
© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(8):5271-5293 | https://dx.doi.org/10.21037/qims-22-1384

Original Article

Dynamic controllable residual generative adversarial network for 
low-dose computed tomography imaging

Zhenyu Xia1, Jin Liu1,2, Yanqin Kang1,2, Yong Wang1, Dianlin Hu2,3, Yikun Zhang2,3

1School of Computer and Information, Anhui Polytechnic University, Wuhu, China; 2Key Laboratory of Computer Network and Information 

Integration (Southeast University) Ministry of Education, Nanjing, China; 3School of Computer Science and Engineering, Southeast University, 

Nanjing, China

Contributions: (I) Conception and design: Z Xia, J Liu; (II) Administrative support: J Liu, Y Kang, Y Wang; (III) Provision of study materials or 

patients: J Liu, Y Kang, Y Wang, D Hu, Y Zhang; (IV) Collection and assembly of data: Z Xia, J Liu, Y Kang; (V) Data analysis and interpretation: Z 

Xia, J Liu, Y Kang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Dr. Jin Liu. School of Computer and Information, Anhui Polytechnic University, No. 54, Middle Beijing Road, Wuhu 241000, 

China; Key Laboratory of Computer Network and Information Integration (Southeast University) Ministry of Education, No. 2, Sipailou, Nanjing 

210096, China. Email: liujin@ahpu.edu.cn.

Background: Computed tomography (CT) imaging technology has become an indispensable auxiliary 
method in medical diagnosis and treatment. In mitigating the radiation damage caused by X-rays, low-dose 
computed tomography (LDCT) scanning is becoming more widely applied. However, LDCT scanning 
reduces the signal-to-noise ratio of the projection, and the resulting images suffer from serious streak 
artifacts and spot noise. In particular, the intensity of noise and artifacts varies significantly across different 
body parts under a single low-dose protocol. 
Methods: To improve the quality of different degraded LDCT images in a unified framework, we 
developed a generative adversarial learning framework with a dynamic controllable residual. First, the 
generator network consists of the basic subnetwork and the conditional subnetwork. Inspired by the dynamic 
control strategy, we designed the basic subnetwork to adopt a residual architecture, with the conditional 
subnetwork providing weights to control the residual intensity. Second, we chose the Visual Geometry 
Group Network-128 (VGG-128) as the discriminator to improve the noise artifact suppression and feature 
retention ability of the generator. Additionally, a hybrid loss function was specifically designed, including the 
mean square error (MSE) loss, structural similarity index metric (SSIM) loss, adversarial loss, and gradient 
penalty (GP) loss. 
Results: The results obtained on two datasets show the competitive performance of the proposed 
framework, with a 3.22 dB peak signal-to-noise ratio (PSNR) margin, 0.03 SSIM margin, and 0.2 contrast-to-
noise ratio margin on the Challenge data and a 1.0 dB PSNR margin and 0.01 SSIM margin on the real data.
Conclusions: Experimental results demonstrated the competitive performance of the proposed method in 
terms of noise decrease, structural retention, and visual impression improvement.
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Introduction

X-ray computed tomography (CT) is a widely used medical 
imaging technique that can clearly display structural 
information and pathological conditions (1). However, 
exposure to X-ray CT results in potential cancer risk due to 
radiation damage. To ensure patient safety, a new method 
for clinical CT examinations is required that can reduce the 
radiation dose (2-4). This technique is desirable according 
to the “as low as reasonably achievable” (ALARA) principle 
(4,5). The procedure with a reduced X-ray radiation dose 
is called low-dose computed tomography (LDCT) imaging 
and can lead to severe noise artifact contamination in 
the reconstructed image, which can compromise most of 
clinical diagnostic tasks (6).

Over the past two decades, 3 major categories of 
LDCT imaging methods have been introduced, and all are 
currently being researched: (I) projection data filtering (7-9);  
(II) statistical iterative reconstruction (SIR) algorithms  
(10-12); and (III) CT image postprocessing (13-16). 
Alternative CT image postprocessing techniques that do not 
rely on raw projection and that can be easily integrated into 
the existing CT pipeline have been actively explored. Most 
image denoising and restoration methods can be directly 
applied to LDCT image postprocessing. For example, 
Schaap et al. proposed the anisotropic diffusion filter-based 
edge-preserving noise reduction technique for LDCT 
image processing (13), while Borsdorf et al. (14) proposed 
a wavelet correlation analysis method for noise suppression 
in LDCT images. In Watanabe et al. (15), a novel noise 
reduction and contrast enhancement method was proposed 
for lesion detection in abdomen LDCT images, while in Ma 
et al., a robust normal-dose, scan-induced, non-local-mean 
(NLM) filter method for preserving LDCT image spatial 
resolution and low-contrast structure was described (16).  
Kang et al. were the first to apply the block matching 3D 
(BM3D) to improve the quality of LDCT images (17). 
Chen et al., inspired by the theory of compressive sensing, 
adapted discriminative dictionary learning for LDCT 
noise artifact removal (18). Hasan et al. designed a blind 
source separation (BSS)-based method using multiframe 
LDCT image restoration (19). Despite their benefits, these 
methods generally fail to achieve a balance between image 
details, texture features, and noise artifact suppression. 
In processing noise and artifacts of different densities, 
oversmoothing or residual noise artifacts often occur. 
The difficulty in using postprocessing methods is due to 
the nonstationary noise and artifacts in LDCT images: 

magnitudes may vary in different body parts and do not 
obey any specific distribution models.

More recently, deep learning (DL)-based methods 
have emerged as a promising alternative for LDCT image 
restoration. Without using strong prior models, these 
methods can automatically extract useful features for 
new data generation and achieve good performance over 
traditional algorithms (20). Many convolutional neural 
network (CNN)-based methods have been proposed for 
LDCT processing. For example, Kang et al. presented 
competitive performance from a lightweight CNN-based 
framework for LDCT processing (21). Inspired work 
in residual networks (ResNets), Chen et al. combined 
deconvolution and shortcut connections into an encoder-
decoder CNN (22) that proved highly successful in LDCT 
image processing. Meanwhile, Zhang et al. proposed a 
denoising CNN (DNCNN) (23) that uses convolutional 
end-to-end residual learning to separate noise from noisy 
images. Collectively, these methods demonstrate the 
considerable potential of residual structures for image 
processing. However, the feature extraction ability of CNNs 
is restricted by datasets, hardware resources, and running 
time. To improve the feature-learning ability, Goodfellow  
et al. designed a generative model for directly drawing 
samples from the desired data distribution without requiring 
the explicit modeling of the underlying probability density 
function (24). With the help of discriminators, generative 
adversarial networks (GANs) can be a particularly valuable 
tool and have exhibited relatively excellent performance in 
medical image processing (25-30). For example, Radford  
et al. proposed a deep convolutional generative adversarial 
network (DCGAN) architecture that inputs noise data 
by series-upsampling operations and eventually generates 
an image from it, reducing the noise and preserving the 
edge details (25). Gulrajani et al. incorporated residual 
connections into both the generator and discriminator 
and designed a much deeper denoising network, with 
the experimental results showed that this technique can 
recover more structural details (26). Built upon on this 
effective strategy, the Wasserstein distance strategy and 
gradient penalty (GP) constraint were introduced into the 
GAN for cardiac CT image processing (27). To overcome 
the limitations of low-dose and routine-dose image pair-
training preparation, the Noise2Noise model was proposed 
for LDCT image learning (28). To mitigate the problem 
of a lack of training data, a cycle-consistent GAN was 
proposed for LDCT denoising via the learning of unpaired 
image-to-image translation (29). Meanwhile, a similar 
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algorithm, Pix2Pix GAN (30) was developed for low-dose 
myocardial perfusion denoising.

However, the LDCT image degenerative process is 
related to the human tissue structure and does not obey 
any known noise distribution models in the image domain, 
making noise difficult to remove. For example, in one 
low-dose scanner protocol for the pelvis or shoulders, 
there is high attenuation of radiation passing in the lateral 
direction because of the scapulae and hipbone, resulting 
in serious streak artifacts in these areas but fewer artifacts 
in the lung. However, almost all network training requires 
matched training data pairs, and the degenerative process 
of testing data is the same as that of the training data (e.g., 
scanner protocol match, reconstruction algorithm match, 
and scanning region match). These factors can facilitate 
the acquisition of images useful for diagnosis under a 
unified processing framework, especially when using a 
low-dose scanner protocol, but remains challenging to  
implement (31). For example, Shan et al. designed a 
modularized encoder-decoder network based on the 
GAN learning framework that allows the radiologist to 
customize the depth for different sets of LDCT images (32); 
however, it is difficult to directly apply this method to real 
LDCT systems. By leveraging the attention mechanism, 
Liu et al. developed a multiscale reweighted strategy 
and convolutional coding neural network for LDCT  
processing (2). Although these studies involved network 
construction, the performance is limited for complex and 
image content prior-dependent degradation in LDCT 
image processing (33,34). In this study, we adopted a weight 
parameter to control the weighted sum of the residuals 
in ResNet and built a dynamic controllable ResNet 
as a generator. We chose the Visual Geometry Group 
Network-128 (VGG-128) network as a discriminator to 
improve the noise artifact suppression and feature retention 
ability. A hybrid loss function was specifically designed to 
improve network performance during the training process. 

Methods

Our goal was to design a DL-based restoration model that 
takes the degraded LDCT image as inputs and outputs 
a high-quality processed image. Assuming that xLD is the 
corresponding LDCT image and xLD is the corresponding 
routine-dose CT (RDCT) image, their relation can be 
expressed by the following:

( )LD RDx T x=  [1]

where ( )T •  represents a complex degradation process 
involving quantum noise, electronic noise, attenuation 
coefficient, error scattering, and other factors. These 
measurement data can be expressed by a complex Poisson 
noise model or Gaussian noise model (7,35,36). The 
attenuation coefficient integral along the X-ray path is the 
core factor that affects the noise intensity. The difference 
in the attenuation coefficient integral in different tissue 
parts is large. These differences often lead to mottle noise 
and streak artifacts during reconstruction. Figure 1 depicts 
typical 2D views for a patient’s LDCT images. The noise 
and artifact distribution of LDCT images is relatively 
complex, and different body parts have different levels 
of noise and artifact intensity. In the CT images of the 
shoulders and lungs, the streak artifact is obvious, and in 
the CT images of the abdomen, the speckle Poisson noise 
is more prominent than are the artifacts. Additionally, we 
can see that noise magnitudes in the LDCT images have 
nonstationary distributions throughout the tissue.

In this paper, we describe our work of developing a GAN 
with dynamic controllable residual (DR-GAN), which aims 
at modulating the degradation types and levels in LDCT 
images (with a principal focus on noise and artifacts). A 
flowchart of the proposed method is shown in Figure 2. To 
handle different noise and artifact distributions in LDCT 
images and improve the ResNet performance, the generator 
network consists of the basic subnetwork ResNet and the 
conditional subnetwork to control residual intensity via the 
degradation index module. In the GAN leaning framework, 
we chose the VGG-128 network as the discriminator to 
improve the noise artifact suppression and feature retention 
ability of the generator. Additionally, a hybrid loss function 
was specifically designed, which included the mean square 
error (MSE) loss, mean structural similarity index measure 
(MSSIM) loss, adversarial loss, and GP loss.

Dynamic controllable residual

A ResNet unit learns the local and global features via skip 
connections that combine different levels (37). One residual 
block can be expressed as follows:

( ), iY F X W X= +  [2]

where X and Y are the input and output signal of the 
residual block, respectively; F (X) denotes the residue 
feature mapping of the convolution layers; and Wi represents 
the convolution kernel of the i-th layer.
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Through the introduction of skip connections, identity 
mapping can be realized. However, traditional residual 
block identity mapping has a single form, and it is difficult 
to balance the weights of different features during 
complex signal representation. It is therefore not suitable 

for degrading complex LDCT image processing tasks. 
Therefore, in our proposed method, a controllable weight 
is added to the conventional residual connection, thus 
creating a dynamically controllable residual module that 
can adapt to different strengths and form feature mapping. 

A B

C D

Figure 1 LDCT images of different body parts for the same scanner protocol. (A) Shoulder; (B) chest; (C) epigastrium; (D) hypogastrium. 
LDCT, low-dose computed tomography.

Figure 2 The workflow of the DR-GAN learning strategy for LDCT imaging. LDCT, low-dose computed tomography; RDCT, routine-
dose computed tomography; DR-GAN, dynamic controllable residual generative adversarial network.
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By retaining the characteristics of the traditional residual, 
the dynamically controllable residual block can control the 
intensity residual component connection by introducing 
the weight α. The range of α is 0 to 1, which is the weight 
of residual mapping F (X,Wi). The intensity of block output 
Y also comes between X and F (X,Wi)+ X (38-40). As shown 
in Eq. [3], the dynamic residual block can be expressed as 
follows:

( ), iY F X W Xα= × +  [3]

Generator

Inspired by the dynamic controllable strategy, we designed 
a dynamic controllable ResNet as a generator to improve 
the quality of different degraded LDCT images in a unified 
framework. The architecture of the generator G is shown 
in Figure 3. The generator G consists of 2 subnetworks 
and 1 module, the basic subnetwork, the conditional 
subnetwork, and the degradation index module. The basic 
subnetwork is the backbone network. The conditional 
subnetwork is an auxiliary network that is used to generate 
weights for different local dynamically controllable residual 
blocks in the basic subnetwork to assist the learning of 
the basic subnetwork from the degradation index module. 
The degradation index module provides the degradation 
type and level of the training data. Assume there are N 

degradation types { }
1

N

j j
D

=
, then each degradation ( )0,j jD d∈ .  

Thus, we can obtain a degradation index vector for every 
LDCT image. Our goal was to design a restoration model 
that accepts the degraded image combined with the 

degradation index as inputs and generates the processed 
image. Taking any degradation type/level as input, the 
conditional subnetwork converts this into a condition vector 
and then obtains the controllable weights.

In the basic subnetwork, 32 local dynamic residual 
blocks are used to provide different intensities and different 
pattern features to improve the image quality of LDCT. 
One global dynamic residual block is used for similar tissue 
feature compensation.  When the value of α is changed, 
the output shows different degrees of processing effect. 
The basic subnetwork mainly considers learning high-
frequency residual information between low-dose and high-
quality images, and residual features in most regions are 
close to 0. The local dynamic controlled residual block can 
avoid all the information of the training data and reduce 
the complexity and learning difficulty of the model. Adding 
local dynamic controllable residual connections to each 
network block can realize the feature extraction of noise and 
artifacts of a specific intensity and type. Enhanced structure 
preservation can be obtained in this way. Finally, global 
dynamic controllable residual connection, which helps 
accelerate model convergence and promote restoration 
performance, is used in the generator.

Based on previous literature (38-40), the conditional 
subnetwork was designed to consist of a stack of fully 
connected layers, which adds independent fully connected 
layers to each local dynamic controllable residual block and 
a global dynamic controllable residual block in the basic 
subnetwork. To generate the weights α that progress the 
basic subnetwork, each fully connected layer network needs 
to convert the degradation index of the corresponding 

Figure 3 Generator network architecture. LDCT, low-dose computed tomography; Conv, convolution; ReLU, rectified linear unit. 
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image into a controllable weight α. The α dimension size 
is consistent with the feature channel of the residual block. 
The dimension size of the local controllable weights is set 
to 64, while the global controllable weight has a size of 
1. The number of conditional subnetwork hidden layer 
neurons is 128 and 64 for local and global controllable 
weights, respectively.

Discriminator

The function of the discriminator is to promote the 
generator generate high-quality images in the generative 
adversarial learning framework. A modified VGG network 
was designed as discriminator D, as shown in Figure 4. 
The discriminator contains 8 convolution layers. From the 
second layer to the last layer, the convolution kernel size is 
3×3. The stride size of convolution of the first, third, fifth, 
and seventh layers is 1 and that of the remaining layers is 
2. After 1 convolution (Conv) and the leaky rectified linear 
unit (ReLU) layer, the next 7 layers use Conv + batch 
normalization (BN) + leaky ReLU operations to extract 
features at different levels of the image. In dense processing, 
the size of the convolution kernel is set to the same size as 
the previous feature map. Then, 1,024×32×32 convolutions 
are used to convolve the output characteristic diagram. The 
feature map is changed into a full connection (FC) layer 
in the form of 1,024 (FC 1,024). Finally, the FC + sigmoid 
operation is used to distinguish the true or false input 
image. By alternately training 2 networks, the generator 
produces a better estimation and generates a high-quality 
noise artifact-suppressed LDCT image.

Hybrid loss function

We further considered a hybrid loss function to optimize our 
model. In many previous studies (27,41), better performance 
was achieved through the integration of multiple objective 
functions. The widely used loss functions for image 
restoration are MSE and L1. In a previous study (42),  
structural similarity index metric (SSIM) was adopted to 
boost the structure feature closer to the ground truth. 
Similar to these methods, our proposed network adopted a 
hybrid consistency loss function. To maintain measurement 
consistency and learn more high-frequency details, we used 
the MSE as our main loss. To enhance the edge structural 
information and achieve a better visual effect, we introduced 
the MSSIM as an auxiliary loss. The adversarial loss, MSE 
loss, and MSSIM loss can improve the visual performance 
and mitigation oversmoothness.

To learn more high-frequency details, the MSE, which is 
also referred to as the L2 norm, is used as the loss function:

( )( ) ( ) 2

2
,MSE LD RD LD RDL G x x G x x= −  [4]

where ( )G •  is the generator G. To enhance the edge 
structural information, we introduce the MSSIM loss, 
which is formulated as follows:

( )( ) ( )( ), 1 ,MSSIM LD RD SSIM LD RDL G x x M G x x= −  [5]

where ( )SSIMM •  is calculated as the mean value of SSIM 
values in the patch set. The MSSIM value ranges from 0 
to 1, with a larger value indicating better image quality. 
Therefore, the network training functions to minimize the 
following hybrid loss function LH:

Input

FC 1,024

RDCT/LDCT

32×32×512
64×64×51264×64×256

128×128×256128×128×128

256×256×128
256×256×64

512×512×64

Conv + Leaky ReLU

Conv + BN + Leaky ReLU

Dense + Leaky ReLU

FC + Sigmod

Figure 4 The discriminator network architecture. Conv, convolution; ReLU, rectified linear unit; BN, batch normalization; FC, full 
connection; RDCT, routine-dose computed tomography; LDCT, low-dose computed tomography.
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min =H MSE MSSIMG
L L Lα+  [6]

where α denotes the weight of different loss terms.
The Wasserstein GAN with gradient penalty (WGAN-

GP) optimizing strategy was introduced to mitigate the 
oversmoothing effect. The final LDCT processing objective 
function is formulated as follows:

( ) ( )min max ,WGAN HG D
L D G L G+η  [7]

where is optimization objective of WGAN-GP, and η is 
the hyperparameter to balance the difference loss. During 
GAN training, the loss function of the generator may be 
constant at zero, and the gradient will disappear. To solve 
this problem, WGAN-GP uses the Wasserstein distance 
and GP to boost performance with the following objective 
function:

( ) ( ) ( )( )

( )( )2

ˆ ˆ ˆ 2

min max ,

ˆ 1

RD LDWGAN x RD x LDG D

x x x

L D G E D x E D G x

E D xλ

 = − +    

 + ∇ ∇ −    

 [8]

where x̂  stands for the random interpolation sampling on 
the connection between xRD and G (xLD), and λ represents the 
hand-crafted penalty coefficient. As illustrated in Figure 2,  
DR-GAN includes 2 major components: the generator G 
and the discriminator D. Taking the LDCT image xLD as 
input, the generator G produces an estimation G (xLD) for 
the RDCT image xRD. Then, the discriminator D guides 
the generator G to provide more realistic and high-quality 
images.

Comparison studies

Four methods were compared with DR-GAN, including 
filtered backprojection (FBP) (ramp filter), BM3D (17), 
residual encoder-decoder (RED) (22), and WGAN-GP (27). 
BM3D is known as a single-image block-matching iterative 
denoising method and here was applied for LDCT image 
processing. For BM3D, the noise type was additional white 
noise and pink noise, and the noise variance was 4×10−4 in 
our experiments. The RED method is a well-known LDCT 
image processing method trained by MSE loss; the number 
of convolution layers and deconvolution layers were set 
as 5, while the convolution size was set to 5×5. WGAN-
GP is a postprocessing technique based on the generative 
model. The generator (without controllable weight) and 
discriminator have the same structure as does DR-GAN. 
WGAN-GP was trained by MSE and adversarial loss. 

All parameters were set according to the papers in which 
they were originally described (17,22,27). All CNN-
based methods were implemented in the TensorFlow DL 
framework. The platform was configured with an Intel(R) 
Core (TM) i5 3.00 GHz CPU and an NVIDIA Titan X 
graphical processing unit (GPU) with 12 GB of memory. 
To accelerate the convergence of the model, all training and 
testing were completed on a GPU.

Experimental setup

Challenge data
Use of the American Association of Physicists in Medicine 
(AAPM) Challenge data was authorized, and the data 
were downloaded from the 2016 National Institutes of 
Health (NIH)-AAPM-Mayo Clinic Low Dose CT Grand 
Challenge (https://www.Mayo.org/GrandChallenge/
LowDoseCT/) (43). The Challenge data includes RDCT 
images from 10 patients (1 for validation, 1 for testing, and 
8 for training). A fan-beam X-ray protocol was simulated to 
obtain the low-dose projections. The simulation geometric 
configuration was as follows: detector element size,  
1.28 mm; detector element number, 736; distance from 
the source to the detector, 1,085.6 mm; distance from the 
source to the isocenter, 595 mm; and projection number 
per scanner cycle, 720. Poisson noise was added the 
routine-dose projection data to generate low-dose data (the 
X-ray incident photon intensity was I0=5×104 to simulate 
Poisson noise) (44). All images reconstructed with the 
analytic reconstruction (FBP, ramp filter) method had 512× 
512 pixels, with each pixel measuring 0.8×0.8 mm2 in size.

Real data
In this second set, real clinical data collected from 
United Imaging Healthcare (UIH) were used to further 
validate the performance of the proposed DR-GAN 
method (uCT-760 scanning unit). The dataset includes 
RDCT projections from 14 anonymous patients (12 for 
training, 1 for validation, and 1 for testing). A Chemical 
Inspection & Regulation Service (CIRS) phantom (3D 
Abdominal Phantom, Model 057A) CT dataset was adopted 
for quantitative analysis. The study was conducted in 
accordance with the Declaration of Helsinki (as revised 
in 2013). The protocol for scanning data collection and 
processing was approved by the institutional ethical review 
board of the UIH (No. 2015-07). Informed consent was 
obtained from all individual participants included in the 
study. Poisson noise was added into the routine-dose 

https://www.Mayo.org/GrandChallenge/LowDoseCT/
https://www.Mayo.org/GrandChallenge/LowDoseCT/
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projection to generate a dose level corresponding to 25% of 
the routine dose (approximately I0=1.2×105 incident photons 
from the X-ray source, 54 mA tube current, 120 kVp  
tube voltage, 0.9875 pitch; as provided by UIH) (45). 
The detector element size was 1.548×1.405 mm2, and the 
detector element number was 936×80. The distance from 
the source to the detector was 950 mm, while the distance 
from the source to the isocenter was 570 mm. All images 
were reconstructed using the FBP method (B_SOFT_B 
kernel, helical interpolation) and had 512×512 pixels, with 
each pixel being 0.6836×0.6836 mm2 in size.

Evaluation metrics
The experimental results were evaluated and analyzed 
from 2 aspects: visual assessment and quantitative assess. A 
quantitative analysis was performed using 2 indices: peak 
signal-to-noise ratio (PSNR), SSIM, and contrast-to-noise 
ratio (CNR). PSNR is used to measure the noise artifact 
suppression performance, SSIM to calculate the perceptual 
similarity performance, and CNR to measure the low-
contrast detail preservation performance.

In this study, the PSNR, SSIM, and CNR indices were 
calculated via the following formulae.

( ) ( )10PSNR , =20log
MSE ,RD

RD

LI I
I I  [9]

( )
( )( )

( )( )
1 2

2 2 2 2
1 2

2 2
SSIM , = RD

RD RD

I I II
RD

I I I I

C C
I I

C C

+ +

+ + + +

µ µ σ

µ µ σ σ
 [10]

( )
2 2

CNR , ROI BG
ROI BG

ROI BG

I I
µ µ

σ σ

−
=

−
 [11]

where I denotes the processed image; IRD represents the 
reference data of the RDCT image; L is the value range of 
the image; MSE (•) is the MSE function; RDIσ  and σI are the 
standard deviations of the region of interest (ROI) in IRD 
and I, respectively; RDIµ  and μI are the corresponding mean 
values; σII is the corresponding covariance; C1 and C2 are 2 
constant parameters; μROI and μBG are the mean CT values 
of the ROI IROI and the background region IBG, respectively; 
and σROI and σBG are their respective standard deviations.

Parameter selection
The inputted data were all normalized to zero mean and 
unit variance. Following Yang et al. (27), the learning rate 
and exponential decay rates for the Adam algorithm were 
set as follows: λr =0.001, β1 =0.9, and β2 =0.999. The λ=10 
in Eq. [8] was the default setting. The best values of the 

parameters η and α in the hybrid loss functions were set as 
1 and 104 in the Challenge data and real data experiment, 
respectively.

In our experiments,  the discriminative feature 
representation (DFR) method was used to roughly evaluate 
the quality of LDCT images by 2 main degradation 
types: noise and artifacts (46). The main idea of DFR is 
to use 2 subdictionaries composed of different feature 
subdictionaries, representing tissue structure features 
and degradation features (streak artifacts or spot noise), 
to represent LDCT images. For noise degradation level 
estimation, the tissue attenuation feature subdictionary 

kD+  was trained from RDCT images, and the noise 
feature subdictionary kD− was trained from the difference 
data between the matched RDCT and LDCT by the 
K-singular value decomposition (KSVD) algorithm. To 
enhance the class-specific feature distinctiveness of kD+ 
and kD−, we applied the Fisher discrimination dictionary 
learning (FDDL) method to minimize the within-class 
scatter of different representation coefficients under the 
Fisher discrimination criterion. Thus, we could obtain 2 
subdictionaries D+ and D− as the final tissue attenuation 
feature subdictionary and noise feature subdictionary, 
respectively. With the discriminative dictionary D=[D+; D−], 
the calculated sparse coding [via the orthogonal matching 
pursuit (OMP) algorithm] was combined by the codes θ+ 

and θ− corresponding to the 2 subdictionaries D+ and D−, 
respectively. The noise degradation level was quantified 
using a ratio metric R between the summed codes associated 
with D− and the summed weighted codes associated with D+:
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where 1mθ
+  and 1mθ

−  denote the L1-norm of the code 
associated with the atoms in D+ and D− for each image patch, 
respectively; and σm is the standard deviation of each patch. 
The same process could be used to estimate the artifact 
degradation level. The artifact feature subdictionary D− was 
trained from the difference images between matched RDCT 
and sparse view CT (360 views). In all the subsequent 
experiments, we adopted a dictionary with 1,024 atoms 
(512 atoms in D+ and 512 atoms in D−, atom size 16×16, 
maximum atom number 25). Finally, the degradation level 
evaluation results were demeaned, normalized, and formed 
as a degradation index. For example, (0.2, 0.3) represented a 
noise level of 0.2 and an artifact intensity of 0.3.
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Results

Challenge data results

As shown in Figure 5, 3 axial slices were selected from the 
processed CT images for 1 patient case (L133). These 
LDCT images in the testing dataset had a rich, tiny 
structure and were disturbed by a large intensity range of 
strip artifacts and spot noise, making it difficult for doctors 
to diagnose the regular tissue or lesion regions. The classic 
BM3D method efficiently restored recovered the flat tissue 
region; however, the performance of the noise suppression 
ability was not good, and it also created some high-intensity 
artifacts. The RED method showed good tissue fidelity, but 
we saw some artifacts and noise distribution. However, the 
images processed by WGAN-GP suffered from a blurring 
effect and lost tissue texture in the abdominal CT images. 
A comparison of the images produced by BM3D, RED, and 
WGAN-GP in Figure 5 demonstrates that the proposed 
DR-GAN can provide LDCT images with higher overall 
quality. In addition, the images generated by the proposed 
network appear closer to the reference images.

To demonstrate the performance of the proposed network 
from 3D coronal and sagittal views, 2 representative slices 
of results are shown in Figure 6, in which the blood vessels 
appear poorly identified in the LDCT FBP image. In the 
BM3D-processed images (Figure 6, C1-C2), the band artifacts 
appear to severely compromise the anatomical structure 
feature, and some artifacts and noise residual distributions 
in the RED results are apparent (Figure 6, D1-D2).  
WGAN and DR-GAN showed good noise suppression, 
and the structural feature was better maintained to a certain 
extent. Compared with other methods, the proposed method 
demonstrated excellent ability in removing noise and 
artifacts, and the processed image had better resolution and 
greater detail.

To further demonstrate the performance of DR-GAN, 
the difference maps relative to the RDCT FBP image 
are shown in Figure 7. It is clear that DR-GAN yielded 
the smallest difference from the RDCT FBP image in 
the overall region and less tissue structure difference in 
the sagittal view. Meanwhile, the BM3D and WGAN-
GP processed images contained structural distortions  
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Figure 5 The chest, abdomen, and hypogastrium axial LDCT image results yielded by the different methods from the Challenge data. 
(A1-A3) Reference image (RDCT FBP image). (B1-B3) LDCT. (C1-C3) BM3D. (D1-D3) RED. (E1-E3) WGAN-GP. (F1-F3) DR-GAN. 
LDCT, low-dose computed tomography; RDCT, routine-dose computed tomography; FBP, filtered backprojection; BM3D, block matching 
3D; RED, residual encoder-decoder; WGAN-GP, Wasserstein generative adversarial network with gradient penalty; DR-GAN, dynamic 
controllable residual generative adversarial network.
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Figure 6 The sagittal and coronal LDCT image results of different methods on the Challenge data. (A1-A2) Reference image (RDCT 
FBP image). (B1-B2) LDCT. (C1-C2) BM3D. (D1-D2) RED. (E1-E2) WGAN-GP. (F1-F2) DR-GAN. LDCT, low-dose computed 
tomography; RDCT, routine-dose computed tomography; FBP, filtered backprojection; BM3D, block matching 3D; RED, residual encoder-
decoder; WGAN-GP, Wasserstein generative adversarial network with gradient penalty; DR-GAN, dynamic controllable residual generative 
adversarial network.

Figure 7 The difference images relative to the reference image (RDCT FBP image) for the Challenge data. The display window is (−50, 
50) HU. (A1-A2) LDCT. (B1-B2) BM3D. (C1-C2) RED. (D1-D2) WGAN-GP; (E1-E2) DR-GAN. RDCT, routine-dose computed 
tomography; FBP, filtered backprojection; HU, Hounsfield unit; LDCT, low-dose computed tomography; BM3D, block matching 3D; 
RED, residual encoder-decoder; WGAN-GP, Wasserstein generative adversarial network with gradient penalty; DR-GAN, dynamic 
controllable residual generative adversarial network.
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(Figure 7, B1-C2). The RED results had fewer image edge 
details but more residual noise in the CT images. This 
shows that the DR-GAN images were close to the RDCT 
FBP images.

Figure 8 shows the results for lesion CT images of 
2 patients. Zoomed-in ROIs are also demonstrated. 
Specifically, Figure 8 shows the CT images with low-
contrast hepatic lesions (marked with blue boxes in  
Figure 8, A1-A2). From Figure 8, A1-A2, with the RDCT 

images as references, we observe that the DR-GAN method 
yields the best image quality. We can also observe blurred 
features of low-contrast metastasis from the RED and 
WGAN-GP results (see the fourth and fifth columns in 
Figure 8). In addition, the metastases marked by the blue 
boxes were hard to detect (see Figure 8, C1-E2), but they 
could be discriminated with DR-GAN.

Table 1 presents the PSNR, SSIM, and CNR scores of 
the test results of the different methods. The CNR scores 

Figure 8 Examples of abdominal images with hepatic metastasis for the Challenge data. (A1-A2) Reference image (RDCT FBP image). (B1-
B2) LDCT. (C1-C2) BM3D. (D1-D2) RED. (E1-E2) WGAN-GP. (F1-F2) DR-GAN. RDCT, routine-dose computed tomography; FBP, 
filtered backprojection; LDCT, low-dose computed tomography; BM3D, block matching 3D; RED, residual encoder-decoder; WGAN-GP, 
Wasserstein generative adversarial network with gradient penalty; DR-GAN, dynamic controllable residual generative adversarial network.

A1 B1 C1 D1 E1 F1

A2 B2 C2 D2 E2 F2

Table 1 Quantitative results associated with different methods for the Challenge data

Metrics Test image LDCT BM3D RED WGAN-GP DR-GAN

PSNR Chest 33.931 37.144 37.855 38.899 42.925

Abdomen 32.654 37.510 37.628 38.549 42.074

Hypogastrium 34.017 39.414 39.318 40.425 42.862

All images 34.080 37.675 38.262 39.291 42.511

SSIM Chest 0.7747 0.8662 0.8957 0.9093 0.9485

Abdomen 0.7057 0.8415 0.8601 0.8778 0.9355

Hypogastrium 0.8193 0.9080 0.9315 0.9311 0.9576

All images 0.7665 0.8719 0.8958 0.9092 0.9396

CNR ROI 1 (RDCT: 0.9879) 0.5576 0.9777 1.0352 1.4652 1.6484

CNR ROI 2 (RDCT: 0.8108) 0.6310 1.1397 1.0236 1.0557 1.3133

LDCT, low-dose computed tomography; BM3D, block matching 3D; RED, residual encoder-decoder; WGAN-GP, Wasserstein generative 
adversarial network with gradient penalty; DR-GAN, dynamic controllable residual generative adversarial network; PSNR, peak signal-
to-noise ratio; SSIM, structural similarity index measurement; CNR, contrast-to-noise ratio; ROI, region of interest; RDCT, routine-dose 
computed tomography.
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Table 2 The subjective scores associated with the different methods (mean ± SD) for the Challenge data

Metric Radiologist RDCT LDCT BM3D RED WGAN-GP DR-GAN

Noise suppression R1 3.32±0.28 1.87±0.30 2.93±0.29 2.72±0.28 3.43±0.28 3.31±0.29

R2 3.20±0.31 1.35±0.32 2.84±0.32 2.76±0.30 3.32±0.29 3.20±0.30

Artifact reduction R1 3.52±0.23 1.63±0.31 2.27±0.32 3.17±0.29 3.61±0.28 3.55±0.30

R2 3.41±0.25 1.41±0.31 2.15±0.29 3.04±0.29 3.50±0.28 3.42±0.29

Contrast retention R1 3.65±0.24 1.73±0.32 2.28±0.33 3.13±0.30 3.42±0.32 3.51±0.29

R2 3.49±0.26 1.52±0.34 2.09±0.34 2.92±0.31 3.27±0.29 3.40±0.29

Lesion 
discrimination

R1 3.41±0.25 1.54±0.31 2.33±0.31 2.96±0.28 3.23±0.28 3.39±0.27

R2 3.30±0.26 1.32±0.32 2.12±0.32 2.85±0.29 3.01±0.28 3.18±0.28

Overall image 
quality

R1 3.53±0.24 1.61±0.31 2.34±0.31 2.94±0.28 3.41±0.29 3.48±0.29

R2 3.40±0.27 1.40±0.32 2.23±0.32 2.83±0.29 3.25±0.28 3.32±0.29

SD, standard deviation; RDCT, routine-dose computed tomography; LDCT, low-dose computed tomography; BM3D, block matching 
3D; RED, residual encoder-decoder; WGAN-GP, Wasserstein generative adversarial network with gradient penalty; DR-GAN, dynamic 
controllable residual generative adversarial network.

were calculated from the blue boxes in Figure 8A1-A2. As 
shown in Table 1, the FBP produced the lowest scores for 
LDCT imaging. The BM3D methods demonstrated some 
improvement but were unsatisfactory. The quantitative 
performances of WGAN-GP and DR-GAN were not 
significantly different. Consistent with the visualization 
results, DR-GAN obtained the best scores. The fluctuation 
range of the quantization scores of the proposed method 
was relatively small among the comparison methods, 
indicating that the robustness of the proposed method is 
superior.

For subjective image quality evaluation, 50 restored 
images with lesions were selected for a reader study, 
and a 5-point scale was adopted for subjective feature 
quantization. Two radiologists evaluated these images 
independently to provide their scores in Table 2. For all 5 
indicators, the LDCT FBP images had the lowest scores. 
WGAN-GP produced substantially higher scores than did 
the other methods for noise artifact suppression. DR-GAN 
yielded slightly higher results than did RED and WGAN-
GP for the contrast retention and lesion discrimination 
indicators. It was also found that the scores of the results 
from DR-GAN were closer to those of the RDCT images.

Real data results

In the real data experiments, all methods were retrained 
and readjusted for real data. Figure 9 shows 3 axial slices 

of 1 selected patient from the real data with the different 
methods applied. From the LDCT FBP image, we 
can see that the noise and artifacts seriously obfuscate 
the tissue in the image. Numerous strip artifacts can 
still be observed in the BM3D and RED results (see  
Figure 9, C1-D3, respectively). We found that the images 
generated by the WGAN-GP and DR-GAN had good 
visual effect (Figure 9, E1-F3). Moreover, the proposed DR-
GAN was more promising in tiny tissue fidelity than was 
WGAN-GP (Figure 9, F1-F3).

Figure 10 shows the sagittal and coronal view images 
from the real data. We observed that the LDCT FBP 
images were severely distorted by band artifacts in the 
shoulder area. The image denoising method, BM3D, 
failed to suppress banding artifacts. As a deep DL method, 
RED showed good noise suppression, but it had residual 
artifacts and structural distortions. By implementing the 
Wasserstein distance, the WGAN-GP and DR-GAN 
mitigated the oversmoothing effect and improved the visual 
performance. Furthermore, by incorporating the dynamic 
controllable strategy and MSSIM loss into the generator, 
the DR-GAN exhibited a promising performance in 
structural preservation for the 3D coronal and sagittal view 
as compared to WGAN-GP.

Figure 11 shows the difference between the results of 
each method and the RDCT FBP image. Comparing the 
difference image from the different methods, we found 
that the intensity of the difference image processed by DR-
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Figure 9 The shoulder, chest, abdominal axial LDCT image results of the different methods for the real data. (A1-A3) Reference image 
(RDCT FBP image). (B1-B3) LDCT. (C1-C3) BM3D. (D1-D3) RED. (E1-E3) WGAN-GP. (F1-F3) DR-GAN. LDCT, low-dose 
computed tomography; RDCT, routine-dose computed tomography; FBP, filtered backprojection; BM3D, block matching 3D; RED, 
residual encoder-decoder; WGAN-GP, Wasserstein generative adversarial network with gradient penalty; DR-GAN, dynamic controllable 
residual generative adversarial network.

A1 B1 C1 D1 E1 F1

A2 B2 C2 D2 E2 F2

Figure 10 The sagittal and coronal LDCT image results of the different methods for the real data. (A1-A2) Reference RDCT FBP image. 
(B1-B2) LDCT. (C1-C2) BM3D. (D1-D2) RED. (E1-E2) WGAN-GP. (F1-F2) DR-GAN. The red arrows indicate obvious differences 
tissue. LDCT, low-dose computed tomography; RDCT, routine-dose computed tomography; FBP, filtered backprojection; BM3D, block 
matching 3D; RED, residual encoder-decoder; WGAN-GP, Wasserstein generative adversarial network with gradient penalty; DR-GAN, 
dynamic controllable residual generative adversarial network.

GAN was lower, indicating that the processed images were 
closer to the reference images than were those yielded by 
the comparison methods.

For the quantitative evaluation of the real dataset, 

we adopted the CIRS phantom data for comparison.  
Figure 12, A1-A2 show the FBP-reconstructed RDCT 
images for reference. High-intensity noise artifacts can be 
observed for the LDCT FBP images (Figure 12, B1-B2), 
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while for BM3D and RED, strip artifacts are present in the 
images (Figure 12, C1-D2), meaning that BM3D and RED 
could not obtain satisfactory results. Although WGAN-GP 
showed good ability in noise artifact suppression, its results 
suffered from a blurring phenomenon at the anatomical 
boundary (see the zoomed-in areas in Figure 12, E1-E2). 
Meanwhile, the DR-GAN methods (Figure 12, F1-F2) 
provided better LDCT image quality than did the other 

methods.
Figure 13 shows the Hounsfield unit (HU) intensity 

profiles across the virtual inner organ in 1 CIRS phantom 
slice for quantitative analysis in real low-dose data (54 mA  
tube current) and shows that the results of DR-GAN were 
closer to the reference RDCT FBP images than were 
those from other methods. The SSIM, PSNR, and CNR 
quantitative scores further demonstrated the processing 

Figure 12 The axial LDCT image results of different methods on the phantom data. (A1-A2) Reference RDCT FBP image. (B1-B2) 
LDCT. (C1-C2) BM3D. (D1-D2) RED. (E1-E2) WGAN-GP. (F1-F2) DR-GAN. ROI, region of interest; LDCT, low-dose computed 
tomography; RDCT, routine-dose computed tomography; FBP, filtered backprojection; BM3D, block matching 3D; RED, residual encoder-
decoder; WGAN-GP, Wasserstein generative adversarial network with gradient penalty; DR-GAN, dynamic controllable residual generative 
adversarial network.

Figure 11 Difference images relative to the reference (RDCT FBP image for the real data. The display window is (−50, 50) HU. (A1-
A2) LDCT. (B1-B2) BM3D. (C1-C2) RED. (D1-D2) WGAN-GP. (E1-E2) DR-GAN. RDCT, routine-dose computed tomography; FBP, 
filtered backprojection; HU, Hounsfield unit; LDCT, low-dose computed tomography; BM3D, block matching 3D; RED, residual encoder-
decoder; WGAN-GP, Wasserstein generative adversarial network with gradient penalty; DR-GAN, dynamic controllable residual generative 
adversarial network.
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performance of the DR-GAN method (Table 3), with DR-
GAN obtaining the highest score.

Ablation study

An ablation study was conducted to investigate the 
performance of the different elements of the DR-GAN 
network model, including the loss function and controllable 
residual. With reference to other impressive works (2,47-50), 
we adopted a progressive verification strategy for ablation 
analysis.

Effectiveness of loss function
As for the hybrid loss function of our DR-GAN training, a 
comparison of performance was completed with different 
weight parameters for the Challenge data. First, the model 
without adversarial learning (denoted as Dc-ResNet) and 
MSSIM loss terms was considered as a baseline. Then, 
MSSIM loss was introduced to the baseline model to build 
the new comparison model (denoted as Dc-ResNet+). 

Table 3 Quantitative results associated with different methods for the real data

Metrics Test image LDCT BM3D RED WGAN-GP DR-GAN

PSNR Chest 37.340 39.773 40.653 41.068 42.179

Abdomen 37.564 40.120 40.367 41.228 41.763

Hypogastrium 35.955 39.452 39.960 40.870 41.744

All images 37.081 39.638 40.351 41.093 42.084

SSIM Chest 0.8335 0.8944 0.9089 0.9163 0.9211

Abdomen 0.8659 0.9198 0.9331 0.9387 0.9474

Hypogastrium 0.8124 0.8914 0.9092 0.9171 0.9246

All images 0.8395 0.8993 0.9141 0.9202 0.9313

CNR ROI 1 (RDCT: 0.8759) 0.7924 1.1791 0.9682 1.0641 1.1336

CNR ROI 2 (RDCT: 1.2467) 0.7807 1.2420 1.3364 1.6380 1.5951

LDCT, low-dose computed tomography; BM3D, block matching 3D; RED, residual encoder-decoder; WGAN-GP, Wasserstein generative 
adversarial network with gradient penalty; DR-GAN, dynamic controllable residual generative adversarial network; PSNR, peak signal-
to-noise ratio; SSIM, structural similarity index measurement; CNR, contrast-to-noise ratio; ROI, region of interest; RDCT, routine-dose 
computed tomography.

Figure 13 The CT intensity profiles of the specified yellow line in 
the CIRS phantom. CT, computed tomography; HU, Hounsfield 
unit; RDCT, routine-dose computed tomography; LDCT, low-dose 
computed tomography; BM3D, block matching 3D; RED-CNN, 
residual encoder-decoder convolutional neural network; WGAN-GP, 
Wasserstein generative adversarial network with gradient penalty; 
DR-GAN, dynamic controllable residual generative adversarial 
network; CIRS, Chemical Inspection & Regulation Service.
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Finally, the WGAN-GP framework was added to the 
Dc-ResNet+ model with the tuned GAN loss weight to 
construct our comparison method; that is, DR-GAN. 
Furthermore, we investigated the tradeoff between the 
quantitative score and the weight of the hybrid loss function 

of our network. The quantitative results are shown in Table 4.
Compared with the 2 base models, DR-GAN obtained 

a lower MSE and PSNR. The main reason is that the 
base models were trained to minimize the pixel-wise 
MSE loss. Many studies have shown that MSE loss has an 
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evident oversmoothing effect (48-50). Furthermore, DR-
GAN obtained the best SSIM. The adversarial learning 
and MSSIM losses could effectively enhance the visual 
performance, generating textures similar to those of the 
reference image. Additionally, the comparison scores of the 
data shown in Table 4 indicated that using only the MSE or 
MSSIM loss could yield optimized results. As seen in Table 4,  
the restored image quality was more sensitive to the MSE 
loss weight η than the MSSIM loss weight α.

Effectiveness of dynamic controllable residual strategy
Here, we discuss the effectiveness of the dynamic 
controllable residual strategy of training models with 
different network structures and without residual 
controllable weights. Table 5 shows the quantitative scores 
of the test dataset. The performance was improved by 
introducing a dynamic controllable residual strategy, 

verifying the effectiveness of DR-GAN. The model using 
the learnable controllable weight obtained better PSNR and 
SSIM scores.

Recent studies have suggested that deeper network 
architectures exhibit better performance for image processing 
tasks (37,50). We investigated the tradeoff between the 
quantitative score and number of local dynamic controllable 
residual blocks of our network. As seen in Table 5,  
adding more local dynamic controllable residual blocks 
yielded more obvious enhancement to the performance. 
To balance the tradeoff between processing effectiveness 
and efficiency, we chose the number of local dynamic 
controllable residual blocks n=32 as reasonable settings.

Convergence and computational efficiency

Additionally, the convergence properties of the DR-GAN 
model were analyzed by calculating the PSNR and training 
loss value. We set the weight of η to 1 based on the above 
experience, and the value of α was determined by parameter 
selection experiments. Specifically, the average PSNR 
values curve of the processed results obtained by using DR-
GAN with different α and fixed η was generated. As shown 
in Figure 14A, the loss value of the generator declined 
rapidly before 50 epochs and converged to a constant stage. 
The loss value was smaller than that of the model without 
the GP. As shown in Figure 14B, when α=104, the DR-GAN 
outperformed the other various α parameters with respect 
to PSNR.

The total numbers of parameters and the computational 
costs of different models were recorded for the Challenge 
data, with the results shown in Table 6. The execution times 
of all methods were calculated on the same GPU. For the 
DR-GAN network, approximately 17 hours were required 

Table 4 Quantitative results based on Challenge data for different model configurations 

Metrics

Dc-ResNet Dc-ResNet + DR-GAN

LMSE LMSE + αLMSSIM

LWGAN + η (LMSE + αLMSSIM)

η=0
η=10−1,  

α=0
η=10−1, 
α=102

η=10−1, 
α=104

η=100,  
α=0

η=100, 
α=102

η=100, 
α=104

η=101, 
α=102

η=101, 
α=104

PSNR 38.485 39.170 40.252 40.785 41.476 41.904 41.163 41.827 42.204 41.421 41.860

SSIM 0.9078 0.9166 0.9220 0.9274 0.9349 0.9392 0.9336 0.9387 0.9412 0.9337 0.9383

Dc-ResNet, dynamic controllable residual network; Dc-ResNet+, dynamic controllable residual network with MSSIM loss; DR-GAN, 
dynamic controllable residual generative adversarial network; MSN, mean square error; WGAN, Wasserstein generative adversarial 
network; PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measurement; MSSIM, mean structural similarity index 
measurement.

Table 5 Quantitative results of the models with different dynamic 
controlled residuals

Dynamic controlled residual
PSNR SSIM

Global Local (number)

√ √ (n=8) 41.423 0.9338

√ √ (n=16) 41.759 0.9379

√ √ (n=32) 42.134 0.9412

√ √ (n=48) 42.212 0.9488

× √ (n=32) 41.019 0.9291

√ × 40.973 0.9285

× × 40.610 0.9237

PSNR, peak signal-to-noise ratio; SSIM, structural similarity 
index measurement.
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for one training. However, with a well-trained model, the 
execution speed was quite efficient (about 0.13 seconds per 
slice). Table 6 presents the total number of parameters and 
calculations required by the different deep networks. The 
DR-GAN network had more parameters and calculations 
than did the other networks. However, considering the 
performance improvement achieved over the WGAN-GP, 
the computational complexity involved in the DR-GAN was 
considerable, and the processing performance was better.

Performance robustness of different dose levels

In the above-described experiments, the noise levels of 
the training and test LDCT data were fixed and uniform. 
Nevertheless, the condition of the exact matched noise 
and artifacts (magnitudes/shapes) was not easy to achieve. 
However, the noise and artifact levels were different 
for different body parts even with the same CT scan 

protocol. To analyze the robustness of DR-GAN, several 
combinations of noise levels in the training and testing 
datasets were simulated to generate the quantitative results 
(Table 7). For the dose levels in the Challenge data, 3 
different dose levels were simulated via the Poisson noise 
model according to the literature (8). The incident photon 
intensity parameters were I0=8×104, I0=5×104, and I0=2×104, 
respectively. As shown in Table 7, the training datasets of 
RED, WGAN-GP, and DR-GAN were made for I0=5×104. 
RED+, WGAN-GP+ and DR-GAN+ denote the same 
networks as do RED, WGAN-GP, and DR-GAN with 
mixed training data at different dose levels.

From the processing results in Table 7, we can observe 
that the mixed dose levels in the training data led to 
better performance, and DR-GAN+ obtained the best 
performance in most situations. This supports the network 
training strategy: if an accurate dose level cannot be 
determined, the training data should be selected from a 
dose range close to the test data. Additionally, we can see 
that the DR-GAN result was still competitive in processing 
the cases of inconsistent LDCT images, demonstrating that 
the DR-GAN method, even if training is performed with a 
single dose level, offers a sound alternative in LDCT image 
processing.

Iterative reconstruction data study

In the above-described experiments, the training and test 
LDCT data used the matched FBP-reconstructed data. 
Nevertheless, some degraded types of matched CT data 
(tissue texture) were not always satisfactory. To analyze 
the robustness of date type, a cross-testing experiment 

Table 6 Parameters and computational costs of the different 
methods

Method BM3D RED WGAN-GP DR-GAN

Parameters – 1.8×106 5.2×107 5.8×107

Calculation – 2.9×106 1.1×107 1.3×107

Training time (s/slice) – 3,692.8 51,492 63,378

Test time (s/slice) 0.4405 0.1092 0.0971 0.1317

BM3D, block matching 3D; RED, residual encoder-decoder; 
WGAN-GP, Wasserstein generative adversarial network with 
gradient penalty; DR-GAN, dynamic controllable residual 
generative adversarial network.

Figure 14 Convergence analysis of DR-GAN with different parameters. (A) PSNR. (B) L2 Loss. PSNR, peak signal-to-noise ratio;  
W/O_GP, without gradient penalty loss; DR-GAN, dynamic controllable residual generative adversarial network.
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Table 7 Quantitative scores (mean) associated with different models for various noise levels

Dose level of 
testing data

Metrics LDCT BM3D RED WGAN-GP DR-GAN RED+ WGAN-GP+ DR-GAN+

I0=8×104 PSNR 36.778 41.572 43.539 44.270 44.683 44.700 44.626 44.841

SSIM 0.8031 0.9118 0.9344 0.9369 0.9377 0.9412 0.9440 0.9466

I0=5×104 PSNR 34.080 37.675 38.262 39.291 42.511 39.645 39.427 42.574

SSIM 0.7665 0.8719 0.8958 0.9092 0.9396 0.9017 0.9044 0.9391

I0=2×104 PSNR 29.718 33.795 35.371 36.043 36.837 37.344 37.872 38.116

SSIM 0.6355 0.8156 0.8440 0.8536 0.8556 0.8646 0.8644 0.8731

LDCT, low-dose computed tomography; BM3D, block matching 3D; RED, residual encoder-decoder; WGAN-GP, Wasserstein generative 
adversarial network with gradient penalty; DR-GAN, dynamic controllable residual generative adversarial network; RED+, residual encoder-
decoder network with mixed training data; WGAN-GP+, Wasserstein generative adversarial network with gradient penalty and mixed 
training data; DR-GAN+, dynamic controllable residual generative adversarial network and mixed training data; PSNR, peak signal-to-
noise ratio; SSIM, structural similarity index measurement.

was conducted between the FBP-reconstructed data and 
RIO-reconstructed data. RIO is a commercial iterative 
reconstruction algorithm deployed in the UIH CT scanner. 
Figure 15 demonstrates the selected CT images from the 
different test data and the trained model.

In Figure 15, we can see that the matched training data 
achieved the best visual impression. This is verified by the 
different images in Figure 15, D1-E2, which show that the 
model trained using matched data provide the best results. 

The main reason is that there was a large tissue and noise 
artifact texture difference between the FBP-reconstructed 
data and RIO-reconstructed data. There was almost no 
noise artifact feature in the RIO-reconstructed data. During 
network training, the weighting regarding the noise artifact 
feature removal may be very weak. This supports the 
following network training strategy: the training data and 
test data should be close in terms of noise artifact textures; 
that is, they should be from the same reconstruction 

A1 B1 C1 D1 E1 F1

A2 B2 C2 D2 E2 F2

Figure 15 DR-GAN results and the different images. (A1) RDCT FBP image. (A2) RDCT RIO image. (B1) LDCT FBP image. (B2) 
LDCT RIO image. (C1) LDCT FBP image processed with DR-GAN using the trained FBP-reconstructed data. (C2) LDCT RIO 
image processed with DR-GAN using the trained FBP-reconstructed data. (D1) LDCT FBP image processed with DR-GAN using 
the trained RIO-reconstructed data. (D2) LDCT RIO image processed with DR-GAN using the trained RIO-reconstructed data.  
(E1-F2) Corresponding image difference with the RDCT FBP image. DR-GAN, dynamic controllable residual generative adversarial 
network; RDCT, routine-dose computed tomography; RIO, a commercial iterative reconstruction technique; LDCT, low-dose computed 
tomography; FBP, filtered backprojection. 
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Table 8 Quantitative results (mean) associated with the different degradation indices

Degradation index Estimation methods
Quantitative results (mean)

PSNR SSIM FSIM

Noise/artifacts DFR/DFR 42.511 0.9396 0.9736

Noise/artifacts DFR/SE 42.397 0.9383 0.9717

Noise/artifacts PSNR/DFR 42.784 0.9414 0.9776

Image quality/artifacts BIQI/DFR 42.443 0.9385 0.9736

Noise/image quality DFR/BIQI 42.421 0.9380 0.9725

Noise/similarity DFR/FSIM 42.627 0.9392 0.9740

Noise/similarity PSNR/FSIM 42.848 0.9417 0.9774

Noise/artifacts/similarity DFR/DFR/FSIM 42.823 0.9413 0.9769

Noise/artifacts/contrast DFR/DFR/SE 42.466 0.9372 0.9731

PSNR, peak signal-to-noise ratio; SSIM, structural similarity index measurement; FISM, feature similarity index measure; DFR, 
discriminative feature representation; SE, subjective image quality evaluation; BIQI, blind image quality index. 

methods or the same CT scanner.

Performance robustness of the different degradation indices

For most LDCT images, noise and artifacts are the main 
degradation types, and these 2 types of degradation are 
relatively independent. In the above-described experiments, 
we mainly used noise and artifact 2D degradation and the 
DFR evaluation method. Our degradation index module and 
network can be easily extended to higher dimension cases. 
To analyze the robustness of the degradation index module, 
several combinations of degradation types and degradation 
level evaluation methods in the training and testing were 
adopted to obtain the quantitative scores presented in  
Table 8. Here, we show 9 group examples with 5 degradation 
types: noise, artifact, contrast, similarity, and image quality. 
Degradation level evaluation methods include DFR, PSNR, 
feature similarity index measure (FSIM), blind image quality 
index (BIQI) (51), and subjective image quality evaluation 
(SE). PSNR and FSIM are reference evaluation indicators 
and are not available in real data testing. PSNR and FSIM 
indicators only serve as a reference for ideal situations. All 
evaluation results were demeaned, normalized and formed a 
degradation index vector.

From the processing results in Table 8, we can observe 
that the performance on three degradation types (the noise/
artifacts/contrast group) decreases slightly, which is mainly 
due to insufficient training data and inaccurate evaluation. 
For degradation type selection, the performance of the 

noise/image quality group is slightly lower than that of the 
noise/artifacts group and noise/similarity group but is not 
obvious in visualization. For degradation level evaluation 
method selection, the PSNR and FSIM evaluation 
indicators led to slightly better performance in terms of 
accuracy degradation scale during the training and testing 
stages. The SE evaluation indicator led to worse scores. 
Overall, the proposed network has robust performance for 
most degradation level evaluation methods. Experimentally, 
more degradation types (>2) need a greater amount of 
training data or complex networks, and the performance 
become degraded. With the computational efficiency and 
performance being taken into account, the noise and artifact 
degradation types and the DFR evaluation method can 
address most cases of LDCT image restoration tasks.

Discussion

CT imaging has become an important auxiliary medical 
diagnostic and treatment technology. To minimize 
exposure to X-ray radiation, research on high-performance 
LDCT image technologies has attracted substantial 
interest. However, low-dose scanning protocols (e.g., 
lowered milliampere/milliampere second settings) often 
lead to degraded images with increased mottle noise and 
streak artifacts. Most of the CNN methods use pixel-
wise loss minimization and suffer from the following 
problems: blurring and oversmoothing phenomena, tiny 
structural deformation and noise, and artifact suppression 
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disequilibrium. To address the above Challenges, we 
propose a DR-GAN framework, including a dynamic 
controllable ResNet generator and VGG-128 network 
discriminator, to improve LDCT image quality. 

Both the challenge and real data experimental results 
demonstrated the DR-GAN can provide a promising 
improvement in terms of noise artifact suppression and 
structural information preservation. Through ablation 
experiments, the components of the DR-GAN were 
confirmed to improve performance. A preliminary 
experiment of different dose level data further validated 
the robustness of the DR-GAN model. The results 
demonstrated that the proposed method has the potential 
to be a postprocessing solution when the dose level of 
training data and testing data do not match. An iterative 
reconstruction data study showed that DR-GAN remains 
valid for iterative reconstruction image input. These results 
verify the effectiveness of the proposed method.

Although the DR-GAN framework demonstrated 
promising results in LDCT image processing, some issues 
remain and should be addressed. First, residual noise artifacts 
can still emerge in the restored images (see Figures 7,11),  
and this problem deteriorates in the cases of lower-dose 
or high-intensity noise and artifacts. In the future, we 
will focus on how to further improve the separability of 
different noise and artifact features. Second, there are some 
hyperparameters involved in the DR-GAN, including λ, 
η, and α. These parameters are roughly selected based on 
the restored images. Hence, designing optimal parameters 
for automatic search algorithms for our network is also 
a challenging problem. Third, additional DR-GAN data 
validation is needed, which includes data from more patients 
and different CT scanners. Model evaluation will also be 
conducted in the context of other clinical tasks. Extended 
network applications, such as CT reconstruction (52),  
spectrum CT (53), and cone beam CT (CBCT) (54), can 
also be investigated in the future.

Conclusions

In this paper, we propose a DR-GAN framework to 
improve LDCT image quality. First, we adopted an 
adversarial learning strategy to alleviate oversmoothing 
and enhance the visual effect. Second, for the generator, a 
combined architecture consisting of the basic subnetwork 
and the conditional subnetwork was used to achieve 
dynamic controlled feature mapping. Furthermore, we 
chose the VGG-128 network as a discriminator to improve 

the noise artifact suppression and feature retention 
ability of the generator. Third, in the training process, a 
hybrid loss function was specifically designed to improve 
network performance. Experimental results demonstrated 
the competitive performance of the proposed method in 
terms of noise suppression, structural fidelity, and visual 
impression improvement.
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