
1Scientific RepoRts | 7:44351 | DOI: 10.1038/srep44351

www.nature.com/scientificreports

Angiopoietin-like 4 Mediates 
Colonic Inflammation by 
Regulating Chemokine Transcript 
Stability via Tristetraprolin
Terri Phua1,2, Ming Keat Sng1,3, Eddie Han Pin Tan1, Dickson Shao Liang Chee1, Yinliang Li1, 
Jonathan Wei Kiat Wee1, Ziqiang Teo1, Jeremy Soon Kiat Chan1, Maegan Miang Kee Lim1, 
Chek Kun Tan3, Pengcheng Zhu1, Velmurugesan Arulampalam2 & Nguan Soon Tan1,3,4,5

Many gastrointestinal diseases exhibit a protracted and aggravated inflammatory response that can 
lead to hypercytokinaemia, culminating in extensive tissue damage. Recently, angiopoietin-like 4 
(ANGPTL4) has been implicated in many inflammation-associated diseases. However, how ANGPTL4 
regulates colonic inflammation remains unclear. Herein, we show that ANGPTL4 deficiency in mice 
(ANGPTL4−/−) exacerbated colonic inflammation induced by dextran sulfate sodium (DSS) or stearic 
acid. Microbiota was similar between the two genotypes prior DSS challenge. A microarray gene 
expression profile of the colon from DSS-treated ANGPTL4−/− mice was enriched for genes involved in 
leukocyte migration and infiltration, and showed a close association to inflamed ulcerative colitis (UC), 
whereas the profile from ANGPTL4+/+ littermates resembled that of non-inflamed UC biopsies. Bone 
marrow transplantation demonstrates the intrinsic role of colonic ANGPTL4 in regulating leukocyte 
infiltration during DSS-induced inflammation. Using immortalized human colon epithelial cells, we 
revealed that the ANGPTL4-mediated upregulation of tristetraprolin expression operates through 
CREB and NF-κB transcription factors, which in turn, regulates the stability of chemokines. Together, 
our findings suggest that ANGPTL4 protects against acute colonic inflammation and that its absence 
exacerbates the severity of inflammation. Our findings emphasize the importance of ANGPTL4 as a 
novel target for therapy in regulating and attenuating inflammation.

An aggravated inflammatory response is a common feature of many gastrointestinal disorders, such as inflamma-
tory bowel diseases, enteritis, and colitis. Many of these conditions are caused by changes in dietary fat intake, the 
ingestion of bacteria-contaminated food and water, and certain chemicals. These insults trigger an inflammatory 
response by inducing the recruitment of macrophages to the site of inflammation to combat pathogens, neutralize 
harmful immunogens and promote tissue repair1. However, a protracted inflammatory response can cause tissue 
damage and lead to hypercytokinaemia, which is a potentially fatal immune reaction. Immune cell infiltration 
into the site of damage is highly regulated by chemotactic factors, such as macrophage inflammatory protein 1α 
and chemokine (C-C motif) ligand 2 (CCL2)2,3. As the initial cellular barrier that encounters lumenal insults, 
intestinal and colonic epithelia play important roles in the early recruitment of inflammatory cells to the mucosa. 
Epithelial cells are a major source of chemoattractants, and epithelial chemokine production has been proposed 
as a key target of future therapies for gastrointestinal disorders4. However, much remains to be understood about 
the mechanisms that regulate the levels of these chemokines in the gastrointestinal and colonic tracts.
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Angiopoietin-like 4 (ANGPTL4) is a matricellular protein that has been implicated in many 
inflammation-associated diseases5. Native full-length ANGPTL4 (fANGPTL4) is proteolytically cleaved into two 
functionally distinct isoforms: the N-terminal domain (nANGPTL4) inhibits lipoprotein lipase (LPL) and directly 
regulates energy homeostasis, while the C-terminal domain (cANGPTL4) has been implicated in various pro-
cesses such as cancer metastasis, skin wound and pulmonary inflammation6–8. Diabetic wounds show low endog-
enous cANGPTL4 levels and have been associated with an elevated F4/80+ macrophage population at the wound 
site. The infiltration of F4/80+ macrophages was reduced upon treatment of diabetic wounds with recombinant 
cANGPTL4 when compared with saline9. ANGPTL4 can also protect against the severe pro-inflammatory effects 
of saturated fat by inhibiting fatty acid uptake by mesenteric lymph node macrophages10. Similarly, ANGPTL4 
confers protective effects against the development of atherosclerosis11, which has been associated with atherogen-
esis and macrophage polarization12. ANGPTL4 has also been identified as an angiogenic mediator in arthritis13. 
ANGPTL4 has been observed to exacerbate influenza-associated inflammation through IL-6–Stat3 signaling in 
the lung14. Furthermore, serum ANGPTL4 was associated with the C-reactive protein level in type II diabetic 
patients, suggesting that ANGPTL4 may be involved in the progression of inflammation during metabolic syn-
drome15. Thus, ANGPTL4 may exert both anti- and pro-inflammatory effects in a context-dependent manner. 
Despite numerous reports of the role of ANGPTL4 in inflammation, the mechanisms whereby ANGPTL4 mod-
ulates inflammation in various diseases remain largely unclear.

Herein, we describe an anti-inflammatory role for colonic ANGPTL4 in dextran sulfate sodium salt 
(DSS)-induced colitis and dietary stearic acid (SA) intake in vitro and in vivo. We showed that the microbiota 
was similar between ANGPTL4+/+ and ANGPTL4−/− mice at steady states, but with perturbation such as DSS 
treatment some differences in microbiota community become accentuated. Bone marrow transplantation and 
microarray analysis confirmed the intrinsic role of colonic ANGPTL4 in regulating leukocyte infiltration during 
DSS-induced inflammation, and thus the colonic inflammatory landscape. The underlying mechanism involves 
the regulation of tristetraprolin (TTP or ZFP36), an mRNA-binding protein that is involved in chemokine desta-
bilization, by ANGPTL4 via activation of CREB and NF-κB transcription factors.

Results
ANGPTL4 reduces DSS- and saturated fat-induced colonic inflammation. We first char-
acterized the intestinal and colonic tract of unchallenged ANGPTL4-knockout (ANGPTL4−/−) and 
wild-type (ANGPTL4+/+) mice. There was no significant difference in body weight, colon length, disease 
activity index (DAI), endpoint macroscopic scores or histological scores between the genotypes (Fig. 1a and 
Supplementary Fig. S1a,c). Detailed examination revealed that ANGPTL4−/− mice exhibited an increased muscu-
laris thickness and shorter colonic villus length than ANGPTL4+/+ littermates (Fig. 1b, Supplementary Fig. S1d,e). 
To gain insights into the role of ANGPTL4 in acute colonic inflammation, we challenged ANGPTL4−/− and 
ANGPTL4+/+ mice to either 5% DSS or 15% (w/w) stearic acid (SA) for 8 days.

ANGPTL4−/− mice receiving DSS lost significantly more weight compared with ANGPTL4+/+ mice from day 
6 onwards (Supplementary Fig. S1a). DSS-treatment resulted in a significant increase in both the DAI and end-
point macroscopic score (Fig. 1c and Supplementary Fig. S1b) as well as a reduction in the ANGPTL4+/+ colonic 
villus length, whereas there was no significant reduction observed in ANGPTL4−/− mice compared with their 
cognate controls (Fig. 1b and Supplementary Fig. S1e). Histological analysis of the DSS-challenged ANGPTL4−/− 
colon sections revealed a severe loss of epithelial integrity and a massive infiltration of immune cells into the 
lamina propria when compared with cognate ANGPTL4+/+ colon (Fig. 1b). Indeed, we observed a higher num-
ber of Ly6G+ neutrophils and CD68+ macrophages in the colons of DSS-treated ANGPTL4−/− mice (Fig. 1d and 
Supplementary Fig. S1f). FACS analysis also confirmed the higher number of Ly6G+, CD11b+ and F4/80+ cells 
in ANGPTL4−/− mice compared to ANGPTL4+/+ mice (Fig. 1e,f). Such differences were not attributed to an 
increase in apoptotic cells between the genotypes, as indicated by TUNEL-positive cells and the expression of 
cleaved caspase 3 (Supplementary Fig. S1g). Consistent with the elevated inflammation status, we also detected 
higher levels of TNF-α, IL-6 and IFN-γ mRNA transcripts (Fig. 1g).

As expected, stearic acid induced a more subdued inflammatory response compared to the DSS challenge 
(Fig. 1g). No significant differences in weight gain, blood glucose levels, DAI, endpoint macroscopic scores or 
histological scores were observed between ANGPTL4−/− and ANGPTL4+/+ mice on the SA diet compared 
with mice fed a normal chow diet (Fig. 1c and Supplementary Fig. S1a–c,h). ANGPTL4+/+ mice on an SA diet 
exhibited a longer colon, a thicker muscularis wall and a shorter colonic villus length at the endpoint compared 
with mice fed a standard diet (Fig. 1a,b and Supplementary Fig. S1c,d). Immunofluorescence staining showed 
a similar elevated number of Ly6G+ neutrophils and CD68+ macrophages in ANGPTL4−/− colon (Fig. 1d and 
Supplementary Fig. S1f). FACS analysis also detected an elevated number of Ly6G+, CD11b+ and F4/80+ cells in 
ANGPTL4−/− mice (Fig. 1e,f). Together, our data demonstrated that the absence of ANGPTL4 enriched for a sub-
set of the immune cell population not limited to neutrophils, macrophages and eosinophils during inflammation. 
Altogether, our observations are consistent with a model whereby ANGPTL4 attenuates colonic inflammation in 
response to inflammatory stimuli.

ANGPTL4 deficiency does not influence colonic commensal microbiota at steady state. Several 
reports have suggested that dysbiosis aggravates host inflammatory and metabolic diseases16–19. Studies also sug-
gested that a subset of microbes could regulate ANGPTL4 expression in the gut in response to changes in energy 
demands20–22. To examine if the exacerbated colonic inflammatory response in ANGPTL4−/− mice could be 
attributed to microbe composition, we performed 16S metagenomics sequencing using the V4 region to identify 
microbe abundance between ANGPTL4+/+ and ANGPTL4−/− littermates before and after DSS-induced inflam-
mation. Redundancy analysis showed that genotype and inflammation amounted to 41.2% of the total variation 
observed between microbial compositions in the colon. Genotype could only explain for 10.7% of the differences 
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Figure 1. ANGPTL4 attenuates colonic inflammation. (a–e) Images of colon samples (a) Representative 
colon sections stained with hematoxylin and eosin (H&E) (b). (c) Disease activity index (DAI) of mice assessed 
every alternate day over the treatment regimes. Scoring criteria can be found in Supplementary Table S1.  
(d) Percentage of Ly6G+ and CD68+ cells per field of view. Total DAPI-stained nuclei were taken as the total cell 
number. Microscopic views from 5 different sections were numerated. (e) Representative FACS histograms for 
Ly6G expression (neutrophils) from ANGPTL4+/+ and ANGPTL4−/− littermates for the indicated treatments. 
(f) Representative FACS analysis of the colons from ANGPTL4+/+ and ANGPTL4−/− mice double stained for 
F4/80 (macrophages) and CD11b (macrophages, monocytes, granulocytes, NK cells, dendritic cells) for each 
of the treatments. (g) Relative mRNA levels of pro-inflammatory cytokines (TNF-α, IL-6 and IFN-γ) from 
ANGPTL4+/+ and ANGPTL4−/− mice at the endpoint. For the Veh, DSS and SA groups, n = 20 mice were used 
for each treatment. The Mann–Whitney U test was used. *p < 0.05; **p < 0.01.
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observed, while inflammation amounted to at least 31.1%. The steady state phylogenetic microbe composition 
was predominated by Firmicutes and Bacteriodetes, which did not differ much between both ANGPTL4+/+ 
and ANGPTL4−/− mice before DSS treatment (Fig. 2). As expected, DSS-induced inflammation caused a sharp 
decrease in Bacteroidetes and a concomitant increase in Firmicutes and Proteobacteria. We found that Firmicutes 
were more abundant in inflamed ANGPTL4+/+ mice, while Proteobacteria was more prevalent in ANGPTL4−/− 
mice (Fig. 2). Collectively, our data showed that microbe composition was similar between ANGPTL4+/+ and 
ANGPTL4−/− mice at steady state, but with perturbation such as DSS treatment, some differences in the micro-
biota community become accentuated.

Intrinsic role of colonic ANGPTL4 in leukocytes infiltration during DSS-induced inflammation.  
To further define the role of epithelial-derived ANGPTL4, we performed bone marrow transplantation (BMT) 
experiment. We transferred bone marrow from ANGPTL4+/+ and ANGPTL4−/− donors to γ-irradiated wild-type 
ANGPTL4+/+ (WT IR) recipient mice (BMT (ANGPTL4+/+) or BMT (ANGPTL4−/−); Fig. 3a,b). CD4+ and 
CD8+ cells were depleted from bone marrow inoculum before BMT to limit possible graft-versus-host-disease 
(GVHD)-related mortality. The bone marrow of WT IR mice appeared necrotic with a significant reduction in 
the number of bone marrow cells. The spleen was smaller in size and has reduced CD45+ splenic cells (Fig. 3c,d). 
Hematopoietic reconstitution was observed through the repopulation of bone marrow cells in the femur and 
CD45+ cells in the spleen at 4-week post BMT (Fig. 3c,d). Genotype PCR confirmed the successful reconstitu-
tion of the respective donor cells in WT IR mice (Fig. 3e). No significant difference in classical clinical scorings 
was observed between BMT (ANGPTL4+/+) or BMT (ANGPTL4−/−) chimeras on vehicle treatment (Fig. 3f). 
Histological analysis also revealed little difference between BMT (ANGPTL4+/+) or BMT (ANGPTL4−/−) chi-
meras (Fig. 3g). As expected, DSS-induced inflammation caused an erosion of the epithelial lining with increased 
infiltration of immune cells into the lamina propria (Fig. 3g). Notably, there was no significant difference 
recorded in the DAI, endpoint macroscopic score or histological score between BMT (ANGPTL4+/+) and BMT 
(ANGPTL4−/−) chimeras after DSS treatment (Fig. 3f,g and Supplementary Tables S1–3). FACS analysis also 
showed no significant difference in the number of CD11b+ and F4/80+ cells in the inflamed colons of BMT 
(ANGPTL4+/+) and BMT (ANGPTL4−/−) chimeras (Fig. 3h). Taken together, our data demonstrates the intrinsic 
role of epithelial-derived ANGPTL4 in regulating colonic leukocyte infiltration during DSS-induced inflamma-
tion, and thus the colonic inflammatory landscape.

ANGPTL4 deficiency alters colonic inflammatory gene expression. Our observations suggest that 
ANGPTL4 deficiency increased the susceptibility to inflammation induced by SA and DSS, albeit with differential 
severities. To strengthen our findings, we performed a comparative microarray gene expression analysis using 
colon tissues from ANGPTL4−/− and ANGPTL4+/+ mice challenged with either DSS or SA. Using Ingenuity 
Pathway Analysis (IPA), we identified 250 differentially expressed genes associated with “gastrointestinal dis-
eases”. As expected, the gene expression profiles of DSS-challenged colon samples showed a more aggravated 

Figure 2. ANGPTL4 deficiency does not influence commensal microbe composition. Pie charts showing the 
commensal microbe landscape at steady state (upper panel) and after DSS treatment (lower panel) of age- and 
gender- matched ANGPTL4+/+ and ANGPTL4−/− littermates. Values in the charts denote mean percentage of 
abundance. n = 6 mice per group.
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Figure 3. Intrinsic role of colonic ANGPTL4 in leukocytes infiltration during DSS. (a,b) Graphical illustrations 
depicting the experimental setup for bone marrow transplantation (BMT). CD4+ and CD8+ depleted bone marrow 
cells from age- and gender-matched ANGPTL4+/+ or ANGPTL4−/− donors were transplanted into γ-irradiated 
ANGPTL4+/+ wild-type recipient (WT IR). Chimera BMT ANGPTL4+/+ and BMT ANGPTL4−/− denote WT IR 
transplanted with bone marrow cells from ANGPTL4+/+ and ANGPTL4−/− donor, respectively. Graph showed the 
number of CD45+ cells from spleen of indicated mice (Mean ± S.D.; n = 6 mice per group). (c,d) Representative 
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response when compared with the SA-challenged colon samples. Consistent with the above observations, the 
heat map also indicated that ANGPTL4 deficiency resulted in more severe inflammation in ANGPTL4−/− mice 
when compared with ANGPTL4+/+ mice (Fig. 4a,b and Supplementary Table S4). Further studies of the 2 islands 
of dissimilarly regulated genes between either challenge groups or genotypes revealed that 52% of the transcripts 
were related to TNF-α signaling, whereas 27% and 31% were linked to the IL-10 and IL-6 signaling cascades, 
respectively (Fig. 4c). Gene ontology maps suggested that these genes were primarily involved in leukocyte 
migration and infiltration (Fig. 4d). The top diseases identified from previous studies listed in the IPA database 
include colitis, inflammation of the intestine, diabetes mellitus and gastrointestinal tract cancers and tumors 
(Fig. 4d). Next, a comparative gene expression analysis was performed between DSS-challenged ANGPTL4−/− 
and ANGPTL4+/+ mice and human ulcerative colitis (UC) colonoscopy samples. The colonic mucosal samples 
from UC patient biopsies were classified as “inflamed” or “non-inflamed”, according to whether the samples 
exhibited signs of inflammation during collection. Unsupervised hierarchical clustering revealed that the gene 
expression profile of DSS-challenged ANGPTL4+/+ mice was more closely associated with the non-inflamed 
UC samples, while the profile of ANGPTL4−/− mice was clustered more closely with the inflamed UC samples 
(Fig. 4e and Supplementary Table S5). Further analysis revealed that the UC samples showed the highest number 
of up-regulated genes, followed by the DSS-challenged ANGPTL4−/− mice; the DSS-challenged ANGPTL4+/+ 
mice showed the lowest number of up-regulated genes (Fig. 4f). Our analysis also identified a cluster of distinc-
tively regulated genes across both the mouse and human samples. Among these genes, 29%, 27%, and 23%, were 
involved in the IL-4, IL-1β and IL-6 signaling cascades, respectively (Fig. 4g). Gene ontology analysis revealed 
that the top molecular and cellular functions included cellular movement, cellular development, cellular function 
and maintenance, and cellular proliferation, as well as cell death and survival (Fig. 4h). These transcripts have 
also been found to be involved in myeloid cell homeostasis, immune responses, and leukocyte homeostasis, acti-
vation and migration (Fig. 4h). Together, the histological analysis and gene expression profiling indicated that 
ANGPTL4−/− mice were more susceptible to colonic inflammation, implicating a role for ANGPTL4 in immune 
cell infiltration.

ANGPTL4 deficiency increases the infiltration of immune cells. ANGPTL4 deficiency exacer-
bated colonic inflammation upon DSS and SA challenge. Guided by histological differences and gene expression 
changes between colon samples from ANGPTL4+/+ and ANGPTL4−/− mice, we next investigated the chemokine 
expression profile during inflammation. Consistent with the microarray findings, we detected an overall ele-
vated expression of pro-inflammatory chemokines and a reduced expression of anti-inflammatory cytokines 
IL-10 and IL-17 in ANGPTL4−/− mice compared with their ANGPTL4+/+ littermates (Fig. 5a). The highest lev-
els of these chemokines were also consistent with greater infiltration of inflammatory cells into the colons of 
ANGPTL4−/− mice (Fig. 1d–f and Supplementary Fig. 1f). The protein concentrations of CCL2, CCL11 and 
CXCL10 were also found to be elevated in ANGPTL4−/− littermates in both the DSS- and SA- treated groups 
(Supplementary Fig. S2a). Furthermore, we observe a decreasing trend, albeit not statistically significant, in the 
protein levels of IL-1β, IL-10 and IL-17 between ANGPTL4+/+ and ANGPTL4−/− littermates among different 
treatments.

To date, little is known about the mechanisms by which ANGPTL4 exerts such effects on the immune and 
chemokine landscape. Recent publications suggest that ANGPTL4 may modulate the inflammatory response in a 
variety of disease models9–11,14,15,23. Our microarray analysis and a review of the literature directed us to two poten-
tial intermediary proteins that respond quickly during acute inflammation and acts broadly to attenuate inflam-
mation24,25. Human antigen R (HuR) and tristetraprolin (TTP) are mRNA binding proteins well-characterized for 
their opposite roles in binding mRNA at AU-rich regions located at the 3′-UTR of target transcripts, including 
chemokines, to modify the inflammatory landscape at the onset of inflammation. HuR is highly selective in its 
interaction with its cognate mRNA binding partners and has been described as an active participant in promoting 
mRNA stability26,27. In contrast, TTP promotes mRNA degradation by destabilizing target transcripts28–30. The 
acute inflammation elicited by DSS and SA treatments significantly suppressed both ANGPTL4 and TTP expres-
sion in ANGPTL4+/+ littermates (Supplementary Fig. 2b). However, we detected no significant change in HuR 
expression in both pro-inflammatory treatments. Analysis of our focused gene expression array revealed that the 
expression of TTP was altered, as was the expression of genes involved in immune cell infiltration and responses. 
The reduced mRNA and protein levels of TTP in ANGPTL4+/+ and ANGPTL4−/− littermates were confirmed by 
real-time PCR and western blot analyses (Supplementary Fig. 2c). Together, our data suggests the involvement of 
TTP in the regulation of local colonic inflammation.

To further understand the role that colonic epithelial cells play in regulating chemokine expression, we 
treated human colon epithelial cells (iCECs) with a panel of pro-inflammatory (DSS, SA, IL-1β or TNF-α) or 

images of the femur (c) and spleen (d) from indicated mice (WT and WT IR) and chimeras (BMT ANGPTL4+/+ 
and BMT ANGPTL4−/−). Inserts in (c) showed the bone marrow cell pellet before and after red blood cell lysis. 
Graph in (c; left panel) showed the number of bone marrow cells from femur of indicated mice (Mean ± S.D.; n = 6 
mice per group). (e) Representative agarose gel image of genotype PCR products from CD45+ splenic cells from 
indicated mice. (f) Graphs showing the disease activity index (DAI; left panel), macroscopic score (middle panel) and 
histological score (right panel) of indicated mice treated with vehicle or 2% DSS. Individual scoring criteria can be 
found in Supplementary Tables S1–S3. (g) Representative hematoxylin and eosin (H&E) images of colon section from 
vehicle and DSS treated mice post BMT. (h) Representative FACS analysis for CD11b+ and F4/80+ cells from colons 
of BMT ANGPTL4+/+ and BMT ANGPTL4−/− chimeras treated with vehicle or DSS. n = 6 per group. The Mann-
Whitney U test was used. *p < 0.05; **p < 0.01 and ***p < 0.001. n.s. denotes not significant.
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Figure 4. ANGPTL4 deficiency alters colonic inflammatory gene expression. (a,e) Using Partek Genomic 
Suite software, we generated a microarray heat map showing changes in gene expression among colon tissues 
from ANGPTL4+/+ and ANGPTL4−/− mice fed with Veh, DSS or SA (a) and among colons from ANGPTL4+/+ 
and ANGPTL4−/− mice treated with DSS, inflamed and non-inflamed colon biopsies from ulcerative colitis 
patients (GSE9452) (e). Transcripts were estimated using a log2 transformation and subjected to unbiased 
ANOVA to detect differentially expressed genes between samples. Only genes with a fold change <−1.2 or >1.2 
were of significance. The genes were then hierarchical clustered based on significance to generate heatmaps. 
For (a), among the 434 transcripts associated with “gastrointestinal diseases” identified with the IPA database, 
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anti-inflammatory (HC or NaBu) stimuli. Notably, ANGPTL4 and TTP levels decreased when iCECs were treated 
with DSS, SA, IL-1β and TNF-α (Fig. 5b). Exposure to such pro-inflammatory stimuli increased the levels of 
CCL2, CCL11, CXC10 and IL-1β mRNA transcripts and decreased the levels of IL-10 and IL-17 mRNA tran-
scripts (Supplementary Fig. 2d). Conversely, anti-inflammatory HC and NaBu increased both ANGPTL4 and 
TTP levels, prompting a decreased expression of CCL2, CCL11, CXCL10 and IL-1β concomitant with an increase 
in IL-10 and IL-17 (Fig. 5b and Supplementary Fig. 2d). Next, we examined the role of ANGPTL4 and TTP 
in mediating the abundance and stability of chemokines. iCECs were subjected to transient ANGPTL4 (iCE-
CANGPTL4) or TTP knockdowns (iCECTTP) and subsequently exposed to pro- or anti-inflammatory stimulation 
(Fig. 5c and Supplementary Fig. S2e–g, Tables S6 and 7). As a control, scrambled siRNA was used (iCECCtrl). 
Pro-inflammatory stimuli (DSS, SA, IL-1β and TNF-α) increased CCL2, CCL11, CXCL10 and IL-1β expression 
but decreased IL-10 and IL-17 in iCECCtrl. Conversely, HC and NaBu stimulation in iCECCtrl suppressed CCL2, 
CCL11, CXCL10 and IL-1β but heightened IL-10 and IL-17. The absence of ANGPTL4 (iCECANGPTL4) raised the 
basal levels of CCL2, CCL11, CXCL10, IL-1β, IL-10 and IL-17 expression independent of the nature of stimula-
tion. Interestingly, the CCL11, IL-10 and IL-17 levels surged independent of stimulation when TTP was ablated 
(iCECTTP). Further investigation into chemokine stability demonstrated that the half-lives of CCL11, IL-10 
and IL-17 mRNA transcripts, but not CCL2, IL-1β or CXCL10, were prolonged in iCECANGPTL4 and iCECTTP 
(Fig. 5d). The decreased half-life of TTP in iCECANGPTL4, and not vice versa, also confirmed that ANGPTL4 pos-
itively regulates downstream TTP (Supplementary Fig. S2g). In an effort to understand immune cell infiltration, 
THP1-derived macrophages were co-cultured with iCECs (iCECANGPTL4, iCECTTP and iCECCtrl) in the presence 
of various treatments, and macrophage transwell migration was investigated. Consistent with the above results, 
we found that deficiency in ANGPTL4 and TTP was sufficient to increase chemotactic signals from epithelial cells 
and accelerate the migration of macrophages (Fig. 5e and Supplementary Fig. S2i). Taken together, our results 
demonstrate that ANGPTL4 is an important regulator that modulates the chemokine landscape and immune 
cell infiltration during inflammation. Our data also highlights the role of ANGPTL4 in attenuating inflamma-
tion simultaneously through TTP-dependent and independent pathways, although the mechanism for the latter 
remains to be elucidated.

ANGPTL4 up-regulates TTP via CREB and NF-κB. Full-length ANGPTL4 is proteolytically cleaved 
into N-terminal coiled-coil (nANGPTL4) and C-terminal fibrinogen-like (cANGPTL4) fragments31. To 
understand which fragment of ANGPTL4 is responsible for regulating TTP expression, we treated iCECs with 
recombinant (rh) cANGPTL4 and rh-nANGPTL4. This investigation showed that cANGPTL4 was potent in 
significantly up-regulating TTP expression (Supplementary Fig. 3a). Next, we sought to elucidate the mecha-
nism whereby ANGPTL4 regulates TTP expression. We subjected rh-cANGPTL4-stimulated iCECs to a kinase 
inhibitor array screen to identify key signaling pathways involved in the cANGPTL4-mediated up-regulation 
of TTP (Supplementary Fig. 3b). TTP expression was increased when iCECs were treated with rh-cANGPTL4 
(Supplementary Fig. 3b, left panel). Hence, we reasoned that kinase inhibitors that negated or inhibited the 
rh-cANGPTL4-mediated up-regulation of TTP mRNA transcripts indicated the involvement of those spe-
cific kinases in the selected signaling cascades (middle panel). Conversely, kinase inhibitors that did not atten-
uate the cANGPTL4-mediated up-regulation of TTP would indicate that those kinases were not involved in 
ANGPTL4-mediated signaling (right panel). Our results showed that inhibitors against CDK, JNK, MEK1/2, 
mTOR, PI3Kδ, TYK2, BTK, CK2, GSK3, PDK1 and Aurora A/B/C targeted key signaling regulators of 
cANGPTL4-mediated TTP transcription (Supplementary Fig. 3c). To avoid bias, all kinases that prevented the 
up-regulation of TTP expression under the stimulation of rh-cANGPTL4 were used to study how their availa-
bility impacted the overall level of inflammatory signaling. Using IPA, we further established that these signal-
ing mediators resulted in the activation of downstream transcription factors, such as AP1 (cFos-cJun complex), 
CREB and NF-κB (Fig. 6a). Immunoblot analysis revealed that rh-cANGPTL4 increased the phosphorylation of 
CREB (pCREB) and NF-κB (pNF-κB) but not phosphorylated cFos (pcFos) (Fig. 6b). In silico analysis identified 
putative CREB (+455 to +453 bp), AP1 (+388 to +395 bp) and NF-κB (+528 to +537 bp) transcription binding 
sites in the promoter of TTP (Fig. 6c).

To underscore the importance of CREB and NF-κB as active transcription factors mediating TTP expression 
upon cANGPTL4 stimulation, we inhibited the activity of CREB, NF-κB or both using siRNAs (iCECRELA, iCEC-
CREB and iCECRELA/CREB) and specific kinase inhibitors (IKK-2, 666-15 and IKK-2/666-15), respectively. The highly 

63% were found to be commonly regulated across the three treatment groups. For (e), 32% of the transcripts 
associated with “gastrointestinal diseases” were found to be shared among the groups, with the gene profile 
from DSS-induced inflammation in ANGPTL4−/− mice most closely associated with the inflamed UC biopsies. 
(b,f) A larger number of up-regulated genes was correlated with an increasing severity of colonic inflammation 
in the microarray analysis. (c) Gene ontology analysis of gene clusters (black boxes in (a)) indicated that the 
major pathways included IL-6-, IL-10- and TNF-related pathways. (d) IPA analysis ranked colitis, inflammation 
of the intestine and inflammatory bowel disease as the most closely associated gastrointestinal diseases, with 
leukocyte migration and infiltration as the predominant functions. (g) Among the genes that were commonly 
regulated between human and mouse colon samples (black box), most genes encode for components of the IL-
1β, IL-6 and IL-4 pathways. (h) The IPA database ranked cellular movement, development, function, growth 
and proliferation as the top molecular processes involved, along with immune processes such as leukocyte 
activation, myeloid cell homeostasis and immune responses being the most significant biological functions 
involved. The numbers in the bar graphs in (d,h) represent the p-values of the process in the GO analysis, with 
the smallest p-value being the most significant. An in-depth overview is described in Supplementary Fig. S4.
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Figure 5. ANGPTL4 deficiency increases the infiltration of immune cells. (a) Relative mRNA levels of 
indicated chemokines in colon tissues from ANGPTL4+/+ and ANGPTL4−/− mice treated with Veh, DSS or 
SA. (b) Relative expression (left panel) and immunoblot analysis (right panel) of ANGPTL4 and TTP levels in 
iCECs when stimulated with DSS, SA, IL-1β, TNF-α, HC or NaBu. (c) Heatmap displaying log-transformed 
relative expression levels of indicated chemokine mRNA transcripts in iCECCtrl, iCECTTP and iCECANGPTL4 when 
stimulated with DSS, SA, IL-1β, TNF-α, HC or NaBu. (d) Decay curves of IL-1β, IL-10, IL-17, CCL2, CCL11 
and CXCL10 in iCECANGPTL4, iCECTTP or iCECCtrl, following actinomycin D treatment after NaBu stimulation. 
(e) Transwell migration assay measuring the percentage change in relative fluorescence intensity of THP1 
migration in response to chemokines secreted by iCECCtrl, iCECTTP and iCECANGPTL4 (bottom panel). Five 
independent experiments (n = 5) were performed in triplicate. The Mann–Whitney U test was used. *p < 0.05, 
**p < 0.01, ***p < 0.001.
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Figure 6. ANGPTL4 up-regulates TTP expression via CREB and NF-κB. (a) IPA identified CREB, NF-κB 
and AP-1 as potential transcription factors that regulate the expression of TTP when stimulated with rh-
cANGPTL4. IPA-assisted pathways were mapped following experimental screens using a kinase inhibitor 
array. (b) Immunoblot analysis revealed an increase in the phosphorylation of CREB (pCREB) and NF-κB p65 
(pNF-κB) but not cFos (pcFos) after rh-cANGPTL4 stimulation. (c) A schematic illustration of the promoter of 
the human TTP gene. The putative transcription factors binding sites were determined in silico online with the 
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potent CREB inhibitor (666-15) hinders the interaction of KID-KIX, which is essential for CREB-dependent gene 
transcription32, while the IKK-2 inhibitor IV (IKK-2) selectively targets IKK-2 and retards downstream p65NF-kB 
signaling. In both instances, the lack of either CREB or NF-κB was sufficient to reduce TTP expression in iCECs 
even in the presence of rh-cANGPTL4 (Fig. 6e and Supplementary Fig. S3g). We also observed reduced pCREB 
and pNF-κB levels in nuclear and cytoplasmic fractions of iCECs during cANGPTL4-stimulation, suggesting that 
the nuclear translocation of pCREB and pNF-κB was severely compromised (Fig. 6f and Supplementary Fig. 3h). 
In conclusion, our data suggests that the CREB and NF-κB transcription factors play irreplaceable roles in the 
ANGPTL4-mediated, TTP-dependent signaling axis.

Discussion
The epithelial cells that line the gastrointestinal tract serve as a physiological barrier that prevents the invasion 
of pathogens and a selective conduit of luminal signals to the host. When harmful immunogens and patho-
gens are detected, epithelial cells produce chemoattractants to initiate the infiltration of immune cells into the 
mucosa. Our findings highlight the importance of colonic epithelial cell-secreted ANGPTL4 as a prospective 
regulator that alters the chemokine landscape in the colon to influence downstream inflammation. We showed 
that ANGPTL4-deficient mice were more susceptible to acute DSS and SA exposure. 16S metagenomic sequenc-
ing indicated little difference in microbe composition between ANGPTL4+/+ and ANGPTL4−/− mice that could 
account for the exacerbated inflammatory response in ANGPTL4−/− mice. Bone marrow transplant study 
emphasized the intrinsic role of epithelial-derived ANGPTL4 in regulating the inflammatory landscape in the 
colon. Using human colonic epithelial cells, we further showed that ANGPTL4 regulated the expression of TTP, 
an mRNA destabilizing agent, via the activation of CREB and NF-κB. The absence of ANGPTL4 or TTP pro-
longed the mRNA half-life of a specific subset of chemokines.

An exuberant and protracted inflammatory response contributes to the development of many gastrointestinal 
disorders. Infiltrating macrophages are the major cellular components of this inflammatory response. As the 
initial cellular barrier, the colonic epithelium plays an important role in the recruitment of inflammatory cells 
to the mucosa. We showed that ANGPTL4-knockout mice fed DSS or SA exhibited a greater colonic inflamma-
tory response, which was associated with greater infiltration of immune cells when compared with wild-type 
mice fed similar treatments. Similarly, pro-inflammatory stimuli such as DSS, SA, IL-1β and TNF-α suppressed 
the expression of ANGPTL4 and TTP in iCECs, whereas anti-inflammatory stimuli such as HC and NaBu 
increased its expression. In support of these findings, previous studies showed that anti-inflammatory glucocor-
ticoid treatment boosted TTP expression in lymphocytes33, while the synthetic glucocorticoid dexamethasone 
increased TTP levels in A549 cells34 as well as ANGPTL4 levels in hepatocytes35 and adipocytes36. Although the 
exact pathways remain to be elucidated, dietary NaBu was also found to stimulate ANGPTL4 expression via a 
PPAR-independent pathway37. HC has also been demonstrated to up-regulate IL-10 and IL-17 levels in natural 
killer cells to improve pneumonia survival rates38, although no detailed mechanism was reported. Interestingly, 
our findings cement the importance of ANGPTL4 in regulating the general inflammatory landscape in the gas-
trointestinal tract. Although other ANGPTL4-dependent but TTP-independent signaling mechanisms remain to 
be identified, we demonstrated that ANGPTL4 modifies the availability of a subset of chemokine signals that alter 
the ease of immune cell infiltration through a TTP-dependent signaling circuit.

Confluent iCECs mimic an intact gastrointestinal mucosal layer and express low basal levels of ANGPTL4 
and TTP. Many previous studies have utilized cancerous lines, such as HT-29, Caco-2 and HCT-116 cells, as 
surrogates for an in vitro gastrointestinal model39,40. Potentially, this ANGPTL4-dependent mechanism may be 
impaired or altered in cancerous lines, as the expression of ANGPTL4 is known to be elevated in many types of 
cancer7. We further established that iCECs secreted ANGPTL4, which acted in an autocrine manner to induce the 
expression of TTP. We previously showed that secreted ANGPTL4 bound and activated integrin-mediated path-
ways41. Indeed, TTP is an important factor that contributes to mediating, modulating and attenuating inflamma-
tory responses. Using the combination of an unbiased kinase inhibitor screen assay, along with ChIP and re-ChIP 
experiments, our current work unveiled multiple signaling conduits whereby ANGPTL4 stimulates TTP expres-
sion, resulting in CREB and NF-κB activation. Interestingly, BTK and Aurora inhibitors were identified to signif-
icantly inhibit the ANGPTL4-dependent up-regulation of TTP, suggesting that they exert dominant roles in this 
signaling cascade. Lending support for a role for Aurora in NF-kB activation, Katsha A et al. also reported that 
Aurora kinase A promoted and sustained inflammation through NF-κB, leading to tumor formation42. Again, 
the importance of Aurora in the ANGPTL4-mediated up-regulation of TTP may be compromised when studied 
in cancer cell lines. Our study also emphasizes a potential role for Aurora kinases in regulating inflammation. 
Similarly, other studies have shown that cancer cells that express low levels of TTP are correlated with a genetic 
signature of low expression of CREB-related target genes43. Numerous studies have also shown that TTP binds to 
AU-rich sequences at the 3ʹ-UTRs of specific mRNA transcripts such as TNF-α44, IFN-γ45, IL-10 and IL-1746. In 

Jaspar database. The relative location of the ChIP primers was indicated. (d) Chromatin Immunoprecipitation 
(ChIP) and re-ChIP using pCREB or pNF-κB/p65 and coactivator p300 antibodies in iCECs that were 
stimulated with rh-ANGPTL4. (e) Relative expression and immunoblot analysis of TTP for iCECs repressed 
of CREB and/or NF-κB activity using siRNA (iCECCtrl, iCECRELA, iCECCREB and iCECRELA/CREB) and specific 
kinase inhibitors (Veh, IKK-2, 666-15 and IKK-2/666-15) in the absence and presence of rh-cANGPTL4. (f) 
Densitometry analysis showing the relative expression of pCREB and pNF-κBp65 in nuclear and cytoplasmic 
fractions of iCECs as treated in (e), normalized against Histone H3 and GAPDH for nuclear and cytoplasmic 
fractions, respectively, for Supplementary Fig. 3h. The Mann–Whitney U test was used. Three independent 
experiments (n = 3) were performed.
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agreement with these previous reports, we showed that the mRNA half-lives of specific inflammatory chemokines 
were prolonged in the absence of ANGPTL4 and TTP.

The pathogenesis of inflammatory bowel disease in humans is complex and has a multifactorial and diverse 
aetiology47. Dysbiosis has been associated with inflammation and impaired mucosal immune function in intes-
tine of humans48–50. Our 16S sequencing revealed little difference in microbe composition between two geno-
types that can account for the exacerbated colonic inflammatory response in ANGPTL4−/− mice. In this respect, 
the extent to which ANGPTL4 expression defines the colonic microbiota profiles remains to be delineated. It is 
also conceivable that mechanisms other than ANGPTL4-TTP-mediated chemokine mRNA stability might be 
involved. Our microarray analyses showed that Lrg1 and Gpx2 expression was up-regulated by 6- and 4-fold, 
respectively, in the colons of ANGPTL4−/− mice compared with wild-type counterparts. Lrg1 is proposed to 
be a possible biomarker for the diagnosis of ulcerative colitis51. Both Lrg1 and Gpx2 proteins are up-regulated 
during the acute stages of pediatric appendicitis52 and colitis53, respectively. These data suggest that additional 
ANGPTL4-dependent mechanisms may contribute to the severity of colitis in ANGPTL4−/− mice. Furthermore, 
ANGPTL4 has been implicated in many inflammation-associated pathologies. Although not explored in the 
present study, the mechanism whereby ANGPTL4 may be targeted to influence cell infiltration via TTP-mediated 
chemokine mRNA stability could be applicable to these pathologies.

Materials and Methods
Antibodies and Reagents. Antibodies against c-Fos (#2250), phospho-c-Fos (Ser32; #5348), Elk-1 (#9182), 
phospho-Elk-1 (Ser383; #9186), CREB (#48H2) and phospho-CREB (Ser133; #9198) were from Cell Signaling 
(USA). Antibodies against Histone H3 (05-499), NF-κB/p65 (MAB3026) and phospho-NF-κB/p65 (Ser276; 
AB3375) were from Merck Millipore, USA. Antibodies against Ly-6G (#127602 and #127614), CD68 (#137002) 
were from Biolegend, USA. FACS antibodies (APC-/FITC-conjugated) against CD11b, CD45, F4/80 were from 
Miltenyi Biotec, USA. Anti-CD4- and anti-CD8a- conjugated microbeads (#130-049-201, #130-049-401) was 
purchased from Miltenyi Biotec, USA. Anti-TTP (sc-14030, Santa Cruz, USA), active/cleaved Caspase 3 (NB100-
56113, Novus Biological, USA),

ChIP-grade antibodies against NF-κB/p65 (ab7970) and CREB (ab31387) were from Abcam, UK and p300 
(RW128) from Upstate Biotechnology, USA. IRDye® 680 LT goat anti-rabbit IgG, goat anti-mouse IgG and 
donkey anti-goat IgG were purchased from Li-Cor Biosciences, USA. Dextran sulfate sodium salt (DSS; 36 000 
to 50 000M.Wt) was from Affymetrix, USA (#14489). Recombinant human cANGPTL4 (rh-cANGPTL4) and 
anti-ANGPTL4 antibodies were produced in-house as previously described24. Recombinant human nANGPTL4 
(rh-nANGPTL4; 8249-AN, RnD Systems), IL-1β (ab9617, Abcam), TNF-α (#717904, BioLegend) and hydrocor-
tisone (CAS 50-23-7, Calbiochem). All other chemicals were purchased from Sigma–Aldrich.

Animals. ANGPTL4+/− C57BL/6J mice were acquired from the Mutant Mouse Regional Resource Center 
(MMRRC) and were generated by Genentech. The mice were crossed to produce ANGPTL4+/+ and ANGPTL4−/− 
offspring. DNA from mouse ear clippings was isolated using the KAPA Express Extract reactions and genotyped 
using Mouse Genotyping HotStart in accordance with the manufacturer’s recommendations (KAPA Biosystems, 
USA).

The PCR products were visualized on 2% agarose gels stained with SYBR Safe (ThermoFisher Scientific, USA). 
In the DSS treatment study, age-matched ANGPTL4+/+ and ANGPTL4−/− males (n = 20) were treated with 5% 
DSS in the drinking water for 8 days; the DSS was changed every 2 days. In the SA study, mice (n = 20) were 
fed with a 15% SA:85% ground chow (w/w) diet for 8 days. The disease activity index (DAI) was assessed every 
alternate day, while macroscopic and histological scorings were performed at the experimental endpoint. The 
scoring criteria are available in Supplementary Tables S1–3. Protein and RNA samples were collected by scraping 
colonic epithelial cells. Animal experiments were approved by and carried out in accordance with the guidelines 
of Nanyang Technological University’s Institutional Animal Care and Use Committee (NTU, IACUC, ARF SBS/
NIE-A0321 and ARF SBS/NIE-A0324), Singapore.

Cell Culture. SV40-immortalized human colon epithelial cells (iCECs; T0570; ABM Canada) were cultured 
in Prigrow III Medium (ABM Canada) in collagen-coated flasks and maintained at 5% CO2 at 37 °C. Confluent 
iCECs were stimulated with either 1 μg/mL DSS, 500 μM SA, 10 ng/mL IL-1β, 10 ng/mL TNF-α, 0.4 ug/mL HC 
or 2 mM NaBu for 6 h prior to harvesting. The siRNA knockdown against ANGPTL4, CREB, RELA or TTP was 
accomplished using Dharmacon ON-TARGETplus siRNA (Supplementary Table S8) according to the manufac-
turer’s protocol (Thermo Scientific, USA). Inhibition of the transcription factors CREB and IKK were carried out 
using 0.1 μM CREB inhibitor (666-15; #5661; Tocris Bioscience, UK) and/or 1 μM IKK-2 inhibitor IV (IKK-2; 
40-1481; Merck Millipore) respectively. iCECANGPTL4, iCECTTP and iCECCtrl were pre-treated with 2 mM NaBu 
for 2 h, followed by10 μg/mL actinomycin D for half-life measurements. In vitro experiments were carried out in 
triplicate.

RNA Extraction and Real-time Quantitative PCR. RNA was extracted using TRIzol (Invitrogen, USA) 
and was reverse transcribed using the iScriptTM Reverse Transcription Supermix according to the manufacturer’s 
recommendations (Bio-Rad, USA). Quantitative PCR (qPCR) was conducted as previously described54. Primer 
sequences are presented in Supplementary Table S9. The relative expression levels of the respective mRNAs 
described in this manuscript were normalized against those of the housekeeping ribosomal 18S RNA.

Microarray. RNA was transcribed into cDNA using an Applause WT-Amp ST System in accordance with the 
manufacturer’s recommendations (NuGEN Technologies, USA). cDNA was purified using a MinElute Reaction 
Cleanup Kit (Qiagen, USA), fragmented and labeled using an Encore Biotin Module kit (NuGEN Technologies, 



www.nature.com/scientificreports/

13Scientific RepoRts | 7:44351 | DOI: 10.1038/srep44351

USA). Labeled cDNA molecules were hybridized using the Affymetrix hybridization master mix and injected 
onto GeneChip Mouse Gene 1.0 ST Array gene chips (Affymetrix, USA) for scanning. Partek Genomic Suite 
(Partek Inc., USA) and Ingenuity Pathway Analysis (IPA) software were used to perform analyses, an overview 
of which is available in Supplementary Fig. S4. The human colonic mucosal samples used for the comparative 
analyses in Fig. 3e–h were published by Olsen et al. under the GEO accession number GSE945255. The microarray 
data (accession number GSE78500) have been deposited in the GEO database.

Protein Extraction and Western Blot Analysis. Proteins were extracted in ice-cold lysis buffer (20 mM 
Na2H2PO4, 250 mM NaCl, 1% Triton-X, 0.1% SDS, 1 mM PMSF, and 200 μM sodium orthovanadate) as pre-
viously described44. Equal amounts of proteins were resolved using SDS-PAGE gels and electro-transferred to 
low-fluorescence PVDF membranes (IPFL00010; Merck Millipore, USA). The cytoplasmic and nuclear fractions 
were isolated using the NE-PER Nuclear and Cytoplasmic Extraction Reagents (#78833; Thermo Scientific). 
Briefly, all protein samples for western blot analysis performed in this manuscript were first normalized using 
the NanoDrop 3300 Spectrophotometer (Thermo Scientific) prior to the ensuing downstream analyses. All 
loading controls for immunoblot analyses were obtained from the same sample. Membranes were blocked with 
0.5 × Odyssey Blocking Buffer (LI-COR Biotechnology, USA) and probed with the respective primary antibodies 
overnight at 4 °C in 1× Blocking Buffer with 0.1% Tween-20. Membranes were washed thrice in TBST (50 mM 
Tris HCl, pH 7.6, 150 mM NaCl, 0.1% Tween-20) for 5 min each and incubated for 1 h with the respective sec-
ondary antibodies in 1× Blocking Buffer at room temperature. Each membrane was washed thrice in TBST and 
then air-dried. Images were analyzed using a CLx scanner and Image Studio V2.1 (LI-COR Biosciences, USA). 
All membranes were first probed for target proteins before being re-probed for GAPDH housekeeping protein. 
Densitometry analyses were processed using ImageJ (NIH, USA). Densitometry values are presented under each 
blot, with values in bold representing significance (p < 0.05), or in graphs (for Fig. 4e and Supplementary Fig. 3h). 
The LEGENDplex Multi-Analyte Flow Assay Kit was used to measure the protein concentrations of targets 
(CCL2, CCL11, CXCL10, IL-1β, IL-10 and IL-17) for both mouse and humans and was customized through 
Biolegend, USA and performed in accordance with the manufacturer’s recommendations.

Tissue Processing, H&E, Immunofluorescence and TUNEL Staining. Tissues were harvested and 
fixed in 4% paraformaldehyde overnight at 4 °C and subsequently were dehydrated and embedded in paraffin as 
previously described56. Tissues were rehydrated and stained with hematoxylin and eosin (H&E) according to the 
manufacturer’s protocol (Sigma–Aldrich, USA). Slides were mounted with Fluka Eukitt quick-hardening mount-
ing medium (Sigma–Aldrich, USA). Images were obtained using a Zeiss Axiovert 200M microscope with a Zeiss 
FLUAR 10x/0.5 NA objective and PALMRobo V4.3 software (Carl Zeiss, Germany).

The TUNEL assay was performed in accordance with the manufacturer’s protocol (Roche). For immunoflu-
orescence analyses, tissue sections were rehydrated and incubated in 5% normal goat serum (NGS) for 1 h and 
then incubated with the primary antibodies in 3% NGS overnight at 4 °C. Subsequently, sections were washed and 
then incubated with respective secondary Alexa Fluor 594-conjugated antibodies (Invitrogen) for 1 hour at room 
temperature. Slides were then mounted with Hoechst 33342 dye (Life Technologies, USA). Images were obtained 
using a LSM 710 confocal microscope with a Zeiss EC Plan-NEOFLUAR 20x/0.5 NA objective and were analyzed 
using ZEN 2012 Blue Edition software (Carl Zeiss, Germany).

Tissue Dissociation and Flow Cytometry. Mouse colon tissues from various treatment groups were first 
homogenized into single-cell suspensions using the gentleMACS Dissociator (Miltenyi Biotec, USA) in DMEM 
containing 1 mg/mL collagenase-3 and 40 units/mL DNase 1. Homogenates were filtered through a 70 μm nylon 
cell strainer, washed and finally resuspended in PBS blocking buffer containing 3% FBS. The resultant suspen-
sion was then incubated with the respective FITC-/APC- conjugated antibodies on ice. Samples were washed 
twice and resuspended in PBS, and were then subjected to FACS analysis on the Accuri C6 Flow Cytometer (BD 
Biosciences, USA). All FACS analyses were performed for 5000 events.

Transwell Migration Assay. THP1 monocytes were differentiated in 100 ng/mL TPA complete medium 
for 48 h and allowed to recover for 24 h on transwell inserts. Respective siRNA knockdowns were performed on 
iCECS (iCECANGPTL4, iCECTTP and iCECCtrl). Inserts containing differentiated THP1 cells were then introduced 
to the transfected iCECs and exposed to various pro- and anti- inflammatory stimuli for 10 h (Fig. 3e). Inserts 
were then washed with PBS twice and fixed in 1% glutaraldehyde for 10 min, rinsed with PBS and stained with 
SYTO 60 (Thermo Fisher, USA) for 30 min. Cotton buds were used to remove all unmigrated cells trapped in the 
upper chamber of the inserts. Inserts were rinsed again in PBS before the quantification of fluorescence using the 
CLx scanner and Image Studio V2.1 (LI-COR Biosciences, USA). Relative fluorescence as a readout for cellular 
migration was calculated by normalizing the intensities between test wells (THP1 and iCECs) and control wells 
(THP1 without iCECs).

Chromatin Immunoprecipitation (ChIP) and Re-ChIP. ChIP and re-ChIP experiments were performed 
as described previously57. In addition, samples were subjected to washes with increased stringencies: twice each 
with the low (1% Triton X-100, 0.1% SDS, 2 nM EDTA, 20 mM Tris-HCl, 150 mM NaCl at pH 8.1) and high 
salt (1% Triton X-100, 0.1% SDS, 2 nM EDTA, 20 mM Tris-HCl, 500 mM NaCl at pH 8.1) wash buffers. Primer 
sequences are presented in Supplementary Table S9.

Kinase Inhibitor Array. Immortalized human colon cells were subjected to treatment with 95 kinase 
inhibitors (SYN-2103; SYNkinase, Australia) in the presence or absence of rh-c-ANGPTL4 (8 μg/mL) for 6 h 
(Supplementary Table S10). RNA was then isolated and reverse transcribed as described above.
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16S Metagenomics Sequencing. Post-weaned, age- and gender-matched ANGPTL4−/− or ANGPTL4+/+ 
mice were used. Fresh fecal pellets were collected before and after DSS treatment. Bacterial genomic DNA was 
isolated from feces using the FASTDNA spin kit (#116570200, MP Biomedicals, USA). 16S sequencing of the 16S 
V4 variable region was performed by SeqMatic LLC, USA using the Illumina MiSeq sequencing platform.

Bone Marrow Transplant Model. BMT was performed using bone marrow cells isolated from donor 
mice (ANGPTL4−/− or ANGPTL4+/+) and transplanted into recipient γ-irradiated ANGPTL4+/+ wild-type mice 
(WT IR; n = 6 per group). Recipient WT mice were kept on acidified water (pH 3.0) over the course of the 
BMT. WT mice were medicated with sulfamethoxazole (40 mg/kg) and trimethoprim (8 mg/kg) in oral suspen-
sion for one week prior to and after γ-irradiation (9.5 Gy) using the Biobeam 8000 (Gamma-Service Medical 
GmbH, Germany). Red blood cells from donor bone marrow cells were lyzed (0.89% NH4Cl, 0.1 mM EDTA, 
pH 7.2). Residual bone marrow cells were washed with PBS and filtered through 30 μM nylon cell strainer 
before depleting CD4+ and CD8+ cell populations using the QuadroMACS kit (#130-091-051, Miltenyi Biotec, 
USA). Approximately 107 CD4+ and CD8+ depleted bone marrow cells were introduced to WT IR mice via 
retro-orbital injection. Chimera mice [BMT (ANGPTL4+/+) and BMT (ANGPTL4−/−)] were allowed to 
recover for 4-weeks before 2% DSS treatment for 8 days. Bone marrow reconstitution was determined using 
genotype PCR (Supplementary Table S11). PCR products were visualized on 2% agarose gels tinted with SYBR 
Safe (ThermoFisher Scientific, USA). Cell count was numerated using the automated ADAM-MC cell counter 
(NanoEntek, USA). Cells from the spleen and colon were analyzed for immune cell infiltration using FACS (BD 
LSRFortessa X-20).

Statistical Analysis. Statistical analyses were performed using two-tailed Mann-Whitney U tests. 
P-values < 0.05 denote statistically significant differences between means; *p < 0.05; **p < 0.01 and ***p < 0.001. 
Values are expressed as the means ± standard error.
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