a).
Apart from those models, empirical studies show that deep learn-
ing (DL) and kernel regression can deal with nonlinear patterns in
the data (Patterson and Gibson 2017; Chollet and Allaire 2018).
These examples illustrate that unfortunately there is no univer-
sal statistical machine learning model that works well for all
types of data (Wolpert and Macready 1997).

Many count traits can be measured in plant breeding pro-
grams, for example, panicles per plant, number of infected spike-
lets per plant, number of seeds per plant, length of days to
maturity, and many more (Montesinos-López et al. 2016,
2017b).Values of nonnegative integers (without a restricted upper
limit) could be taken for count traits. Although there is evidence
that Poisson or negative binomial regression is suitable for
modeling count data, these data are frequently analyzed as if
they were continuous response variables. For this reason, we pro-
pose using generalized Poisson regression (GPR) as a prediction
model for count data in GS. Under a parsimonious framework,
this model can integrate genomic information from thousands of
markers, high-resolution images from various time points and
plants, environmental information, and their interaction effects.
Compression of the dimensionality of the high-resolution images
would be done using b-spline and Fourier basis functions.

Material and methods
Data
In this study, we only used data from three management practi-
ces (call environments in the entire paper)—drought, irrigated,
and reduced irrigation—and 976 lines of the original 1,170 wheat
lines from the CIMMYT Global Wheat Program (Montesinos-
López et al. 2017b). The experimental design used was an alpha-
lattice with three replicates and six blocks. The best linear unbi-
ased estimates (BLUEs) were used as response variables after re-
moving the design effect; for more details about how these BLUEs
were calculated, the reader should refer to the publication of
Montesinos-López et al. (2018). The discretized (converted to dis-
crete values) trait grain yield (GY) was measured in each line, and
this was the trait analyzed in this study. Planting dates in the
three environments were December 1-5 2014. The bands were
measured on nine different dates (January 10, 2015, January 17,
2015, January 30, 2015, February 7, 2015, February 14, 2015,
February 19, 2015, February 27, 2015, March 11, 2015, and March
17, 2015), which we call time-points (1, 2, 3, ., 9, respectively),

Table 1 Proposed models

Predictor number Components of the predictor Type

P1 XEbE þ Xgbg þ Xaba Conventional
P2 XEbE þ Xgbg þ XabaþXgEbgEþXaEbaE Conventional
P3 XEbE þ Xgbg þ Xaba þ Xbbb Conventional
P4 XEbE þ Xgbg þ Xaba þ Xfbbfb Functional B-splines
P5 XEbE þ Xgbg þ Xaba þ XfFbfF Functional Fourier
P6 XEbE þ Xgbg þ Xaba þ XgEbgE þ XaEbaEþXfbbfb Functional B-splines basis
P7 XEbE þ Xgbg þ Xaba þ XgEbgE þ XaEbaEþXfFbfF Functional Fourier basis
P8 XEbE þ Xgbg þ XabaþXbbb þ XbEbbE Conventional
P9 XEbE þ Xgbg þ Xaba þ XgEbgE þ XaEbaE þ Xbbb þ XbEbbE Conventional
P10 XEbE þ Xgbg þ Xaba þ XfbbfbþXfbEbfbE Functional B-splines basis
P11 XEbE þ Xgbg þ Xaba þ XfFbfFþXfFEbfFE Functional Fourier basis
P12 XEbE þ Xgbg þ Xaba þ XgEbgE þ XaEbaE þ Xfbbffb þ XfbEbfbE Functional B-splines basis
P13 XEbE þ Xgbg þ Xaba þ XgEbgE þ XaEbaE þ XfFbffF þ XfFEbfFE Functional Fourier basis
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using 250 discrete narrow wavelengths. In each plot for each line
and at each time-point, 250 wavelengths k1; . . . k250 from 392 to
851 nm were measured. The kth discretized spectrometric curve
is given by x1 k1ð Þ; � � �; x250 k250ð Þ. We used the notation xð780Þ
without subscripts to denote the response of the band measured
at 780 wavelengths, xð670Þ to denote the response of the band
measured at 670 wavelengths, and so on. The image data was
obtained using a Piper PA-16 Clipper flight that was fitted with a
hyperspectral camera (Model: A-series, Micro-Hyperspace
Airborne sensor, VNIR Headwall Photonics, www.headwallpho
tonics.com, Fitchburg, Massachusetts, USA) and thermal camera
(A600 series Infrared camera, FLIR, www.flir.com, Boston, US).
The plane flew at 270 m above the surface (Montesinos-López
et al. 2017b). The aerial high-throughput phenotyping (HTP) data
was measured around solar noon time every date, aligning the
plane to the solar azimuth for the data acquisition. Images of the
experimental fields were obtained and formatted to tabular data
by calculating the mean value of the pixels inside the center of
each individual trial plot represented as a polygon area on a map.
The software used to achieve this was ArcMap (ESRI, USA, CA)
(Montesinos-López et al. 2017b).

Univariate generalized poisson regression
model
We assume that our training set is composed of pairs of inputs
(yi, xT

i ) with xT
i ¼ ½xi1; . . . ; xip�, for i ¼ 1; 2; . . . ; n. Also, we assume

that the number of independent variables (p) is larger than the
number of observations ðn ¼ 2; 928Þ; for example, for predictor P2
(See Table 1), the number of independent variables were
p ¼ 7; 811; therefore, the penalized loss function for the univari-
ate GPR model is equal to:

LL ¼ �
Xn

i¼1

½�li þ yi log ðliÞ� þ k
�
ð1� aÞ½

Xp

j¼1

b2
j þ a

Xp

j¼1

jbjj�
�

where LL was derived as the negative penalized log likelihood
based on a Poisson distribution (Stroup, 2012), li ¼ E yijxT

i

� �
¼

expðgþ
Pp

j¼1 xijbjÞ represents the inverse link function that is an
exponential function and corresponds to a log link function, k is a
regularization parameter that can be computed using cross-
validation and a is a parameter that causes Ridge penalization,
Lasso penalization or a mixture of both. For example, when a ¼ 0;
the LL corresponds to a univariate Generalized Poisson Ridge
Regression (RR); when a ¼ 1, the LL corresponds to a univariate
Generalized Poisson Lasso Regression (LR), and when 0 < a < 1;
the LL corresponds to a univariate Generalized Poisson elastic net
regression (ENR). The loss function was optimized with the R
package glmnet and the k hyper-parameter was performed with
10-fold cross-validations for all regression models. More details
of these models can be found in Montesinos-López et al. (2020).

These three models (RR, LR, and ENR) were implemented with
the discretized GY response variable. Also, due to the fact that the
hyperspectral images (bands) information was measured at 9 time
points of the plants, these three models were implemented for
each of the 9 time points. Additionally, to be able to integrate in the
GPR model the information of environments, lines (genotypes) and
high-resolution images with and without interaction terms, we
proposed 13 different predictors (P1 to P13) that take into account
and all these available information and these were implemented
for each of the 27 combinations of 3 models and 9 time points. In

Table 1 was described the 13 predictors implemented for each of
the 27 combinations of models and time points.

In any predictor that appears in Table 1, XE represents the de-
sign matrix of environments of order n� I, bE is the vector of beta
coefficients of environments of order I� 1, Xg is the design matrix
of lines with genomic information of order n� L, bg is the vector
of beta coefficients of lines with genomic information of order
L� 1, Xa is the design matrix of lines with pedigree information of
order n� L, ba is the vector of beta coefficients of lines with pedi-
gree information of order L� 1, XgE is the design matrix of the in-
teraction between genotypes (with genomic information) by
environment of order n� IL, bgE the vector of beta coefficients of
genotypes (with genomic information) by environment interac-
tion of order IL� 1, XaE is the design matrix of the interaction be-
tween genotypes (with pedigree information) by environment of
order n� IL, baE is the vector of beta coefficients of genotypes
(with pedigree information) by environment of order IL� 1. Xb is
the design matrix that contains the information of all the mea-
sured bands (hyperspectral images) of order n� 250; and bb is
the vector of beta coefficients of bands of order 250 � 1. Xfb is
the compressed design matrix with b-splines basis functions of
order n� 21, and bfb is the vector of compressed beta coefficients
with b-splines basis functions of bands of order 21 � 1. XfF is the
compressed design matrix with Fourier basis functions of order
n� 21, and bfF is the vector of compressed beta coefficients of
bands with Fourier basis functions of order 21 � 1. XbE is the de-
sign matrix of the interaction term between bands and environ-
ments of order n� 250I; and bbE is the beta coefficient of the
interaction term between bands and environments of order
250I� 1. XfbE is the design matrix of the interaction term between
bands with b-splines basis functions and environments of order
n� 21I, and bfbE is the beta coefficient of the interaction term be-
tween the compressed bands with b-splines basis functions and
environments of order 21I� 1.XfFE is the compressed design ma-
trix of the interaction term between bands with Fourier basis
functions and environments of order n� 21I, and bfFE is the beta
coefficient of the interaction term between compressed bands
with Fourier basis functions and environments of order 21I� 1.
In Table 1 there are two types of predictors: conventional and
functional; those called conventional were built directly using
the original input information corresponding to the bands, while
those called functional were built after compressing the original
information of the bands using b-spline basis functions or
Fourier basis functions. The code given in Appendix A allows
implementing the 13 predictors under the generalized Lasso
Poisson regression (LR) for the first time point, T1. By only modi-
fying in the a cv.glmnet() function of the glmnet package used for
implementing the 13 predictors, alpha¼ 1 to alpha¼ 0 and alpha
to a value between 0 and 1, the Ridge regression Poisson (RR) and
Elastic net regression Poisson (ENR) models, respectively, can be
implemented. However, to implement each of these models for
the other 8 time points, the code provided in Appendix A for (o in
1:1) must be changed to any other time point. For example, for
time points 2, 3, 4, . . ., 9 this should be modified as for (o in 2:2),
or (o in 3:3), or (o in 4:4), . . ., (o in 9:9).

Evaluation of prediction performance
We used cross-validation to evaluate the prediction performance
in unseen data. Since our data contain the same lines in environ-
ments, we used a type of cross-validation that mimics a situation
where lines were evaluated in some environments for all traits
but where some lines were missing in other environments. We
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implemented a fivefold cross-validation, where fourfolds were

used for training and onefold for testing. We reported the average

prediction performance for the test data in terms of average

Spearman’s correlation (ASC) and mean arctangent absolute per-

centage error (MAAPE) for each environment and across environ-

ments. These metrics were computed using the observed and

predicted response variables in each fold for the testing set and

the average of the 5 metrics is reported. It is important to point
out that the process for tuning the hyper-parameter (k) in the

implemented univariate GPR (RR, LR, and ENR) was done with 10-

fold cross-validation. After selecting in terms of mean square er-

ror, the best combination of the k hyper-parameter, the model

was refitted but using the whole training set (80% of data, since

the training and tuning sets were joined) in each fold. Finally, for

each testing set, we computed each of the ASC and MAAPE with

its corresponding standard error (SE), then the average of the

fivefolds and its SE was reported as a measure of prediction per-

formance and variability in each metric. It is important to point

out that the fivefold cross-validation strategy was implemented

with only 1 replication. We used only one replication to save

computational resources.

Results
The results are provided in two sections. The first section pro-

vides the results for each model that compares the 13 predictors
at each time point under both metrics: (A)ASC, and (B)MAAPE;

the second section provides a comparison in terms of prediction

performance between the three models (Ridge regression, Lasso

regression and Elastic net regression) under the 13 predictors.

Prediction performance of each model
First is given the prediction performance under Ridge regression,

then with Lasso regression and finally with Elastic net regression.

Ridge regression
Figure 1A shows in terms of ASC that in general the prediction per-

formance in the three environments was quite similar with the ex-

ception being the Drought environment for time points 7 and 9,

which presented a better prediction performance than in the other

two environments (Irrigated and ReducedIrrigated). Figure 1A also

indicates that there are significant differences between the predic-

tors (P1,. . .,P13), and that predictors P1, P2, P6, P7, P8, and P9

showed the worst prediction performance, while in general predic-

tors P10 and P11 had the best prediction performance. In Figure 1B,

we can also observe that in general the best prediction perfor-

mance was slightly better in the Drought environment. Again,

there are significant differences between the prediction perfor-

mance of the 13 predictors. Now the worst prediction performance

was observed with predictor P2 in the Drought and

ReducedIrrigation environments, while in the Irrigated environ-

ment, the worst prediction performance was observed with predic-

tor P7. Now the best prediction performance was observed under

predictors P10 and P11 (in time point 9) in the Drought and

Figure 1 Prediction performance of Ridge regression in each environment in terms of (A) ASC and (B) MAAPE at each time-point under the 13 predictors
proposed in Table 1.
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Irrigated environments, while in the ReducedIrrigated environ-

ment, the best prediction performance was observed under predic-

tors 11 and 5 at the time point 9 (Figure 1B).
Figure 2A indicates that the in the four time-points (2, 4, 6,

and 8), the best predictions in terms of ASC were observed in the

ReducedIrrigated environment and the worst in the Drought en-

vironment. In general, we can see that the best prediction perfor-

mance was observed under predictor 4. It is also important to

point out that in general we cannot see a significant improve-

ment in the time-points. In terms of MAAPE (Figure 2B), there is a

similar performance between environments, but now the best

prediction performance was observed in the ReducedIrrigated

and Drought environments. Now the worst prediction perform-

ances were observed at time points 2 and 4 under predictor P2

and at time points 6 and 8 in predictor P7. On the other hand, the

best prediction performances at time points 2, 4, and 6 were ob-

served with predictors P1 and P4 and at time point 8 in predictor

P5.

Lasso regression
Figure 3A shows that the prediction performances in the three

environments were quite similar based on the ASC, with the ex-

ception of the Drought environment at time point 7, which

showed better prediction performance than the other two envi-

ronments (Irrigated and ReducedIrrigated environments).

Figure 3A also shows that there are significant differences be-

tween the predictors (P1,. . .,P13) and that predictors P1, P2, and

P6 show the worst prediction performance, while P5 and P11

shows the best predictions for the Drought, P8 to P13 the best in

Irrigated and P3 to P5 had the best prediction for the

ReducedIrrigated environment. Figure 3B indicates that in gen-

eral, the best performance was observed in the Drought environ-

ment. Again, we found significant differences between the

prediction performances of the 13 predictors. In terms of MAAPE,

in general the worst prediction performance was observed with

predictor P2 in the Drought and ReducedIrrigated environments,

while in the Irrigated environment, the worst prediction perfor-

mance was found under predictor P4. Now the best prediction

performance was observed under predictor P11 (in time-point 9)

in the Drought environment, in predictor P10 (time-point 7) in the

Irrigated environment and in the predictor P4 (time-point 6) in

the ReducedIrrigated environment.
Figure 4A shows that the best prediction in terms of ASC was

observed in time-point 2 in the Irrigated environment, in time-

points 4 and 8 in the Drought environment, and in time-point 6 in

the ReducedIrrigated environment. In general, we found that the

best prediction performances were observed under predictors

from P8 to P13. In terms of MAAPE (Figure 4B), a similar perfor-

mance was only observed at time-point 2. The Irrigated environ-

ment shows the best prediction performances in the four time-

points especially under predictors P1–P7, while the

ReducedIrrigated environment stands out under the remaining

predictors (P8 until P13). Now, the worst prediction performances

in the four time-points were observed under predictors P1 and P2.

Figure 2 Prediction performance of Ridge regression at four time points 2, 4, 6, and 8 in terms of (A) ASC and (B) MAAPE in each environment under the
13 predictors proposed in Table 1.
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Elastic net regression
Figure 5A shows again that the prediction performance in the
three environments was quite similar based on the ASC, with the
exception of the Drought environment at growth stage 9, which
showed better prediction performance than the other two envi-
ronments (Irrigated and ReducedIrrigated environments). Also, in
Figure 5A we can observe that there are significant differences
between the predictors (P1, . . ., P13), and that predictors P1, P2,
and P6 show the worst prediction performance, while P3 shows
the best predictions in the Drought environment, P8 to P13 in the
irrigated environment and P4 shows the best in the
ReducedIrrigated environment. We can observe in Figure 5B that
the Drought environment produces the best performance in gen-
eral. Again, we found significant differences between the predic-
tion performances of the 13 predictors. In terms of MAAPE in
general the worst prediction performance was observed under
predictor P2 in the Drought and ReducedIrrigated environments,
while in the Irrigated environment, the worst prediction perfor-
mance was found under predictor P4. Now the best prediction
performance was observed under predictor P11 (in time-point 9)
in the Drought environment, under predictor P10 (in time-point
7) in the Irrigated environment and under P4 (in time-point 7) in
the ReducedIrrigated environment.

Figure 6A shows that the best prediction in terms of ASC,
again was observed at time-point 2 in the Irrigated environment,
at time-points 4 and 8 in the Drought environment, and at time-

point 6 in the ReducedIrrigated environment. In general, the best

prediction performances were observed under predictors P3 and

P11. In terms of MAAPE (Figure 6B), again a similar performance

was only observed at time-point 2. The best prediction perform-

ances at the four time-points for the Irrigated environment were

found under predictors P1 to P7, while for the ReducedIrrigated

environment they were found under the remaining predictors (P8

to P13). Again, the worst prediction performances at the four

time-points were observed under predictors P1 and P2 in the

three environments.

Comparison between models
Figure 7A indicates that the Lasso regression and Elastic net re-

gression models have similar prediction performances in terms

of ASC, with the best predictions also occurring at the four time-

points (2, 4, 6, and 8). In general, the best prediction performance

was observed under predictors P2 and P11. Figure 7B shows that

the best prediction performance using MAAPE was also found in

Lasso regression and Elastic net regression models for the four

time-points. We can see that the best performance was observed

under P10 and P11. The worst prediction performances were ob-

served at time points 2 and 4 under predictor P2, while in time-

points 6 and 8 the worst prediction performances occurred under

predictors P2 and P7.

Figure 3 Prediction performance of Lasso regression in each environment in terms of (A) ASC and (B) MAAPE at each time-point under the 13 predictors
proposed in Table 1.
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Figure 4 Prediction performance of Lasso regression in four time points 2, 4, 6, and 8 in terms of (A) ASC and (B) MAAPE at each environment under the
13 predictors proposed in Table 1.

Figure 5 Prediction performance of Elastic net regression in each environment in terms of (A) ASC and (B) MAAPE at each growth stage (time-point)
under the 13 predictors proposed in Table 1.
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Discussion
Phenotyping nowadays uses noninvasive technologies and digital
technologies to measure complex traits related to growth, yield,
and adaptation to stress, with improved accuracy and precision
at different organizational scales, from organs to canopies
(Fiorani and Schurr 2013). For this reason, phenotyping is key to
understanding complex patterns related to genetics, epigenetics,
environmental pressures, and crop management (farming) that
can guide selection towards productive plants suitable for their
environment (Costa et al. 2019). For these reasons, phenotyping is
at the forefront of future plant breeding, but novel statistical ma-
chine learning tools are still required to be able to incorporate all
these information efficiently in the modeling process.

For this reason, in this study, we propose using Poisson regres-
sion when the response variable is count to incorporate, in addi-
tion to the information of environments and genotypes (with
marker data), the information of hyperspectral images. The
Poisson regression framework allows incorporating not only
main effects of environments, genotypes and high-resolution
images, but also two interaction terms between these three main
sources of information. However, due to the fact that by adding
more information to the predictor the number of observations
was smaller than the number of independent variables, the pe-
nalized Poisson regression was implemented. Three penalized
versions of Poisson regression were implemented (Ridge regres-
sion, Lasso regression and Elastic net regression). In general, we
observed that Ridge regression penalization of Poisson regression

was the worst in terms of prediction performance, while the
other two penalizations (Lasso regression and Elastic net regres-
sion) were the best. This can be explained in part by the fact that
these two types of penalization not only shrink those large coeffi-
cients toward zero, but also make many beta coefficients close to
zero exactly zero because they also allow variable selection.

It is very important to point out that when the hyperspectral
images were compressed first and then used in the modeling pro-
cess, the prediction performance was similar than when using
the raw high-resolution images (in the original dimensions), with
the main advantage that the execution time using the com-
pressed hyperspectral images is considerably low, which is a
great advantage since when taking into account the main effects
and two-way interaction terms between environment, genotypes
and hyperspectral images, the dimension of the prediction is very
large, and the larger it is, the more computing resources are
needed. For these reasons, the compressed versions of the
Poisson regression are very novel since, strictly speaking, they
convert the penalized Poisson regression into a Functional penal-
ized Poisson regression model. However, choosing the right num-
ber of basis is challenging (in our case we used only 21, which
reduced the input of the high resolution of images from 250 to
21). This hyperparameter can be chosen using cross-validation,
but this also increases the computation time.

We also observed that the larger the time-point, the better the
prediction performance. This is expected since larger time-points
are closer to the harvest day of the phenotype. For this reason, in
general, time points closer to 9 showed the best prediction

Figure 6 Prediction performance of Elastic net regression at four time points 2, 4, 6 and 8 in terms of (A) ASC and (B) MAAPE at each environment under
the 13 predictors proposed in Table 1.
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performance. Also, under the three models (RR, LR, and ENR),
adding the interaction term between environment and genotypes
(with markers and pedigree) did not always help to increase the
prediction performance as can be observed between predictors P1
(no interaction term) and P2 (with interaction term between gen-
otypes by environment). However, when ignoring the genotype by
environment interaction but adding the information of the high-
resolution images to the main effects of genotypes (with markers
and pedigree), there is a relevant increase in prediction perfor-
mance which can be appreciated when comparing predictors P1
and P3. This pattern can also be observed when comparing pre-
dictors P1 and P4 and P1 and P5; however, in general, using the
compressed high-resolution images with Fourier basis does not
considerably decrease the prediction performance (see predictor
P3 vs. P5), but helps to significantly reduce the execution time
since fewer beta coefficients need to be estimated.

In general, predictors P10 and P11 produced the best prediction
performance that did not take into account the genotype (with
marker and pedigree) by environment interaction terms. These
two predictors outperformed predictors P12 and P13 that did take
into account the genotype (with marker and pedigree) by environ-
ment interaction term, which mean that these two terms in the
prediction of genotype by environment interaction did not help to
increase the prediction performance and in certain way provided
a certain level of overfitting. It is important to point out that pre-
dictors P10 and P11 did not use the whole raw hyperspectral
images but their compressed versions under b-spline and Fourier

basis functions, which provides evidence that a parsimonious ver-
sion of the penalized Poisson regression model is feasible when
compressed hyperspectral images are provided, and strictly
speaking, this is a Functional penalized Poisson regression model.

Our results provide evidence that a parsimonious version of
the penalized Poisson regression model can be achieved (func-
tional penalized Poisson regression model) when compressed
hyperspectral images are used as input. However, this approach
requires a two-step process where in the first step, the high-
resolution images are compressed, and in the second step, the
penalized Poisson regression model is used for the training pro-
cess with predictors that take into account effects of environ-
ments, genotypes and the compressed hyperspectral images. One
advantage of the proposed approach for training models with
count response variables is that we can use conventional penal-
ized regression software for implementing prediction models
with mixed predictors [environment, genotypes (with markers
and pedigree) and high-resolution images]. Appendix A provides
the R code for implementing the proposed predictors given in
Table 1. Finally, since there is no universal model for predicting
any type of response variables with any type of input informa-
tion, the proposed penalized Poisson regression model studied
here is an attractive tool for predicting count traits with input
from many sources (environments, genotypes with markers and
pedigree and hyperspectral images), that is quite efficient in
terms of computing resources needed and can accommodate raw
and compressed high-resolution images.

Figure 7 Comparison of prediction performance between Ridge regression, Lasso regression and Elastic net regression across time points in terms of (A)
ASC and (B) MAAPE at each environment under the 13 predictors proposed in Table 1.
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Conclusions
In this study, we proposed the Poisson regression model for ana-
lyzing hyperspectral images. We found that it is feasible to use
this regression model for count data with hyperspectral images
combined with environmental and genotype effects in an effi-
cient way. However, in general we found that the best prediction
model was the elastic net regression and Lasso regression and
the worst was the Ridge regression model. We also found similar
prediction performance between using the raw hyperspectral
images and the compressed b-splines and Fourier basis func-
tions, with the advantage that the compressed version is more ef-
ficient computationally. Also, was quite clear that including the
hyperspectral images in the predictor increased the prediction
accuracy; however, this was clearer with those hyperspectral
images occurring in latter time points. However, other studies
need to be performed to be able to generalize our finding for other
agronomical traits. Although more research is needed to increase
the empirical evidence that we found, in general we found that
Poisson regression is a powerful tool for incorporating hyperspec-
tral images and that its efficiency increases when this informa-
tion is incorporated compressed with b-spline and Fourier basis
functions.

Data availability
The data set used in this study (HTP_976_Disc_Data.RData) is
available at http://doi.org/10.5281/zenodo.4478247
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Appendix.
R code for implementing the Generalized Lasso Regression with
the 13 predictors for growth state 1 (time point T1).
rm(list¼ls())

library(fda)

library(“fda.usc”)

library(glmnet)

library(BMTME)

####################For Getting the name of Wavelengths####

#####################

load(“HTP_976_Disc_Data.RData”)

Wavelengths¼c(Wavelengths)

Wavelengths

LA¼t(chol(A976))

LG¼t(chol(G976))

########################Selecting the phenotype response-

Yield#########################

X¼PhenoD[,-c(1,2,3,4,5)]

###########Information of all

bands##################################################

All.Bands1¼X

All.Bands¼All.Bands1

X¼X

NIter¼ 25000

Nburn¼ 2500

###################Design matrices###########################

###################

#####Creating the desing matriz of environment ##############

############

Z.E¼model.matrix(�0þas.factor(PhenoD$Env))

#####Creating the desing matriz of Lines ###################

#######

Z.G¼model.matrix(�0þas.factor(PhenoD$Gids))

Z.G1¼Z.G%*%LA

Z.G2¼Z.G%*%LG

KL1¼Z.G1%*%t(Z.G1)

KL11¼Z.G2%*%t(Z.G2)

Z.GE1¼model.matrix(�0þZ.G1: as.factor(PhenoD$Env))

Z.GE2¼model.matrix(�0þZ.G2: as.factor(PhenoD$Env))

KL2¼Z.GE1%*%t(Z.GE1)

KL21¼Z.GE2%*%t(Z.GE2)

#############Training-testing partitions#####################

head(PhenoD[ , 1:6])

DataSet¼PhenoD[, c(1,4,2)]

colnames(DataSet)¼c(“Line”,”Env”,”Response”)

nCV¼ 5

CrossV<-CV.KFold(DataSet, K ¼nCV, set_seed¼ 123)

#length(CrossV$CrossValidation_list$partition3)

Trait_names¼colnames(PhenoD[, 2:3])

results_all<-data.frame()

digits¼ 4

for (t in 1:2)f
#t¼ 1

y1¼ c(PhenoD[, tþ 1])

y2¼ c(y1)

results<-data.frame()

for (o in 1:1)

f
#o¼ 1

index¼250*(o-1)þ250

Data.T¼All.Bands[,(((index-250)þ1):index)]

X11¼ as.data.frame(Data.T)

X11¼data.matrix(X11)

for (j in 1: nCV)

f
#j¼ 1

y1¼ y2

tst¼c(CrossV$CrossValidation_list[[j]])

y_tr¼ y1[-tst];

y_tst¼ y1[tst];

##########Creating the predictor and fitting the model in

BGLR############################

###################Model 1

############################################################

###

X1¼ cbind(Z.E, Z.G1, Z.G2)

X1_tr¼X1[-tst , ];

X1_tst¼X1[tst , ]

A1_RR¼cv.glmnet(X1_tr, y_tr, family="poisson",

alpha¼ 1, type.measure¼“mse”)

yhatM1¼ as.numeric(predict(A1_RR, newx¼X1_tst, s="lambda.min",

type="response"))

y_pM1¼ yhatM1

###Model 2

#####Creating the desing matriz of GenotypexEnviornment

interaction#######################

##########Creating the predictor and fitting the model in

BGLR############################

X2¼ cbind(Z.E, Z.G1, Z.G2, Z.GE1, Z.GE2)

X2_tr¼X2[-tst , ];

X2_tst¼X2[tst , ]

A2_RR¼cv.glmnet(X2_tr, y_tr, family="poisson",

alpha¼ 1, type.measure¼“mse”)

yhatM2¼ as.numeric(predict(A2_RR, newx¼X2_tst, s="lambda.min",

type="response"))

y_pM2¼ yhatM2

###Model 3- for time point 2

#########Selecting the bands corresponding to point time

2#################################

X3¼ cbind(Z.E, Z.G1, Z.G2, data.matrix(X11))

X3_tr¼X3[-tst , ];

X3_tst¼X3[tst , ]

A3_RR¼cv.glmnet(X3_tr, y_tr, family="poisson",

alpha¼ 1, type.measure¼“mse”)

yhatM3¼ as.numeric(predict(A3_RR, newx¼X3_tst, s="lambda.min",

type="response"))

y_pM3¼ yhatM3

###Model 4- for time point 2

#########Creating the design matrix for the functional regression

part using bspline

basis##############

n.basis¼ 21

bspl ¼ create.bspline.basis(range(c(Wavelengths)),nbasis¼n.basis,

breaks ¼ NULL, norder¼ 4)

n.ind¼dim(All.Bands)[1]
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X.FDA¼matrix(NA, nrow¼n.ind, ncol¼n.basis)

for (h in 1: n.ind)f
#Usando la función directamente

smf¼smooth.basisPar(argvals¼c(Wavelengths),y¼as.numeric(Data.T

[h , ]),lambda¼ 0.1, fdobj¼bspl, Lfdobj¼ 2)

cv_sp_pn ¼ smf$fd$coefs# Coeficientes cj directamente

I_KL ¼ inprod(bspl, bspl)

xt_h¼ t(I_KL%*%cv_sp_pn)

X.FDA[h , ]¼xt_h

g
X.FDA¼data.matrix(X.FDA)

X4¼ cbind(Z.E, Z.G1, Z.G2, X.FDA)

X4_tr¼X4[-tst , ];

X4_tst¼X4[tst , ]

A4_RR¼cv.glmnet(X4_tr, y_tr, family="poisson",

alpha¼ 1, type.measure¼“mse”)

yhatM4¼ as.numeric(predict(A4_RR, newx¼X4_tst, s="lambda.min",

type="response"))

y_pM4¼ yhatM4

###Model 5- for time point 2

#######Creating the design matrix for the functional regression part

using Fourier

basis#########

bspF¼create.fourier.basis(range(c(Wavelengths)),nbasis¼n.basis, per

iod¼diff(range(c(Wavelengths))))

X.Fu¼matrix(NA, nrow¼n.ind, ncol¼n.basis)

for (h in 1: n.ind)f
#Usando la función directamente

smf¼smooth.basisPar(argvals¼c(Wavelengths),y¼as.numeric(Data.T

[h , ]),lambda¼ 0.1, fdobj¼bspF, Lfdobj¼ 2)

cv_sp_pn ¼ smf$fd$coefs# Coeficientes cj directamente

I_KL ¼ inprod(bspl, bspl)xt_h¼ t(I_KL%*%cv_sp_pn)

X.Fu[h , ]¼xt_h

g
X.Fu¼data.matrix(X.Fu)

X5¼ cbind(Z.E, Z.G1, Z.G2, X.Fu)

X5_tr¼X5[-tst , ];

X5_tst¼X5[tst , ]

A5_RR¼cv.glmnet(X5_tr, y_tr, family="poisson",

alpha¼ 1, type.measure¼“mse”)

yhatM5¼ as.numeric(predict(A5_RR, newx¼X5_tst, s="lambda.min",

type="response"))

y_pM5¼ yhatM5

###Model 6- for time point 2

#######Creating the design matrix for the functional regression part

using Fourier

basis#########

X6¼ cbind(Z.E, Z.G1, Z.G2, Z.GE1, Z.GE2, X.FDA)

X6_tr¼X6[-tst , ];

X6_tst¼X6[tst , ]

A6_RR¼cv.glmnet(X6_tr, y_tr, family="poisson",

alpha¼ 1, type.measure¼“mse”)

yhatM6¼ as.numeric(predict(A6_RR, newx¼X6_tst, s="lambda.min",-

type="response"))

y_pM6¼ yhatM6

###Model 7- for time point 2

#######Creating the design matrix for the functional regression part

using Fourier

basis#########

X7¼ cbind(Z.E, Z.G1, Z.G2, Z.GE1, Z.GE2, X.Fu)

X7_tr¼X7[-tst , ];

X7_tst¼X7[tst , ]

A7_RR¼cv.glmnet(X7_tr, y_tr, family="poisson",

alpha¼ 1, type.measure¼“mse”)

yhatM7¼ as.numeric(predict(A7_RR, newx¼X7_tst, s="lambda.min",

type="response"))

y_pM7¼ yhatM7

###Model 8- for time point 2

#######Creating the design matrix for the interaction between

Environments and

Bands#########

Z.IT¼model.matrix(�0þZ.E: as.matrix(X11))

X8¼ cbind(Z.E, Z.G1, Z.G2, X11, Z.IT)

X8_tr¼X8[-tst , ];

X8_tst¼X8[tst , ]

A8_RR¼cv.glmnet(X8_tr, y_tr, family="poisson",

alpha¼ 1, type.measure¼“mse”)

yhatM8¼ as.numeric(predict(A8_RR, newx¼X8_tst, s="lambda.min",

type="response"))

y_pM8¼ yhatM8

###Model 9- for time point 2

X9¼ cbind(Z.E, Z.G1, Z.G2, Z.GE1, Z.GE2, X11, Z.IT)

X9_tr¼X9[-tst , ];

X9_tst¼X9[tst , ];

A9_RR¼cv.glmnet(X9_tr, y_tr, family="poisson",

alpha¼ 1, type.measure¼“mse”)

yhatM9¼ as.numeric(predict(A9_RR, newx¼X9_tst, s="lambda.min",

type="response"))

y_pM9¼ yhatM9

###Model 10- for time point 2

Z.IF¼model.matrix(�0þZ.E: X.FDA)

X10¼ cbind(Z.E, Z.G1, Z.G2, X.FDA, Z.IF)

X10_tr¼X10[-tst , ];

X10_tst¼X10[tst , ];

A10_RR¼cv.glmnet(X10_tr, y_tr, family="poisson",

alpha¼ 1, type.measure¼“mse”)

yhatM10¼ as.numeric(predict(A10_RR, newx¼X10_tst, s="lambda.

min",type="response"))

y_pM10¼ yhatM10

###Model 11- for time point 2

Z.IFu¼model.matrix(�0þZ.E: X.Fu)

X11¼ cbind(Z.E, Z.G1, Z.G2, X.Fu, Z.IFu)

X11_tr¼X11[-tst , ];

X11_tst¼X11[tst , ];

A11_RR¼cv.glmnet(X11_tr, y_tr, family="poisson",

alpha¼ 1, type.measure¼“mse”)

yhatM11¼ as.numeric(predict(A11_RR, newx¼X11_tst, s="lambda.

min",type="response"))

y_pM11¼ yhatM11

###Model 12- for time point 2

X12¼ cbind(Z.E, Z.G1, Z.G2, Z.GE1, Z.GE2, X.FDA, Z.IF)

X12_tr¼X12[-tst , ];

X12_tst¼X12[tst , ];

A12_RR¼cv.glmnet(X12_tr, y_tr, family="poisson",

alpha¼ 1, type.measure¼“mse”)

yhatM12¼ as.numeric(predict(A12_RR, newx¼X12_tst, s="lambda.

min",type="response"))

y_pM12¼ yhatM12

###Model 13- for time point 2

X13¼ cbind(Z.E, Z.G1, Z.G2, Z.GE1, Z.GE2, X.Fu, Z.IFu)

X13_tr¼X13[-tst , ];

12 | G3, 2021, Vol. 11, No. 2



X13_tst¼X13[tst , ];

A13_RR¼cv.glmnet(X13_tr, y_tr, family="poisson",

alpha¼ 1, type.measure¼“mse”)

yhatM13¼ as.numeric(predict(A13_RR, newx¼X13_tst, s="lambda.

min",type="response"))

y_pM13¼yhatM13

results<-rbind(results, data.frame(Position¼tst,

Environment¼CrossV$Environments[tst],

Trait ¼Trait_names[t],

Partition ¼j,

Observed ¼ round(y2[tst], digits), #$response, digits),

PredictedM1¼ round(y_pM1, digits),

PredictedM2¼ round(y_pM2, digits),

PredictedM3¼ round(y_pM3, digits),

PredictedM4¼ round(y_pM4, digits),

PredictedM5¼ round(y_pM5, digits),

PredictedM6¼ round(y_pM6, digits),

PredictedM7¼ round(y_pM7, digits),

PredictedM8¼ round(y_pM8, digits),

PredictedM9¼ round(y_pM9, digits),

PredictedM10¼ round(y_pM10, digits),

PredictedM11¼ round(y_pM11, digits),

PredictedM12¼ round(y_pM12, digits),

PredictedM13¼ round(y_pM13, digits)))

ggresults_all<-rbind(results_all, results)

g
results_all

write.csv(results_all, file ¼“HTP_Count_T1.csv”)
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