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With a large number of disordered proteins and their important functions discovered, it is highly desired to develop effective
methods to computationally predict protein disordered regions. In this study, based on Random Forest (RF), Maximum Relevancy
Minimum Redundancy (mRMR), and Incremental Feature Selection (IFS), we developed a new method to predict disordered
regions in proteins. The mRMR criterion was used to rank the importance of all candidate features. Finally, top 128 features were
selected from the ranked feature list to build the optimal model, including 92 Position Specific ScoringMatrix (PSSM) conservation
score features and 36 secondary structure features. As a result, Matthews correlation coefficient (MCC) of 0.3895 was achieved on
the training set by 10-fold cross-validation. On the basis of predicting results for each query sequence by using the method, we
used the scanning and modification strategy to improve the performance. The accuracy (ACC) and MCC were increased by 4%
and almost 0.2%, respectively, compared with other three popular predictors: DISOPRED, DISOclust, and OnD-CRF.The selected
features may shed some light on the understanding of the formation mechanism of disordered structures, providing guidelines for
experimental validation.

1. Introduction

The protein structure-function paradigm has been believed
as a dogma in the 20th century. However, the discovery of
intrinsically disordered proteins, which have regions devoid
of stable secondary structures or have a large number of
conformations [1], challenges the traditional view and calls
for reassessment of the paradigm.

Eukaryotic proteins apparently havemore intrinsic disor-
dered regions than those of bacteria or archaea [2], suggesting
also more important functions such as being involved in
signaling and regulation of gene expression [3]. Lack of

intrinsic structures could render protein additional func-
tions, including binding to different targets [4], transcrip-
tional regulation, translational regulation, and cellular signal
transduction regulation [5].

Although there is a growing amount of disordered
proteins discovered or shown to have disordered regions
under physiological conditions [6], most of themwere poorly
detected by experimental approaches [2, 4, 5, 7–9]. Firstly,
such experimental methods are often time consuming and
expensive. Furthermore, it is believed, in X-ray crystallog-
raphy, that regions missing electron density were related to
disorder in many protein structures [6]. However, without

http://dx.doi.org/10.1155/2013/414327


2 BioMed Research International

additional experiments, it is not sure whether a low electron-
density region is intrinsically disordered or is a wobbly
domain, or just the result of technical difficulties [2]. NMR
spectroscopy, one of the most readily suited techniques
for detecting disordered proteins in solution, could also
underrepresent a native molten globular domain, which is
one of the types of disordered regions [2].

Generally speaking, intrinsically disordered proteins
have a biased amino acid composition. Weathers and col-
leagues reported that amino acid composition was sufficient
to be used to accurately recognize disorder [10]. Several
algorithms for predicting intrinsically disordered proteins
have been developed, such as DISOPRED [11], DISOclust
[12], and OnD-CRF [13]. DISOPRED is a web service,
which is trained on high resolution X-ray crystal structures
and identifies disorder when the electron density map of a
residue misses coordinates. It is initially generated sequence
profile by a PSI BLAST [14] searching. After being trained
using a support vector algorithm, the classifier can output a
probability estimate. However, a limitation of this algorithm
is that coordinatesmissingmay be caused by the artifact of the
crystallization process rather than disorder. DISOclust, based
on analysis of three-dimensional structure models, identifies
disorder when residues change or are consistently missing.
OnD-CRF is a method for predicting the transition between
structured and disordered regions. The approach uses condi-
tional random fields relying on features derived from amino
acid sequences and secondary structure prediction results.

In the present study, we developed a new strategy for ana-
lyzing and predicting protein disordered regions by means
of Random Forest (RF), Maximum Relevancy Minimum
Redundancy (mRMR), Incremental Feature Selection (IFS),
and a scanning and modification strategy. Optimal feature
set was selected from candidate features, containing Position
Specific Scoring Matrix (PSSM) conservation score features
and secondary structure features. Our method outperformed
other three existing disorder predictors achieving the highest
ACC and MCC values.

2. Materials and Methods

2.1. Benchmark Dataset. In this study, disordered proteins
were downloaded from the Database of Protein Disorder
(DisProt) (version 4.9) [8], which is constructed based on
literature description, providing structured and functional
information for intrinsically disordered proteins. Ordered
proteins were collected from DisProt database and PDB-
Select-25 (the October 2008 version) [15]. PDB-Select-25
is a representative subset of the Protein Data Bank (PDB),
containing protein families less than 25% sequence identity
[16]. Data was preprocessed according to the following
criteria. (i) Only disordered protein chains having more than
50 residues and only proteins with low resolution (≥2 Å) were
retained. (ii) Only chains having no missing backbones or
side chain coordinates were retained. Finally, 960 protein
chains containing 293,780 residues were obtained, in which
55,637 residues were in disordered regions. All protein chains
were divided randomly into training set and test set.

A 21-residue sliding window approach was employed
along each of the protein sequence, containing the center
ordered or disordered residue and 10 residues upstream
and downstream of the center residue. Since the dataset
used in this study was an unbalanced dataset with much
more ordered samples than disordered ones, for the training
set, we randomly selected the equal number of ordered
samples tomatch the disordered ones. Finally, 43,903 ordered
samples and 43,903 disordered samples from 753 proteins
were obtained in the training set, which can be found
in Online Supporting Information S1 available online at
http://dx.doi.org/10.1155/2013/414327. The test set contained
54,582 ordered samples and 11,734 disordered samples from
192 proteins, which were given in Online Supporting Infor-
mation S2.

2.2. Feature Extraction

2.2.1. Feature of PSSM Conservation Scores. Evolutionary
conservation is considered important in biological sequence
analysis. Amore conserved residue within a protein sequence
indicates that it is under stronger selective pressure and hence
more important for the protein function. Mutations on such
residues may cause significant changes of the protein. In view
of this, we used conservation scores to encode peptides.

Herein, the Position Specific Iterative BLAST (PSI
BLAST) was employed to measure the conservation status
for a specific residue. For each residue, a 20-dimensional
vector was calculated to denote the conservation probabilities
of mutations to 20 basic amino acids. For a given protein
sequence, a Position Specific ScoringMatrix (PSSM [17]) was
obtained, which was constructed by all vectors of all residues
in the sequence.

2.2.2. Feature of Secondary Structures. Intrinsically disor-
dered proteins are devoid of well-defined tertiary structures
under physiological conditions; however, generally speaking,
they often display signs of local secondary structures [18,
19]. After statistical analysis of complex of 24 intrinsically
disordered proteins, Fuxreiter et al. [20] found that some
regions in disordered proteins had strong preference for
helical structures. Therefore, in this study, each amino acid
was encoded as three types of secondary structures: helix,
strand, or coil, as predicted by SSPro [21]. Helix, strand, and
coil are the threemajor kinds of protein secondary structures.
Helix is the protein region with spiral conformation. Strand
is a protein structural unit of twisted, pleated sheet. The coil
region is the region that does not belong to helix or strand.
SSPro predicts the protein secondary structures based onPSI-
BLAST profiles with an ensemble neural network model [21].

Thus, each 21-residue peptide was encoded into a vector
containing (20+3)×21 = 483 features.The features are named
with following rules: first, the amino acid position (“AA” with
position), then, feature types (“PSSM” and “SS”), and last,
detail information. For PSSM features, it is the amino acid
type. For secondary structure (SS) features, it is the secondary
structure code. In secondary structure code, H, E, and C
strand for helix, strand, and coil, respectively.
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2.3.MaximumRelevancyMinimumRedundancy (mRMR). A
classification model containing more features may not have
more discriminating power. Additional features may have
detrimental effects on the classification such as slowing down
the learning process and causing overfitting the training data.
It is believed that feature selection is an effective way of
reducing the dimension of the feature space to improve the
prediction performance.

The Maximum Relevancy Minimum Redundancy
(mRMR) method was used in this study to select an optimal
feature subset. The mRMR was originally developed by Peng
et al. [22] to deal with the microarray data processing. If a
feature had better tradeoff between maximum relevance to
the target and minimum redundancy among other features,
it was deemed as a better feature and would be ranked first
(with a smaller index) in the final ordered list. The algorithm
is described briefly below.

To determine the relevance properties of the feature
space, the mutual information (MI), denoted as 𝐼, is defined
as

𝐼 (𝑥, 𝑦) = ∬ 𝑃 (𝑥, 𝑦) log
𝑃 (𝑥, 𝑦)

𝑃 (𝑥) 𝑃 (𝑦)
𝑑𝑥 𝑑𝑦, (1)

where 𝑥 and 𝑦 are two random variables. 𝑃(𝑥, y) is the
joint probabilistic density function of 𝑥 and 𝑦. 𝑃(𝑥) and
𝑃(𝑦) are the margin probabilistic density functions of 𝑥

and 𝑦, respectively. To calculate MI, the joint probabilistic
density function 𝑃(𝑥, 𝑦) and the margin probabilistic density
functions 𝑃(𝑥) and 𝑃(𝑦) should be given in advance.

Suppose𝐺 denotes the entire feature space; we aim to find
a subset 𝑆 of the features to satisfy both maximum relevance
and minimum redundancy.

Based on MI, the following mRMR function is con-
structed:

max
𝑓𝑗∈Ω𝑡

[

[

𝐼 (𝑓𝑗, 𝑐) −
1

𝑚
∑

𝑓𝑖∈Ω𝑠

𝐼 (𝑓𝑗,𝑓𝑖)
]

]

(𝑗 = 1, 2, . . . , 𝑛) , (2)

where Ω𝑠 is the already selected feature set and Ω𝑡 is the to-
be-selected feature set, and 𝑚 and 𝑛 are the sizes of these two
feature sets, respectively. The higher the ordered rank is, the
more important the feature is.

A parameter is introduced here to deal with the continu-
ous variables. In our study, 𝑡 was assigned to be 1. Finally, an
ordered feature list was obtained in which better features had
smaller indexes.

The mRMR software could be obtained from http://
penglab.janelia.org/proj/mRMR/.

2.4. The Random Forest (RF) Method. The Random Forest
(RF) algorithm, firstly introduced by Svetnik [23] in 2003, is a
combining ensemble tree-structured classifier.The individual
decision tree in the forest depends on a random vector and
has independent identically distribution.The Random Forest
has been widely used in various fields such as economics and
medical and text categorization. It has been also successfully
employed in biological prediction problems [24–26] and even
can efficiently handle large-scale dataset.

In our research,we use theRandomForest (RF) algorithm
to construct a prediction model to predict whether an amino
acid is in disordered region or not. The method is briefly
introduced as follows.

Firstly, 10 decision trees are grown according to the
following criteria.

(a) Suppose the number of cases in the training data is𝑀;
sample 𝑀 cases randomly with replacement from the
original data to keep the size of the original data not
changing.

(b) When dealing with each note, 𝑛 predictors are
selected randomly in terms of 𝑁 features (where 𝑛 ≪

𝑁). The split on the 𝑛 predictors is also implemented
to split the corresponding note. The m value is set to
constant.

(c) Each tree is grown as large as possible and unneces-
sarily pruned. Then each tree gives the queried input
a classification. Finally, the forest will choose the one
that has the most votes among the trees.

In this study, the Random Forest classifier in Weka was
employed with default parameters. The WEKA program
is available at http://www.cs.waikato.ac.nz/ml/weka/index
downloading.html.

2.5. The Cross-Validation Method. In the literature, cross-
validation methods are used to evaluate the stability of a
predictor. The independent dataset test, subsampling (𝑘-
fold cross-validation), and jackknife analysis are the three
methods generally used [27]. For a given benchmark dataset,
the jackknife test generates a unique outcome and is deemed
as the most objective one compared to other two methods,
as elucidated in [28, 29] and demonstrated by [30, equations
(28)–(32)] in. However, to reduce the computational time,
in this study, 10-fold cross-validation test was used instead
of jackknife test. During the 10-fold cross-validation, the
whole dataset is divided into 10 equal parts. Each part is in
turn used as test set and the remaining 9 parts as training
set. We introduced prediction accuracy (ACC), specificity
(SP), sensitivity (SN), and Matthews correlation coefficient
(MCC) to evaluate the performance of the predictor, which
are calculated as follows:

ACC =
TP + TN

TP + TN + FP + FN
,

SN =
TP

TP + FN
,

SP =
TN

TN + FP
,

MCC

=
TP × TN − FP × FN

√(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)

,

(3)

where TP, TN, FP, and FN stand for the number of true
positive, true negative, and false positive, false negative
samples, respectively.

http://penglab.janelia.org/proj/mRMR/
http://penglab.janelia.org/proj/mRMR/
http://www.cs.waikato.ac.nz/ml/weka/index_downloading.html
http://www.cs.waikato.ac.nz/ml/weka/index_downloading.html
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2.6. Incremental Feature Selection (IFS). The incremental
feature selection (IFS) [31–33] procedure was used to find an
optimal subset from the mRMR feature list generated above.
Suppose the total number of the features is 𝑁; we can obtain
𝑁 feature subsets which are initiated from a subset containing
one feature and generated by adding them one by one from
the mRMR feature list.

The 𝑖th subset is denoted by

𝑆𝑖 = {𝑓1, 𝑓2, . . . , 𝑓𝑖} (1 ≤ 𝑖 ≤ 𝑁) . (4)

Based on the 𝑁 feature subsets, 𝑁 Random Forest
predictors were constructed with 10-fold cross-validation
evaluating its performance. Then the IFS curve of MCC to
the feature subset index 𝑖was plotted, in which the peak point
was noted as ℎ. Finally an optimal feature subset was obtained
with which the corresponding predictor yields the bestMCC.

3. Results and Discussion

3.1. Feature Reduction. We calculated the Cramer’s 𝑉 coef-
ficient [34, 35] between features and targets. The Cramer’s
𝑉 coefficient is a statistical measurement derived from the
Pearson chi-square test [36]. It ranges from 0 to 1 with smaller
value indicatingweaker association. FeatureswithCramer’s𝑉

coefficient less than 0.1 were removed. After this procedure,
175 features remained containing 112 PSSM conservation
features and 63 secondary structure features, which can be
found in Online Supporting Information S3.

3.2.ThemRMRResult. Two kinds of outcomeswere obtained
after executing the mRMR program. One was called “MaxRel
feature list” that ranked the features according to the rele-
vance to the target; the other was named “mRMR feature list”
that ranked the features based on the criteria of maximum
relevance and minimum redundancy. In our research, only
the “mRMR feature list” was used to select optimal feature
subset in the IFS procedure. It was listed inOnline Supporting
Information S4.

3.3. IFS and Optimal Feature Subset. 175 predictors were
constructed based on the 175 feature subsets in the IFS
procedure. Prediction results of the predictors were listed in
Online Supporting Information S5 and the IFS curve was
plotted in Figure 1 in which the MCC reached the topmost
0.3895 with 128 features on the training set. Thus, the top 128
features were considered as the optimal feature subset and
were used to construct the final predictor. The 128 features
were given in Online Supporting Information S6. The MCC
of the predictor on independent test set was 0.2791.

3.4. Feature Analysis. The distribution of the feature types in
the final optimal feature set was shown in Figure 2. In the
128 optimal features, 92 were from PSSM conservation scores
and 36 from secondary structure features (Figure 2(a)). The
two types of features contributed to the prediction. It can be
seen from the site-specific distribution of the optimal feature
set (Figure 2(b)) that features at sites 8–14 played important
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Figure 1: The IFS curve showing the Matthews correlation coeffi-
cient (MCC) against the number of features. The details were given
in Online Supporting Information S5. With the top 128 features,
the MCC on training set by 10-fold cross-validation takes the peak
0.3895.

roles. In addition, features at sites 1-2, sites 5-6, and sites 15–17,
19, and 21 also had considerable impacts on the prediction of
disordered protein.

3.5. PSSM Conservation Score Feature Analysis. As men-
tioned above, among the 128 optimal features, 92 belonged
to the PSSM conservation scores, accounting for the most.
Mutations to 20 different amino acids could have different
impacts in determining the disordered regions. It can be
clearly seen from Figure 3(a) that only 8 out of 20 amino acid
mutationswere affected. In this regard, the amino acid P (Pro-
line) or S (Serine) could impact most, successively followed
by K (Lysine), Q (Glutamine), and so forth. Interestingly,
it has been reported that Q was overrepresented in protein
interaction domains [37]. It was recently reported that the
Ure2p prion and other Q/N-rich yeast prion proteins, which
were completely disordered, were driven to format amyloid
primarily by intermolecular interactions [38]. Meanwhile,
as shown in Figure 3(b), for the 21-length peptides, PSSM
conservation scores at sites 8–15 played the most important
role. Furthermore, 6 out of the top 10 features in the optimal
feature list were PSSM conservation features. The first one
was the conservation feature against residue K (Lys) at site 6
(index 2, “AA6 PSSM-12-K”). The other 5 were conservation
features against residues E, P, and K at sites 7, 1, and 8,
respectively (index 5, “AA7 PSSM-7-E”, index 6, and index 7,
“AA1 PSSM-15-P” and “AA8 PSSM-12-K”) and conservation
features against residue E, D at site 21 and site 15 (index 6 and
index 7, “AA21 PSSM-7-E” and “AA15 PSSM-4-D”).

3.6. Secondary Structure Feature Analysis. The feature sub-
types and site-specific distributions of the secondary struc-
ture features in the optimal feature set were plotted in
Figure 4. From Figure 4, it can be seen that features of “coil”
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Figure 2:The distribution of feature types and amino acid sites in optimal feature subset. The histograms show the number of each type and
each site of features in optimal feature subset. In (a), there are 92 PSSM features and 36 secondary structure features. (b) provides the site
distributions of the features in the optimal feature set.
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Figure 3: The distribution of amino acid compositions and sites on PSSM conservation feature. The histograms reveal the types and site
distributions of PSSM features in the optimal feature set. (a) indicates the effects on prediction of mutations to 20 different amino acids. (b)
provides the site distributions of the PSSM features in the optimal feature set.
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Figure 4: The distribution of secondary structure types and amino acid sites on secondary structure feature. The histograms give the types
and site distributions of secondary structure features in the final optimal feature set. (a) indicates the effects on prediction of three different
types of secondary structures: coil, strand, and helix. (b) provides the site distributions of the secondary structure features in the optimal
feature set.

and “strand” did affect the disorder (Figure 4(a)). And the
“coil” feature was affected the most, followed by the “strand”
feature. The secondary structure features at 15 out of 21
sites had relatively more impact than the left 5 (Figure 4(b)).
Intrinsically disordered and aggregation-prone domains exist
within the very diverse set of human extracellularmatrix pro-
tein [39]. Recently Evans reported that the aragonite extra-
cellular matrix proteins (AECMPs) had evolved signature
molecular traits of intrinsically disordered and aggregation-
prone “interactive” sequences that enabled matrix assembly
[40]. It was also reported that cyclization of the skeletal
DHPR II-III loop affected the secondary structures and the
dynamic properties of the helical A/B region as well as the
critical C region.These structural effects were correlated with
a change in vitro activation profile of the RyR1 and with
an interaction with DHPR II-III loop 𝛼-helical recognition
sites in the SPRY2 domain of RyR1 [41]. So it is believed the
sequence location and number of intrinsically disordered and
secondary motifs may be important for aggregation, protein
orientation, and assembly stability andmay also play a role in
the recognition and interaction between proteins with other
specific component(s).

3.7. Scan the Entire Protein Sequence to Refine the Disordered
Region Prediction. Theprediction result of the predictor con-
structed based on the 128 optimal features on the independent
test was shown in Online Supporting Information S7. The
third column, predicted, was the prediction result where “1”
indicated the residue was in ordered regionwhile “2” denoted
the residue was in disordered region. It can be seen that

many ordered (1) sites were wrong predicted as disordered
(2), resulting in short disordered segments (2) being inserted
in an ordered segment (1), and vice versa. Therefore, we
used a scanning method to refine the prediction results
according to the following criteria [42]. (i) Any predicted
disordered sites (2) were refined to ordered (1) if there were
more than 4 continuous “1s” upstream of the site but less
than 4 continuous “2s” downstream of it. (ii) Any predicted
ordered sites (1) were changed to disordered (2) if there
were more than 4 continuous “2s” upstream of the site
but less than 3 continuous “1s” downstream of it. After the
refinement procedure, the performance improved much as
shown in Table 1. The scanning results can be found in the
last column, scanning, also can be found inOnline Supporting
Information S7.

3.8. Comparison with the Existing Methods. Our method was
compared with three other existing methods, DISOPRED,
DISOclust, and OnD-CRF. The DISOPRED server allows
users to submit a protein sequence and returns a probability
estimate of being disordered of each residue in the sequence
[11]. In the prediction results by DISOPRED, disordered
residues were marked with asterisks (∗) and ordered residues
were marked with dots (⋅). The prediction results by DISO-
clust were formulated by a series of “D” and “O,” denoting
the residues being in disordered region and ordered region,
respectively. The predicting result by Ond-CRF only delivers
users the information of disordered regions. As a result, our
method outperformed the other three existing methods. As
shown in Table 1, the ACC and MCC were improved to
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Table 1: The evaluation of prediction result on independent test set by different methods.

Method Accuracy
(ACC)

Matthews correlation coefficient
(MCC)

Sensitivity
(SN)

Specificity
(SP)

Before scanning 0.7028 0.2791 0.7189 0.6281
After scanning 0.7508 0.3304 0.7806 0.6118
DISOPRED 0.7173 0.3285 0.7239 0.6864
DISOclust 0.6650 0.3105 0.6453 0.7570
OnD-CRF 0.6562 0.3228 0.6265 0.7941

a certain extent, at least 4% increase on ACC and almost
0.2% increase on MCC. It is suggested that our method is
pretty more effective than other methods on prediction of
intrinsically disordered protein region.

3.9. Useful Insights for Guiding Experiments or Being Vali-
dated by Experiments. About 50% of human proteins were
previously predicted to contain at least one larger disordered
region, and it was shown that the main reason for the
existence of such regions was to harbor binding sites [43]. In
this study, the selected features at different sites could provide
insights for researchers to find or validate new disordered
protein or disordered regions, as can be seen from the
following two aspects. (i) PSSM feature: it was found from
the results that the PSSM conservation score that mutates to
amino acid P or S had the most impact. Besides, mutations
to amino acids K, Q, and E also had more impacts than
others. However mutations to other 12 amino acids were
affected little. For example, phosphorylation of Ser66 in
the intrinsically disordered N-terminal region of AtREM1.3
weakened the interaction strength with importin 𝛼 proteins,
indicating a regulatory domain in the N-terminal region
stabilizing the interactions [44]. (ii) Secondary structure
feature: it was found in our optimal feature set that the second
structure feature at site 11 had the ranking index 1, implying
the most important role to the prediction. Interestingly, it has
been reported that disorder regions often correlated domain
boundaries where usually harbor some coil structures [45].
Accordingly, other features in the optimal feature set are
certainly worth being further investigated by future experi-
ments.

4. Conclusion

The plasticity of disordered regions provides interaction
capacity. In this study, we investigated important features
for predicting disordered protein regions. As a result, the
PSSM conservation scores and the second structures are two
types of important features, which play key important roles in
determining disordered regions. Among these, only 8 amino
acids play major roles. The coil and strand structures also
affected the prediction.These may provide additional insight
into disordered proteins.
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