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8.1 HUMAN MODELS OF RHINOVIRUS INFECTION

Experimental infection of human subjects with rhinovirus (RV) has long
been used to study the pathogenesis of infection. Indeed, such studies
were carried out even before RVs were identified as causative agents of
the common cold. In 1914 almost 40 years prior to identification of RV,
Kruse induced colds in volunteers by inoculating them with a filtrate of
nasal washings.1 Following the identification of RVs, viral challenge stud-
ies were used extensively in healthy volunteers to study numerous aspects
of RV biology including viral infectivity, modes of transmission, role of
environmental factors, host immune responses, and the effects of treat-
ments. In the 1990s these studies were extended to subjects with asthma
to study the pathogenesis of RV-induced asthma exacerbations, and over
the last decade experimental RV infection has also been carried out in
patients with chronic obstructive pulmonary disease (COPD). These stud-
ies have provided unique insights into the pathogenesis of RV infection
that would have been difficult to obtain using studies of naturally acquired
infections or in animal models.

8.2 RATIONALE FOR HUMAN INFECTION STUDIES

Viral respiratory tract infections are the commonest infectious syndrome
in humans with adults experiencing two to four infections per annum.
Given the frequency of viral infections it is pertinent to ask why studies
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that deliberately expose humans to an infectious agent are required,
when there are more than enough naturally acquired infections to yield
sufficient subjects for studies. Despite the ubiquity of viral colds there
are a number of factors that make studies of naturally acquired infections
problematic. Although RVs are the commonest etiological agents of
viral colds there are several other viral causes (and nonviral causes of
upper airway symptoms), and the clinical syndromes caused by different
virus types are indistinguishable.2,3 Other factors contributing to vari-
ability in naturally acquired infections include different routes of inocu-
lation (eye, nasopharynx, direct contact, aerosol, etc.), different
inoculation doses, variability in the perception of symptoms leading to
differences in time to presentation and host factors (immune status,
smoking, age, etc.) that influence viral pathogenicity. Further, the het-
erogeneous nature of naturally occurring infections requires that large
patient numbers are needed to identify statistically significant effects of
treatment. Therefore human experimental infection studies are an attrac-
tive proposition as they allow for a known etiological agent to be
administered at a standard dose, route of inoculation, and time point to
a selected group of recipients with similar characteristics (e.g., age,
smoking history, health/disease, and antibody status). Detailed follow up
can be carried out in a controlled clinical setting with sample collection
at defined time points in relation to the time of infection. As the clinical
syndrome induced by RV challenge in young healthy volunteers is
benign and self-limiting, experimental RV infection in this group is rela-
tively uncontroversial. Perhaps the only risk to subjects was the possibil-
ity of additional infectious agents present in the inoculum and good
manufacturing practice (GMP)-prepared stocks are now required by reg-
ulators for experimental infection studies in humans to contravene this
risk.4 Studies in healthy volunteers have been central to establishing the
key aspects of the biology of RV infection including routes of acquisi-
tion of infection,5�8 clinical symptoms,8,9 inflammatory and immune
responses,10 involvement of the lower airway,10,11 and correlates of
immune protection of RV infection.12

Virus challenge studies have also been used in healthy volunteers to
evaluate a vast array of potential treatments. However, none of these
studies have led to the licensing of a single treatment for the common
cold.13�51 Licensing approval was sought for an antiviral drug, pleconar-
il, for the treatment of RV infection.21 Approval was denied by the
Food and Drug Administration as the adverse effects outweighed the
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benefits in healthy subjects with self-limiting colds. The lack of approval
of any antiviral treatments casts doubt on whether continued investment
in viral challenge studies is justified. However, the recognition that RV
infection is associated with more severe clinical manifestations in people
with chronic lung diseases such as asthma and COPD provided a new
impetus to research and a new direction to human experimental infec-
tion studies.

8.3 RHINOVIRUS INFECTION AND EXACERBATIONS OF
ASTHMA AND CHRONIC OBSTRUCTIVE PULMONARY
DISEASE

Up until the early 1990s the prevailing view was that RV infection
resulted in a self-limiting, mild upper respiratory tract syndrome only.
There were occasional reports of RV infection associated with more
severe clinical illness such as pneumonia52 but both scientific and phar-
macological research tended to be focused on other respiratory viruses
such as influenza and respiratory syncytial virus, as these were consid-
ered to be more serious human pathogens. Colds had long been associ-
ated with asthma exacerbations but early studies investigating virus
infection in asthma and COPD exacerbations reported low detection
rates.53�55 The consensus was that asthma exacerbations were predomi-
nantly triggered by allergen exposure and COPD exacerbations by
acute bacterial infection. The development of highly sensitive and spe-
cific molecular diagnostic techniques using polymerase chain reaction
(PCR) technology led to a revolution in viral diagnostics and a reevalu-
ation of the role of respiratory viruses in a range of clinical syndromes.
This was particularly pertinent to human RVs, which are either difficult
or impossible to culture (e.g., RV-C strains) and due to the large num-
ber of serotypes diagnostic serology testing is not feasible. PCR-based
diagnostic tests have a much greater sensitivity for the detection of RVs
and studies using PCR revealed that the range of clinical illness associ-
ated with RV infection was much broader than previously recognized
and included more severe disease syndromes such as pneumonia,56

bronchiolitis,57 acute rhinosinusitis,58 and influenza-like illness.59 In
addition RVs could be detected in most asthma exacerbations,60 and in
a substantial proportion of COPD exacerbations.61 Asthma is estimated
to affect 360 million people worldwide and COPD affects 174.5 mil-
lion people and was the cause of 3.2 million deaths in 2015.62 Much of
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the enormous morbidity, mortality, and healthcare costs associated with
asthma and COPD are related to acute exacerbations. Therefore the
recognition that RVs are a major cause of asthma and COPD exacerba-
tions stimulated new interest in their biology and treatment. As part of
this research investigators considered whether experimental infection
studies in humans could be extended from healthy volunteers to
patients with asthma and COPD.

8.4 EXPERIMENTAL RHINOVIRUS INFECTION IN ASTHMA

Respiratory viruses can be detected in up to 80% of asthma exacerbations
in children and 60%�80% of exacerbations in adults,60,63�65 with RVs
the commonest virus detected. The recognition of the role of RVs in
asthma exacerbations stimulated research into their biology in an attempt
to develop treatments for virus-induced exacerbations. This research
included investigating whether experimental RV infection could be used
in people with asthma in the same way it had been used in healthy indivi-
duals. The first experimental RV challenge of subjects with asthma was
carried out in 1985 at Dalhousie University, Canada. Of the 21 volunteers
inoculated, 19 became infected but only 4 had $ 10% decrease in forced
expiratory volume in 1 second (FEV1) and an increase in airway hyperre-
activity (AHR). The authors felt that these findings suggested “that other
viral pathogens may play a more important role in precipitating asthma
attacks.”66 It is unclear why this study failed to induce features of asthma
exacerbations but it would be almost another decade before further exper-
imental RV infection studies in people with asthma were attempted.
Experimental infection studies in allergic (nonasthmatic) subjects suggested
that RV infection could induce changes in lower airway physiology simi-
lar to that seen in asthma.67,68 In 1994 an experimental infection study
from the University of Southampton, United Kingdom included a small
group of people with allergic asthma and reported that upper respiratory
symptoms were more severe in atopic subjects but did not report on
lower airway symptoms or physiology.69 Concurrently a study using PCR
to detect viruses in naturally acquired asthma exacerbations strongly sup-
ported a role for RV.60 Subsequent studies were carried out by research
groups in the United Kingdom,70 the Netherlands,71�74 and the United
States75,76 in volunteers with mild, intermittent asthma. These studies
demonstrated that RV infection induced airway obstruction,77,78 increased
AHR,70�73,79 and airway inflammation70,72,79�84 and RV could be
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detected in the lower airways,75,85 thereby supporting a causative role for
RVs in asthma exacerbations.

Having established that respiratory viruses are a trigger for asthma
exacerbations, research focused on investigating why RVs cause a
benign, self-limiting illness in healthy subjects but result in more severe
manifestations in people with asthma. A study of naturally acquired
infections in cohabiting couples discordant for asthma suggested that
people with asthma were not more susceptible to virus infection but
had more lower respiratory tract symptoms.86 Airway inflammation dur-
ing naturally acquired infections was greater in people with asthma
compared with those without asthma but the number of subjects in this
study was small and the viruses detected were different between the
two groups.87 Viral challenge studies are ideally suited to addressing this
research question as people without asthma matched for characteristics
such as age and gender can be infected simultaneously. Most of the ear-
lier infection studies did not include a control group of healthy volun-
teers and therefore could not address the question as to whether host
responses to infection differ in people with asthma. Studies that did
include nonasthmatic controls produced somewhat inconsistent results
with one study reporting no differences in lower airway inflammatory
cells,70 another reporting increased nasal inflammatory mediators in
asthma88 and discrepant results regarding virus-induced respiratory
symptoms.88,89 These divergent results were likely related to differences
in sampling methods and timing, antibody status of subjects, and choice
of healthy controls (e.g., atopic vs nonatopic).

The first study to show clear differences between subjects with and
without asthma in their responses to RV infection was published in
2008.90 In this study, RV challenge induced more respiratory symptoms,
greater lung function impairment, increased bronchial hyperreactivity, and
eosinophilic and neutrophilic lower airway inflammation in asthmatic
compared with normal subjects with direct correlations between loss of
lung function and the degree of neutrophilic, eosinophilic inflammation,
and nasal viral load.90 In addition, the study provided insights into poten-
tial mechanisms of differential responses to viral infection in people with
asthma. Despite being infected with the same dose of virus, postinocula-
tion virus loads tended to be higher in the asthmatic subjects compared
with the healthy controls, suggesting that antiviral immunity may be
impaired in people with asthma with subsequent failure to control viral
replication. Virologic and clinical outcomes were related to deficient
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interferon (IFN)-γ and interleukin (IL)-10 responses and to augmented
T-helper type 2 (TH2) responses (IL-4, IL-5, and IL-13), indicating that
excessive TH2 or impaired TH1 (or IL-10) immunity may be important
mechanisms. When infected with RV in vitro, alveolar macrophages and
bronchial epithelial cells from subjects with asthma demonstrated deficient
production of IFNβ and IFNλ, and this was related to the severity of
virus-induced asthma exacerbations.91 Other reports subsequently con-
firmed that IFN production is deficient in asthma,92,93 but this finding has
not been replicated in all studies.94�96 It may be that this phenomenon
only occurs in a subset of people with asthma, or that it is seen in more
severe or poorly controlled asthma. Such patients were not initially
included in challenge studies as these were limited to mild, well-
controlled asthma not requiring inhaled corticosteroids. In 2014 RV
challenge was shown to be safe in a small group of people with well-
controlled asthma requiring long-term use of inhaled corticosteroids.97 A
larger study confirmed this and reported significantly more upper and
lower respiratory symptoms, greater reduction in peak expiratory flow
and FEV1, increased viral loads, increased bronchoalveolar lavage (BAL)
eosinophils, and increased nasal IL-4, IL-5, and IL-13 in subjects with
moderate asthma using inhaled corticosteroids.98 This study also identified
novel mediators of virus-induced asthma exacerbations including IL-33,98

IL-25,99 and IL-18.100 Poor asthma control was associated with more
severe virus-induced exacerbations, greater TH2 inflammation and higher
virus load.101 Therefore responses to virus infection may differ depending
on asthma severity and control, which may account for some of the dis-
crepant results in earlier experimental infection studies. These successful
viral challenge studies should pave the way for further studies in subjects
with moderate asthma that should reveal new insights into the pathogene-
sis of exacerbations that may not have been obtained from studies in mild
asthma.

The evidence that emerged from research, including experimental
infection studies, that asthma is associated with deficient IFN responses led
to the development of inhaled IFNβ as a treatment for asthma exacerba-
tions. A clinical trial of inhaled IFNβ reported that treatment can reduce
the severity of virus-induced exacerbations in a subgroup of patients
assessed with more severe asthma.102 The development of inhaled IFN as
a novel asthma treatment is a clear demonstration of the potential of
experimental RV infection studies to contribute to the discovery of new
treatments for virus-induced asthma exacerbations.
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8.5 EXPERIMENTAL RHINOVIRUS INFECTION IN CHRONIC
OBSTRUCTIVE PULMONARY DISEASE

The Global Initiative for Obstructive Lung Disease defines COPD as “a
common preventable and treatable disease, characterized by persistent air-
flow limitation that is usually progressive and associated with an enhanced
chronic inflammatory response in the airways and the lung to noxious
particles or gases. Exacerbations and comorbidities contribute to the over-
all severity in individual patients.”103 Acute exacerbations of COPD are
the major drivers of morbidity, mortality, and healthcare costs in COPD
and prevention of exacerbations a major unmet need.104 Acute bacterial
infection was believed to be the main cause of COPD exacerbations and
this is reflected in the widespread use of antibiotics in COPD exacerba-
tions.105,106 Although COPD exacerbations are preceded by upper respi-
ratory symptoms in up to two-thirds of cases, virus detection rates in the
pre-PCR era were low.53,107 As with asthma, the role of viruses in
COPD exacerbations was reexamined using PCR-based detection meth-
ods. Although detection rates of respiratory viruses in COPD exacerba-
tions are more variable than in asthma, respiratory viruses can be detected
in 50%�64% of COPD exacerbations, with RVs the predominant virus
type detected.108�111 Despite this emerging evidence implicating respira-
tory viruses in a significant proportion of COPD exacerbations, both sci-
entific and clinical research continued to focus on bacterial infection. As
evidence of this, it was almost two decades after the first experimental RV
infection study was carried out in asthma that a similar study in COPD
was attempted. Despite the excellent safety record of experimental infec-
tion studies in asthma, caution was warranted in repeating these studies in
COPD as there are major differences between these two populations.
COPD patients are older, current or ex-smokers, and have impaired lung
function with irreversible airflow obstruction. All these factors have the
potential to result in a more severe response to experimental RV chal-
lenge, compared with the younger, nonsmoking patients with relatively
normal baseline lung function recruited to the asthma infection studies.

The first experimental infection study in COPD was a small pilot
study published in 2006 that established the safety of RV infection in four
patients with moderate airflow obstruction (FEV1 50%�80% predicted)
and not using regular inhaled therapy.112 The subjects developed symp-
toms consistent with a COPD exacerbation following RV inoculation,
together with objective markers of exacerbation with falls in lung function
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and increases in upper airway inflammatory markers. All the subjects
recovered completely without treatment and no adverse events were
reported. Subsequently the same research group carried out two larger
studies of experimental RV infection in subjects with COPD and non-
COPD control subjects.113,114 These studies replicated the findings of the
pilot study, wherein RV infection manifested in cold symptoms, lower
respiratory symptoms consistent with exacerbations of COPD, including
airway inflammation and worsened airflow obstruction.113,114 These stud-
ies provided important causal evidence linking virus infection to COPD
exacerbations. Studies from naturally acquired infection were supportive
of this link but do not provide definitive evidence as PCR evaluation
detects viral nucleic acid and therefore does not prove the presence of live
virus and samples are only collected after exacerbation onset. Respiratory
virus nucleic acid can also be detected in COPD patients with
stable disease, although is usually elevated during COPD exacerbations.115

In experimental infection models, RV was present in airway samples prior
to exacerbation onset, virus load increased in parallel with the increase in
symptoms, airflow obstruction and inflammation, and clearance of virus
was associated with exacerbation resolution.113,114 Strong correlations
were observed between virus load and airway neutrophil numbers, neu-
trophil elastase, IL-8, IL-6, and tumor necrosis factor-alpha (TNFα), gran-
ulocyte macrophage colony stimulating factor, most of which of also
correlated with levels of epigenetic regulator, histone deacetylase 2 and
these inflammatory responses were greater in patients with COPD. In
these studies, RV infection is the sole experimental agent responsible for
increased inflammatory markers in patients with COPD, providing strong
evidence that RV infection directly causes exacerbations in COPD
patients.

Another advantage of virus challenge studies over naturally acquired
infections is the ability to carry out detailed and repeated lower airway
sampling during the course of the exacerbations, including the use of
bronchoscopy. This has provided a wealth of mechanistic data regarding
the pathogenesis of virus-induced exacerbations including the presence of
inflammatory mediators,113,114 inflammatory cells,113,116,117 oxidative and
nitrosative stress,114 and impaired antiviral IFN responses.113 A novel
observation that emerged from these studies was that secondary bacterial
infections occurred in 60% of experimental virus-induced exacerba-
tions,118 whereas coinfection was rarely reported in naturally acquired
exacerbations.119 Analysis of the respiratory microbiome following
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experimental RV infection suggest that secondary infection occurs due to
an outgrowth of previously present airway bacteria.120 Potential mechan-
isms of secondary bacterial infection include reduced antimicrobial pep-
tides118 and increased glucose in the airways.121 A subsequent study of
naturally acquired exacerbations sampling at multiple time points during
exacerbations confirmed the validity of this observation.122 Therefore
although the numbers of COPD subjects recruited to virus challenge
studies to date is small, RV infection appears to be safe in this population
and replicates the features of naturally acquired infection. Further studies
including larger numbers of patients are needed to validate these findings
and further investigate the mechanisms of virus-induced exacerbations in
COPD.

8.6 FUTURE DIRECTIONS FOR HUMAN INFECTION MODELS

Since the first studies in healthy volunteers, experimental RV infection has
been extended to patients with asthma and COPD and has contributed
enormously to expanding our understanding of the biology of RV infection
and how it affects patients with chronic airway diseases. A summary of the
key findings from human experimental infection studies in people with
asthma and COPD is provided in Table 8.1. These studies have tended to
have a narrow focus on RV infection and host immune responses. It is clear
from both in vivo and in vitro studies that there are interactions between
respiratory virus infections and other factors that exacerbate asthma and
COPD such as bacteria,127 allergens,128 and air pollution.129 These factors
have been somewhat neglected in viral challenge studies and are a promis-
ing field of future research that is starting to be addressed.124,130

As mentioned previously, the use of the viral challenge model in
asthma is much further advanced compared with COPD. One study iden-
tified IFN-deficiency in COPD but this has not been replicated. With the
development of inhaled IFN as a therapy option for asthma, the role of
IFN in COPD requires urgent further investigation. Other areas of future
research include the effects of virus infection on novel pathways such as
lipidomics131 and metabolomics121 in asthma and COPD.

Respiratory viruses have also been identified as triggers of exacerba-
tions in other airway diseases such as cystic fibrosis132,133 and bronchiecta-
sis134,135 and there is evidence of impaired antiviral immunity in these
diseases.136 Experimental infection studies may help to define the role of
virus infection in these patient populations.
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Table 8.1 Human experimental infection studies in asthma and chronic obstructive pulmonary disease (COPD)
Study Patient population Controls Main outcomes

Halperin et al.
(1985)66

21 AA, 12 using SABA,
1 using ICS

No change in FEV1 or AHR

Bardin et al. (1994)69 6 AA, mild asthma,
SABA only

11 NANA, 6 ANA More severe colds in atopic subjects

Fraenkel et al.
(1995)70

6 AA, SABA only 11 NANA No change in in FEV1 or AHR, increase in bronchial
mucosal lymphocytes in all groups but no difference
between groups, increased eosinophils at
convalescence in AA

Cheung et al. (1995)71 14 AA, SABA only. 7
infected, 7 sham
infected

No change in FEV1 or AHR, increased cold and
asthma symptoms, increased blood neutrophils and
reduced blood lymphocytes in the infected group

Grunberg et al. (1997,
1999)77,80

27 AA, SABA only. 19
infected, 8 sham
infected

No change in laboratory FEV1, fall in home FEV1,
increase in AHR, increased nasal IL-8, sputum ECP,
IL-8 and IL-6, blood neutrophils and reduced blood
lymphocytes in the infected group

Gern et al. (1997)75 5 AA, SABA only 3 ANA Detection of RV in the lower airway
de Gouw et al.

(1998)79
14 AA, SABA only. 7
infected, 7 sham
infected

No change in FEV1 or AHR, increase in FeNO in the
infected group

Parry et al. (2000)76 17 AA 5 ANA No significant differences in symptom scores, viral
shedding, or cytokine responses between groups

Jarjour et al. (2000)81 8 AA, SABA only Increased blood neutrophils and reduced blood
lymphocytes, increased nasal IL-8 and G-CSF; no
change in bronchial lavage IL-8, TNFα, IL-5, IL-1β,
IFN-γ, LTB4, or EDN; increase in BAL neutrophils
and MPO



Gern et al. (2000)82 15 AA, SABA only 7 ANA. All 22
subjects analyzed
together

No change in FEV1, sputum inflammatory cells,
eosinophils, lymphocytes, IL-8, IFN-γ and IL-5
protein; increased sputum neutrophils, G-CSF
protein, IFN-γ and IL-5 mRNA, increased nasal
neutrophils, IL-8 and G-CSF

Bardin et al. (2000)78 6 AA 11 NANA, 5 ANA
Grunberg et al. (2000,

2001), de Kluijver
et al. (2003)74,88,123

25 AA, SABA only. 12
received budesonide
prior to inoculation
and 13 placebo

12 NANA No change in FEV1 or AHR, increased bronchial
biopsy T cells, increased biopsy expression of ICAM-
1, nasal IL-8 and IL-1β in AA; increased nasal IL-1ra
in NANA; no effect of budesonide

de Kluijver 2003124 11 AA exposed to
allergen1 placebo,
10 AA exposed to
RV, 9 AA exposed
to RV and allergen

Increase in cold scores, sputum neutrophils, neutrophil
elastase, IL-8, nasal lavage neutrophils and IL-8; drop
in FEV1; no change in AHR or FeNO; no
differences between RV only and RV1 allergen
groups

Zambrano et al.
(2003)89

16 AA SABA only; 6
high IgE, 10 low IgE

9 NANA No change in FEV1 or AHR; lower respiratory
symptoms and FeNO greater in AA with high IgE

Mosser et al. (2005)85 13 AA 6 NANA No difference in upper or lower airway viral load
between groups

Christiansen et al.
(2008)83

4 AA, mild or
intermittent asthma

4 ANA Increased human tissue kallikrein activation activity in
BAL in AA

(Continued)



Table 8.1 (Continued)
Study Patient population Controls Main outcomes

Message et al. (2008)90 10 AA, SABA only 15 NANA Increased chest symptom scores, sputum and BAL
eosinophils, AHR in AA; significant falls in FEV1

and PEF in AA; reduced blood CD41 , CD81 ,
and B cells in AA

Adura (2014)97 11 asthmatics using ICS Increased cold and asthma scores, no adverse events
DeMore et al.

(2009)96
15 AA, SABA only 18 ANA No change in PEF from baseline; between groups no

differences in cold scores, PEF, virus load, sputum or
nasal lavage neutrophil, monocyte and lymphocytes,
nasal lavage IL-6, IL-10, CXCL8, CCL2, and CCL5,
serum CXCL10; increased sputum eosinophils in AA

Kloepfer et al.
(2011)125

19 AA SABA only. 8
received montelukast,
11 placebo

No effect of montelukast on symptoms, PEF, viral load,
sputum eosinophils, or neutrophils

Majoor et al. (2014)84 13 AA 11 NANA Coagulant TF-exposing microparticles in BAL fluid
reduced in AA

Jackson (2014)98 28 AA, 15 using ICS 11 NANA Significantly greater upper and lower respiratory
symptoms, greater reduction in PEF and FEV1,
increased viral loads, increased BAL eosinophils,
increased nasal IL-4, IL-5, and IL-13 in AA

Silkoff et al. (2018)126 63 mild-to-moderate
asthmatics, 63.5%
using ICS. 32
randomized to
CNTO3157

CNTO3157 had no effect on FEV1, PEF, symptom
scores, viral load, or FeNO; more moderate and
severe asthma exacerbations reported in subjects
receiving CNTO3157



Mallia et al. (2006)112 4 COPD, FEV1 50%�
80% predicted

Increased upper and lower respiratory symptoms, falls in
PEF and FEV1, increased nasal IL-8

Mallia et al. (2011)113 11 COPD, FEV1 50%�
80% predicted

12 smokers with
normal lung
function

Upper and lower respiratory symptoms, falls in PEF,
sputum neutrophils and NE, BAL lymphocytes, nasal
lavage virus load higher in COPD

Footitt et al. (2016)114 9 COPD, FEV1 50%�
80% predicted

10 smokers,
11 nonsmokers
with normal
lung function

Sputum inflammatory cells, neutrophils, NE, IL-1β,
GM-CSF, IL-8, TNFα, MMP-9, 8-OHdG, 3-NT,
nitrite and 8-isoprostane higher in COPD; sputum
HDAC2 activity reduced in COPD

Key findings from studies of experimental RV infection in human subjects with asthma and COPD, including information on the patient and control populations
assessed and key experimental findings. 3-NT, 3-Nitrotyrosine; AA, people with atopic asthma; AHR, airway hyperreactivity; ANA, atopic nonasthmatic; BAL,
bronchoalveolar lavage; ECP, eosinophil cationic protein; EDN, eosinophil derived neurotoxin; FeNO, fraction of exhaled nitric oxide; FEV1, forced expiratory volume
in 1 second; G-CSF, granulocyte colony stimulating factor; GM-CSF, granulocyte macrophage colony stimulating factor; HDAC, histone deacetylase; ICAM-1,
intercellular adhesion molecule 1; ICS, inhaled corticosteroid; IFN, interferon; IgE, immunoglobulin E; IL, interleukin; MMP, matrix metalloprotease; MPO,
myeloperoxidase; NANA, nonatopic nonasthmatic; NE, neutrophil elastase; PEF, peak expiratory flow; RV, rhinovirus; SABA, short-acting β2-agonist; TNFα, tumor
necrosis factor-alpha.



Perhaps the most promising use of the virus challenge model will be
to accelerate the process of drug development.137,138 Virus challenge stud-
ies have been used to evaluate the effects of existing asthma therapies on
virus-induced exacerbations.123,125 Recently the first study using viral
challenge to evaluate a novel, unlicensed drug in asthma was also pub-
lished.126 Although these studies had negative results they demonstrate the
potential of the viral challenge model in drug development.

The key to successful drug development is the identification of
clinically relevant mechanisms of RV infection or immunopathology
that can be experimentally manipulated for therapeutic benefit. This
is where human experimental RV infection is complemented by
work in animal models. There are a number of options for modeling
human RV infection in animal models and they provide the ability to
investigate specific disease components and mechanisms that would be
otherwise impossible in humans. Human experimental infection mod-
els have the advantage of identifying disease correlates, but the degree
of experimental manipulation possible is extremely limited and the
safety and effectiveness of interventions must first be evaluated in
animals.

8.6.1 Animal models of rhinovirus infection
Animal models have proven useful for mechanistic studies across a range
of diseases. Models of RV infection have been reported in several animal
species, including mouse, cotton rat, and nonhuman primates. Each of
these experimental systems provides its own advantages and disadvantages
and a substantial contribution to the knowledge base of the biology of
RV infection.

Animal models provide a range of benefits to complement human
experimental approaches.139 Experimental animals can be readily manipu-
lated to induce consistent disease outcomes, such as the induction of aller-
gic airway disease (AAD) to model asthma or cigarette smoke�induced
COPD. Animal models have less variability than human populations pro-
viding more consistent experimental outcomes and statistical power in
intervention studies. Experimental environment, exposures (e.g., previous
infection history), endpoints, and interindividual variability can be con-
trolled. Further, a broad array of tools are available to characterize disease
outcomes, including reagents, genetically modified animal strains, experi-
mental protocols, and assessment techniques (e.g., lung function testing).
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Sample tissues can be easily isolated at experimental endpoints, which are
difficult or impossible to sample in humans (e.g., lung tissues, draining
lymph nodes, bone marrow). Further, animal models serve as a valuable
preclinical system for the assessment of novel interventions, to provide
proof-of-principle safety and efficacy findings prior to exposure of healthy
human volunteers.

8.7 MOUSE MODELS

Mice in particular have been extensively used to model disease, includ-
ing virus infection and exacerbations of asthma and COPD.138�140 As a
result, a wealth of tools and techniques are available to study immune
mechanisms and pathophysiology in mice. Well-characterized protocols
and reagents support the induction of disease states and allow detailed
characterization of immune responses (e.g., fluorescently tagged mono-
clonal antibodies to quantify immune cell subsets). A range of trans-
genic and knockout mouse strains are available that allow for the
careful dissection of relevant disease mechanisms. Further, reagents are
available to assess the effects of novel interventions on disease outcomes
(e.g., blocking antibodies and various forms of innate immunity activa-
tors; see Chapter 9: Emerging therapeutic approaches).

The expansion of mouse RV infection models has paralleled our
understanding of RV biology in humans.141 Initial approaches focused on
understanding the effects of RV infection in isolation, identifying the
mechanisms and cell types mediating lung pathology. Increasingly com-
plex experimental models are now being used to characterize long-term
effects of infection on airway function and the effects of RV infection on
preexisting airway disease (e.g., asthma exacerbations).138�140

One of the biggest developments in mouse RV infection models was
the protocol for isolation of highly purified, concentrated (high titers) of
RV from Henrietta Lacks (HeLa) immortalized human epithelial cell lines
and later, the intracellular adhesion molecule 1 (ICAM-1) transfected
rhabdomyosarcoma cell lines.142,143 Prior to this, clarified infected HeLa
cell lysates were used for in vitro experiments.144 Some investigators also
used infected HeLa cell lysates in mouse models.145 Efforts to improve the
quality and validity of the model made use of a partial purification proto-
col to generate viral stocks.146 For mouse models of RV infection or
exacerbations, the refined, high-titer, RV purification protocol is the gold
standard.
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8.8 ORIGINS OF RHINOVIRUS MOUSE MODELS

A major barrier that hindered the early development of mouse models
was the species specificity of RV infection. “Major-group” RV strains,
which make up approximately 90% of all RV strains, enter the cell
through binding of ICAM-1.147,148 RV binding to ICAM-1 is limited to
human and chimpanzee and does not occur in other species, including
mouse.149 As a result, major-group RV strains cannot infect mouse cells
and fails to replicate or induce pathology in mouse models. Early attempts
to develop RV mouse models failed to detect sufficient viral replication to
induce disease.150

A major advance enabling the development of mouse RV infection
models was the initial recognition that the minor-group RV-A1, which
use the host cell receptor low-density lipoprotein receptor, can infect the
mouse epithelial cell line LA-4.151 This recognition suggested that minor-
group RV viruses (e.g., RV-A1) may be useful to model infections in
mice in vivo. Indeed, inoculation of wild-type BALB/c mice with RV-
A1 induced lung pathology, mucus production, and inflammatory cyto-
kine production.152 Notably, RV infection was also sufficient to induce
exacerbations of preexisting asthma in sensitized and challenged mice (as
discussed in more detail below).152

An alternate approach was also sought to allow modeling of major-
group RV infection in mice. The same study by Tuthill et al. demonstrated
that transfection of LA-4 cells with a chimeric ICAM-1 receptor containing
the human extracellular receptor domains allowed infection and replication
by the major-group virus RV-A16.151 This finding provided the basis for
developing a transgenic mouse strain expressing a chimeric mouse�human
ICAM-1 receptor. Chimeric receptor expression in hu-ICAMTg mice is
sufficient to support in vivo infection with RV-A16, resulting in airway
inflammation, mucus production, viral replication, and inflammatory cyto-
kine production.152 Of note, the hu-ICAMTg mouse was generated by ran-
dom insertion of a chimeric transgene and little is known about the
transgene insertion site within the genome. Use of this transgenic strain
requires additional experimental considerations (e.g., genotyping and use of
heterozygous animals in experiments), which has limited its broad utility.

Additional variations have also been reported in the literature, which
aim to broaden the available mouse models. Genetic RV-A1 variants
have been generated by serial passage through mouse embryonic fibro-
blasts in vitro and lung epithelial cells in vivo, which exhibit increased
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growth in mouse cells.153 Inoculation of BALB/c mice with the RV-A1/
M2M7 variant [83 106 plaque forming units (PFU)] allowed for recovery
of virus from mouse lung after 24 hours, when mice were also pretreated
with intranasal hydrochlorous acid to increase epithelial permeability.153

Successful use of mouse models also depended on the development of
streamlined RV isolation protocols that have allowed consistent and rapid
isolation of virus stocks, to limit variability between experiments. The
current gold-standard protocols for RV isolation, RV-A1 infection of
wild-type BALB/c mice, and the infection of transgenic mice expressing
chimeric mouse�human ICAM-1 receptor with RV-A16 are published
and readily available.141

8.9 TECHNICAL DETAILS AND MAIN FINDINGS FROM
MOUSE RHINOVIRUS INFECTION MODELS

A range of studies have assessed the effects of primary RV infection in
mice, contributing to our understanding of the mechanisms underlying
disease pathogenesis. Studies have used similar protocols, typically per-
forming intranasal inoculation of B106�108 TCID50 (tissue culture infec-
tive dose in 50% of culture, a titration of infection units of pathogens that
do not form plaques in culture) RV-A1 and assessing responses over 1
week following infection in BALB/c or C57Bl.6 mice.

In the initial publication by Bartlett et al., intranasal inoculation of wild-
type BALB/c mice with 53 106 TCID50 RV-A1 induced a range of dis-
ease features similar to human disease.152 RV infection induced airway
inflammation characterized by increased neutrophil numbers at 24 and
48 hours postinfection and increased lymphocyte numbers persisting for
1-week postinfection.152 Tissue pathology was characterized by perivascular
and peribronchial inflammation, increased mucus production, and elevated
inflammatory cytokine production (including MIP-2, KC, MIP-3α, IP-10,
RANTES, ITAC, IL-6, IL-1β, IFNα/β/λ/γ).152 Furthermore, RV
infection resulted in the development of an RV-specific adaptive antibody
response by 7 days postinfection.152

Further studies have provided insights into the effects of RV infection
alone in mice. Following inoculation of wild-type C57Bl/6 mice with
13 108 TCID50 RV-A1, detectable RV positive- and negative-strand
RNA were recovered from the lung, indicative of active viral replication
and viral RNA was detectable up to 7 days postinfection.145 The study
also noticed a small increase in airway neutrophils and lymphocytes in the
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presence of UV-inactivated RV-A1, although UV-inactivated RV-A1
(and major-group virus RV-39) failed to induce inflammatory cytokine
production.145 RV-A1 infection also increased airway responsiveness to
methacholine challenge at days 1 and 4 postinfection.145 Inoculation with
RV-A1 or UV-inactivated RV-A1 induced PI3K activation in airway
epithelial cells and pretreatment with the PI3K inhibitor LY294002
in vivo dampened neutrophilic inflammation and inflammatory cytokine
production (KC, MIP-2, MIP-1α, IFNγ).145 Inoculation of C57Bl/6
mice with RV-A1 (53 107 TCID50) leads to discontinuous expression of
zonula occludens-1, suggesting that infection disrupts airway epithelial
barrier function.154 RV infection also stimulated IL-15 production and
release into the airways, which is dependent on type I IFN production
and stimulates activation of natural killer (NK) and CD81 T cell
responses.155 Treatment with an IL-15�IL-15Ra complex increased
expression of IL-15, IL-15Rα, IFNγ, and CXCL9 and stimulated
increased NK, CD81, and CD41 T cell recruitment and activation.155

CCL7 and IRF-7 are the most upregulated lung transcripts following
RV-A1 infection.156 Blocking CCL7 or IRF-7 function reduced lung
neutrophil and macrophage accumulation and IFN responses and blocking
CCL7 also reduced AHR.156 This publication also delineated AHR from
inflammatory infiltrates showing instead a relationship between classical
proinflammatory transcription factors (NFκB) and AHR.

As alluded to previously, the use of knockout mice in particular has
provided insights into a number of mechanisms regulating RV-induced
pathology. Key roles for neutrophils and the neutrophil chemokine recep-
tor CXCR2 in mediating RV-induced pathology were identified.
Inoculation of CXCR22/2 mice with RV-A1 (4.53 106 TCID50)
resulted in reduced airway neutrophil numbers, reduced inflammatory
cytokine production (TNFα, MIP-2, KC), decreased mucus production,
and decreased cholinergic responsiveness, with no alteration in viral load,
compared with wild-type control animals.157 Further, antibody depletion
of neutrophils and infection of TNFR2/2 mice also reduced AHR, com-
pared with control animals.157 These findings provide evidence for a role
of neutrophilic inflammation, potentially via TNFα production, on
downstream pathology following RV infection. Roles for pattern recog-
nition molecules have been demonstrated for MDA5, Toll-like receptor 3
(TLR3) and TLR7. Infection of MDA52/2 mice resulted in delayed type
I IFN (IFNα/β) and suppressed type III IFN expression, with a slight
early increase in viral load in the lung.158 In contrast, inoculation of

212 Rhinovirus Infections



TLR32/2 mice resulted in normal IFN responses and no difference in
viral yield.158 Both MDA52/2 and TLR32/2 mice had reduced neutro-
phil numbers, inflammatory cytokine production (CXCL1, CXCL2,
CCL2, CXCL10) and airways responsiveness, compared with wild-type
controls.158 Differing roles for NFκB signaling pathways in RV-induced
inflammation and type I INF responses in antiviral immunity have been
demonstrated. Disruption of NFκB signaling in p651/2 mice resulted in
reduced neutrophil numbers and inflammatory cytokine production
(CXCL1, CXCL5, CXCL2), while IFN production and viral loads are
unaltered.159 In contrast, IFNAR12/2 mice have unaltered neutrophilic
inflammation, a persistent increase in lymphocyte numbers and cytokines
CCL5, CXCL10, and CXCL11, with reduced IFNα production and
increased viral load.159 A pathogenic role for the proinflammatory mole-
cule MUC18 has also been demonstrated, with increased expression of
antiviral genes (Mx1, IP-10), reduced neutrophil inflammation and viral
load in MUC182/2 mice following RV-A1 inoculation
(13 107 PFU).160 Studies using Tbet2/2 mice (a key regulator of TH1
cell differentiation) have also demonstrated the key role for TH1-polarized
T cells in the response to RV infection. Tbet2/2 mice developed a TH2/
TH17-polarized immune response to RV infection (53 106 TCID50)
with increased IL-13 and IL-17A production, deficient NK cell responses,
and decreased neutralizing antibody development.161 CD41 T cells con-
tributed to increased airway eosinophil numbers and mucus production
following RV infection in Tbet2/2 mice.161 Studies using TSLP
receptor-deficient mice (TSLPR2/2) demonstrated that RV-A1 infection
interferes with tolerance to an inhaled allergen, via a mechanism requiring
TSLP, IL-33, and activation of OX40L on lung dendritic cells.162

After observing increased levels of the TNF super family member pro-
tein, Tnfsf10 (TRAIL or CD253) production over a time course of RV-
A1 infection in mice, Girkin et al. compared RV-A1 infection in
Tnfsf102/2 mice to wild-type BALB/c mice and observed an almost
complete ablation of inflammatory responses to RV-A1.163 Following
RV infection, peribronchiolar inflammation and lung histopathology
were reduced in Tnfsf102/2 mice; neutrophil and lymphocytes in BAL
remained at baseline; and CD41 T cells, CD81 T cells, NKs, plasmacy-
toid dendritic cells (pDCs), and myeloid dendritic cells were all reduced
in flow cytometry of total lung cells.163 Tnfsf102/2 mice were protected
from RV-induced AHR, and failed to develop RV-induced exacerbations
of allergic airways disease.163 An interesting proviral effect of TRAIL was
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also identified whereby Tnfsf102/2 mice had reduced viral load and anti-
TRAIL antibodies reduced viral load (whereas recombinant TRAIL
administration increased viral load) in BEAS2B cells infected with RV-A1
in vitro.163 This effect on viral load was independent of IFN responses
and may be associated with an unidentified role of apoptosis in RV repli-
cation, which remains to be explored.

Some studies have assessed the effect of primary RV infection on clini-
cally relevant sequelae, including secondary bacterial infection and the
effects of premature birth on infection. Exposure of epithelial cells in cul-
ture to RV-A1 resulted in increased bacterial attachment and translocation
through an epithelial monolayer (nontypeable Haemophilus influenzae
(NTHi), Pseudomonas aeruginosa, Staphylococcus aureus),154 suggesting a
potential mechanism underlying secondary bacterial infections following
viral infection. A subsequent study demonstrated that primary inoculation
with RV-A1 (53 106 TCID50) delayed the clearance of NTHi in vivo,
associated with suppressed chemokine production (KC, MIP-2) and neu-
trophilic inflammation through a TLR2-mediated mechanism.164 The
model has also been used to assess immune alterations relevant to prema-
ture birth and bronchopulmonary dysplasia, risk factors for viral-induced
exacerbations. Exposure of neonatal mice to hyperoxia (75% oxygen) in
early life increased inflammatory cytokine expression (IL-12, IFNγ,
TNFα, CCL2, CCL3, CCL4) and suppressed early IFN responses follow-
ing RV-A1 infection (93 106 PFU) at 14 days of age.165 One study has
also assessed the effect of RV infection timing on subsequent development
of AAD. Inoculation of 7-day-old mice with RV-A1 and subsequent
induction of house dust mite (HDM)-induced allergic airways disease had
additive effects with increased neutrophilia and AHR in female mice,
although RV inoculation had no additional impact in male mice.166

These studies extend the use of RV infection in mice to new areas,
including mechanisms of early life infection susceptibility, to mechanisms
of secondary bacterial infection/compromised antimicrobial immunity and
experimental exploration of clinical risk factors associated with increased
likelihood to develop virus-induced exacerbations of respiratory diseases.

8.10 PRECLINICAL TESTING IN MOUSE MODELS OF
RHINOVIRUS INFECTION

Mouse models are valuable tools for the preclinical testing of novel treat-
ments. Several studies have used the mouse RV infection model to assess
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intervention strategies, including vaccine development and drug treat-
ment. Primary inoculation of BALB/c with RV-A1 (13 106 TCID50)
rapidly induced circulating RV-specific IgG antibody production within 4
days, which binds capsid protein VP1 and those antibodies were cross-
reactive to another minor strain RV (RV-29).167 Repeated RV infections
were necessary to induce RV-specific IgA responses and neutralizing anti-
bodies, but administration of CpG or subcutaneous immunization with
Freund’s adjuvant promoted neutralizing antibody development and may
inform potential vaccine strategies.167 Pretreatment with the plant flavanol
quercetin before and during RV-A1 infection effectively reduced viral
replication, inflammatory cytokine production (KC, MIP-2, TNFα,
CCL2, IFNα, and IFNλ2), and AHR.168 Treatment with the cancer
therapeutic gemcitabine (20,20-difluorodeoxycytidine) reduced RV load,
inflammatory cytokine levels (TNFα, IL-1β), and reduced lung lympho-
cyte numbers.169 Treatment with corticosteroid therapy (fluticasone pro-
prionate) suppressed IFN responses to RV and reduced airway
inflammation, leading to increased mucus production and reduced antimi-
crobial responses.170 Effects on viral load, mucin production, and antibac-
terial response could be reversed by administration of recombinant IFN-
β.170 Despite promising findings in mouse models, quercetin has not
entered clinical trials for the treatment of RV infection, likely due to a
previous randomized community clinical trial in 2010 that showed little
benefit of quercetin supplementation on upper respiratory infections.171

These findings may highlight the limitation of mouse models, which
(while valuable) do not always fully recapitulate human disease
mechanisms.

8.11 RHINOVIRUS-INDUCED DISEASE EXACERBATION
MODELS IN MICE

Animal models to study RV-mediated exacerbations of airway disease
have also been developed. These models combine experimental RV
infection with models of airways disease, including asthma, COPD, and
chronic rhinosinusitis. Models of asthma typically consist of administration
of a sensitizing agent [e.g., ovalbumin (OVA) or HDM] and subsequent
challenge in the airways to induce an eosinophilic, allergic airways disease.
COPD is typically induced by prolonged and repeated exposure of mice
to cigarette smoke or treatment with elastase. After airways disease is
established, mice are then inoculated with RV to induce disease
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exacerbations. These models are explained and expanded upon in the fol-
lowing sections.

Researchers have also used double-stranded RNA (dsRNA) adminis-
tration as a surrogate for virus infection to exacerbate preexisting disease
(reviewed in Refs. [139,140]). However, these approaches fail to model
the complexity of virus infection and are beyond the scope of the current
book chapter.

8.11.1 Mouse asthma exacerbation models
Many studies have characterized the effects of RV infection on preexisting
asthma and have provided insights into the immune cell types involved,
key molecules, and responses to potential therapies. In the initial report of
an RV (RV-A1) exacerbation model, OVA-sensitized and challenged
BALB/c mice were inoculated with RV-A1 during the allergen challenge
phase.152 The combination of virus and allergen challenge increased air-
way neutrophil, eosinophil, and lymphocyte numbers; increased cytokine
production (IL-4, IL-13, and IFNγ), increased AHR; and increased mucus
gene expression.152

Subsequent studies have identified key functional roles for macro-
phages, gamma-delta (γδ) T cells, dendritic cell subsets, and neutrophils in
RV-induced immunopathology. In a similar model, RV-A1 inoculation
into OVA-sensitized/challenged mice increased macrophage lung infiltra-
tion and eotaxin-1/CCL11 expression.172 Eotaxin was expressed by pul-
monary macrophages in the lung after combined virus infection and
allergen challenge.172 Further, macrophage depletion or antieotaxin treat-
ment reduced RV-induced airway eosinophilia and AHR.172 Macrophage
activation state also modulates the response to RV infection in allergen
sensitized/challenged mice and shapes the resulting pattern of inflamma-
tion. RV infection in asthma exacerbation models induced an IL-13-
expressing macrophage population, with M2 polarized phenotype.173

Depletion of IL-13-producing cells in CD11b-DTR mice or CCR22/2

mice reduced airway inflammation and AHR.173 Interestingly, while RV
infection of OVA-treated wild-type mice contributes to mixed neutro-
philic and eosinophilic airway inflammation and M2 macrophage pheno-
type, IL-4R2/2 mice exhibit neutrophil inflammation alone and
increased M2 polarization of pulmonary macrophages but still have exac-
erbated airway responses.174 γδT cells dampen exacerbation responses.
γδT cells are increased in RV-induced asthma exacerbation models and
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blocking responses with anti-γδTCR antibody worsened exacerbations
with increased AHR, and increased numbers of TH2 cells and eosinophils,
with no effect on virus load.175 pDCs were recruited to the lung during
RV-induced inflammation and subsequently promoted TH2 responses in
the lung draining lymph nodes, in a process mediated by IL-25.176

Depletion of pDCs with an antibody or treatment with anti-IL-25
reduced eosinophil numbers, decreased lung pathology, reduced cytokine
production (IL-5, IL-13), and reduced AHR.176 Functional roles for neu-
trophils, and neutrophil extracellular traps (NETs), have also been pro-
vided in RV-induced asthma exacerbation models. Chronic low-dose
HDM exposure and RV infection have additive effects on neutrophilia
and induce AHR.177 A more recent study demonstrated that RV infec-
tion in an HDM-mediated asthma model results in double-stranded DNA
release into the airways and administration of genomic DNA alone was
sufficient to mimic characteristic components of RV-induced exacerba-
tions.178 Further, blocking neutrophil elastase or degrading NETs by
applying DNase into the airways reduced eosinophil and lymphocyte
numbers, tissue pathology, and cytokine production (IL-5, IL-13).178

A number of studies have highlighted the functional roles of specific
molecules in RV-induced mouse exacerbation models, as potential thera-
peutic targets to validate in patient populations. In addition to roles during
RV infection alone highlighted above, MDA5 and TLR3 are also
involved in RV-induced exacerbations. MDA52/2 and TLR32/2 mice
have decreased inflammatory responses and AHR, while MDA52/2 also
had decreased IFN responses (IFNβ/λ2/λ3).158 Midline 1 (a E3 ubiquitin
ligase) is upregulated in an HDM-induced model, and short interfering
RNA�mediated inhibition prior to RV inoculation reduced neutrophil
numbers and mucus production production.179 The monocyte chemotac-
tic protein CCL2 is produced by epithelial cells and macrophages follow-
ing RV-induced exacerbation and administration of an anti-CCL2
antibody reduced eosinophil numbers and AHR.180 Foxa3-overexpressing
transgenic mice produce excess mucus in their airways and RV infection
increased Foxa3 expression.181 In Foxa3-deficient mice (Foxa32/2), RV
clearance is increased, with increased IFNβ activation.181 IL-25 expression
is also increased in RV-induced exacerbations and blocking the IL-25
receptor reduced type 2 cytokine production (IL-4, IL-5, IL-13, IL-25,
IL-33, TSLP), mucus production, and numbers of eosinophils, neutro-
phils, T cells, and innate lymphoid type 2 cells.99 Combining dsRNA
administration with RV-A1 inoculation worsened preexisting allergic
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airways disease. Repeated dsRNA administration after OVA sensitization/
challenge resulted in neutrophilic lung inflammation and tissue pathology
and combined dsRNA and RV-A1 inoculation increased expression of
TSLP, TNFα, and IFNλ in the lung.182 Key roles for pattern recognition
receptors have also been demonstrated in RV asthma exacerbation mod-
els. HDM-allergic TLR72/2 mice had a decreased antiviral response,
with reduced IFN release (IFNα/β/λ1/λ2/λ3) and increased virus repli-
cation, associated with increased eosinophil and lymphocyte numbers,
increased IL-5 and CCL11, and AHR.183 Administration of IFN or trans-
fer of wild-type TLR7-competent pDCs could restore antiviral responses
and reduce disease exacerbation.183 OVA-allergic TLR22/2 mice also
had reduced macrophage, neutrophil, and eosinophil numbers and sup-
pressed AHR after RV inoculation.146 Bone marrow transfer experiments
demonstrated that TLR22/2 bone marrow could protect from exacerba-
tions, while transfer of wild-type bone marrow restored responses in
TLR22/2 mice.146 Transfer of wild-type macrophages into TLR22/2

mice could also restore exacerbations.146 As previously mentioned, a role
for TRAIL has also been demonstrated, with HDM-allergic TRAIL-defi-
cient mice (Tnfsf102/2) protected from RV-induced AHR and induction
of airway inflammation.163

RV-induced asthma exacerbation models have also been used to assess
the responses to existing therapies and as preclinical models for novel ther-
apies. Treatment of HDM-allergic mice with the long acting beta-2 ago-
nist salmeterol reduced AHR and eosinophil numbers during RV
exacerbation, and limited chemokine levels (CCL11, CCL20, CXCL2)
through modulation of PP2A.184 The findings of this study were focused
on PP2A as a novel therapeutic target rather than promoting salmeterol
monotherapy (which was associated with adverse events and tolerance to
β2-agonists with chronic salmeterol use185). An approach to block major-
group RV virus infection was assessed through administration of antihu-
man ICAM-1 antibody, which prevented entry of RV-A16 and RV-14
and reduced neutrophil and lymphocyte numbers, cytokine production
(IL-4, IL-5, IL-6, CCL1, CCL11), mucus production, and virus load in
human transgenic mice in an OVA-allergic model.186 Treatment with a
nontoxic anthraquinone derivate reduced RV-induced AHR, neutrophil,
and eosinophil airway inflammation; inflammatory cytokine production;
and mucus hypersecretion while also boosting type 1 IFN response and
reducing viral yields, with associated decreased AKT, HIF-1α, and VEGF
production.187 Treatment with an antiinflammatory VAP-1/SSAO
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inhibitor, PXS-4728A, or the macrolide antibiotic azithromycin also
reduced neutrophil numbers and PXS-4728A reduced AHR following
RV-A1 inoculation in HDM-allergic mice.188

8.11.2 Mouse chronic obstructive pulmonary disease
exacerbation models
RV also plays an important role in virus-induced exacerbations of COPD.
Several studies have assessed the effects of RV inoculation in animal mod-
els of COPD. Exposure to elastase and lipopolysaccharide (LPS) once per
week for 4 weeks induces features of COPD, including airway inflamma-
tion, goblet cell metaplasia, and altered lung function.189 Addition of RV-
A1 led to persistence of viral RNA (. 14 days postinfection), deficient
IFN responses (IFNα/β/γ) and increased AHR, lung volume, cytokine
production (TNFα, IL-5, IL-13), and mucus production, compared with
elastase/LPS administration alone.189 A subsequent study attempting to
replicate the elastase/LPS model of COPD found that a single elastase
treatment followed by RV-A1 inoculation was enough to increase airway
neutrophil and lymphocyte numbers, increased inflammatory cytokine
production (TNFα, CXCL10, CCL5), mucus hypersecretion, and
AHR.190 In the same elastase-induced model, fluticasone proprionate
treatment reduced IFN responses, increased viral load, suppressed airway
immune cell numbers (lymphocytes and neutrophils), suppressed inflam-
matory cytokines (IL-6, TNFα), and increased mucus production, follow-
ing RV-A1 exacerbation.170 The differences in the experimental
approaches required to elicit an RV-induced exacerbation in these differ-
ent studies is likely due to the quality of virus inoculum used by the dif-
ferent investigators, which as explained previously, is influenced by
purification approach. The first study used only crude virus-infected cell
lysates, whereas the later study employed a highly purified virus
inoculum.

Several studies have also reported on RV infection in a cigarette smo-
ke�induced COPD model. In an initial study, 8 weeks of cigarette smoke
exposure resulted in increased viral persistence, neutrophilia, and increased
mucus production following RV infection.191 Subsequent studies demon-
strated that goblet cell gene expression was reduced following treatment
with a gamma-secretase inhibitor (GSK L685,458) to limit NOTCH acti-
vation.192 Further, supplementation of feed with quercetin reduced RV-
induced lung inflammation (including neutrophilia), goblet cell metaplasia,
and AHR.193
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8.11.3 Mouse chronic sinusitis exacerbation models
To our knowledge, only one study has assessed the effect of RV infection
in a chronic sinusitis model. A mouse model of chronic allergic rhinosinu-
sitis was induced by 5 weeks of repetitive nasal OVA challenges.194

Increased RV-A1 yields were reported in the nasal tissue of mice with
rhinosinusitis, although inflammatory cytokine production and histopa-
thology were unaffected.194 This study served to illustrate the range of
additional diseases where RV infection has been shown to be relevant in
human populations where animal models are available for future research
(e.g., cystic fibrosis).

8.12 OTHER RHINOVIRUS ANIMAL MODELS

A limited number of studies reported the use of RV infection in other ani-
mals, namely cotton rats and nonhuman primates. We note that historical
studies assessing “RV” infection in other animal species are referring to
genetically distinct viral genera and should not be confused with human
RV (e.g., equine RV and bovine RV). For example, while human RV
and equine RV were both originally assigned to the Rhinovirus genus, they
have been reclassified into Enterovirus and Apthovirus, respectively. Equine
RV has subsequently been renamed “equine rhinitis virus.”

8.12.1 Cotton rat
The cotton rat (Sigmodon hispidus) is a recognized model for human respira-
tory infection, particularly for respiratory syncytial virus, as well as adeno-
viruses, parainfluenza virus, measles, and human metapneumovirus
(reviewed in Ref. [195]). To date, two studies have reported on RV infec-
tion in cotton rats, providing evidence that cotton rats are partially permis-
sive to RV major-group infection. Intranasal inoculation of RV-A16
(107 PFU) into cotton rats induced lower respiratory histopathology,
increased mucus production, and induction of INF-activated genes.196

Immunization with live RV-A16-induced high levels of circulating antibo-
dies and protected from subsequent infection, while prophylactic transfer of
anti-RV-A16 serum also protected from disease.196 Further, this protection
was transferred effectively from mother to newborn, limiting viral yields in
subsequently infected progeny.196 In a later study, the same group provided
evidence that infection with RV-B14 (106 PFU) induced similar disease
pathology. Furthermore, immunization with RV-B14 provided protection

220 Rhinovirus Infections



from subsequent infection with either RV-B14 (an RV-B group virus) or
RV-A16 (an RV-A group virus), demonstrating some degree of cross-
reactivity to very different major-group viruses.197

8.13 NONHUMAN PRIMATES

Chimpanzees and gibbons are the only nonhuman primates that support
RV infection, although RV infection has also been reported in the vervet
monkey cells, with consistent infection requiring high dose exposure.198

Initial RV infection studies in chimpanzees were reported in 1968, using
RV-B14 and RV-A43199 and in gibbons in 1969.200 Subsequent studies
in chimpanzees and gibbons assessed the antiviral effects of drug treat-
ments on RV infection, using bis-benzimidazole and triazinoindole,
respectively.201,202 Administration of soluble truncated form of human
ICAM-1 can prevent subsequent infection in chimpanzees.203 However,
it has been noted that neither chimpanzees nor gibbons develop “cold”
symptoms following RV infection and the high costs and logistics of these
studies has limited further progress.

Chimpanzees are an endangered species and require considerable
resources and facilities for research. Current chimpanzee research is limited
to the United States and Gabon. However, the National Institutes of
Health in the United States have indicated that they are seeking to elimi-
nate the use of chimpanzees in research. All but one species of gibbon are
endangered. Thus clinical research using nonhuman primates in the future
to characterize RV infection are likely to be limited or nonexistent.

8.14 ANIMAL MODELS USING OTHER VIRUSES

As RV does not normally infect rodents, an attenuated mengovirus infec-
tion model has been proposed as an alternative option to model RV
infection. Mengovirus also belongs to the Picornaviridae family and nor-
mally causes systemic infection in rodents. Using an attenuated mengo-
virus, intranasal inoculation of 107 PFU into rats increased airway
neutrophil and lymphocyte numbers, induced lung tissue pathology, and
increased expression of CXCL1 and CCL2.204 A subsequent report using
a genetically attenuated mengovirus vMC(0) in mice also induced lower
respiratory tract infection with increased lung neutrophil and lymphocyte
numbers, expression of CXCL1, CXCL2, CXCL5, IL-17A, INFs, and
chemokines CXCL10 and CCL2.205
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Other respiratory virus infections are associated with acute exacerba-
tions of asthma and COPD, including respiratory syncytial virus, influ-
enza, human coronavirus, human parainfluenza virus, human
metapneumoviruses, and adenoviruses.206 Animal models for these infec-
tions have largely been limited by the specificity of viruses to humans. It
is unclear to what extent the mechanisms causing pathology differ
between different viruses (or between strains of the same virus). A detailed
discussion of the disease processes induced by each of these different virus
infections is beyond the scope of this chapter. A detailed analysis of the
relevant disease mechanisms in each infection setting is necessary to
inform our understanding of disease exacerbations and ideally to identify
common mechanisms between viruses that can be targeted for therapy.

8.14.1 Considerations, cautions, and limitations of animal
infection models
No animal model can completely recapitulate naturally occurring human
RV infection. While animal models provide important insights into dis-
ease mechanisms, it is important to also recognize their limitations.

There are recognized limitations of mice as models of human respira-
tory disease.207 These include differences in response/symptoms between
other species and humans. There are differences in respiratory tract archi-
tecture in human, nonhuman primate, and mouse airways. They range
from dichotomas (each airway splits into two), trichotomas (airways split
into threes), or monopodial branching (central airway continues while
subordinate airways branch out) with differences in airflow inhomogenei-
ties covered in detail by Miller et al.208 There are also differences in
mucus production processes in mouse compared with human airways.
The short lifespans of laboratory animals do not capture the life-course of
human disease, mice do not naturally develop asthma or COPD, and
most current models of asthma represent eosinophilic, allergic patterns of
disease. It remains unclear to what extent the current models and patho-
physiology truly reflect human disease (particularly considering recognized
heterogeneity of the human population).

RV has evolved for efficient replication in the human respiratory tract.
Due to the decreased efficiency of RV entry into nonhuman epithelial
cells (and likely differences in the nuances of cellular machinery required
for replication), a high amount of viral load is required to elicit a biologi-
cal response to RV in laboratory animals (e.g., 106 TCID50 in mouse vs
5�10 TCID50 in experimental human infection models). Human RV
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strains also demonstrate limited viral replication and different replication
kinetic between mouse and man. These differences highlight the impor-
tance of confirming findings in relevant patient cohorts/samples and the
utility of using human experimental models in parallel with animal mod-
els. This point is not purely for academic consideration. More so, it is
important to take into consideration clinical trial design and outcomes.
For example, mouse models highlighted the key relevance of IL-5 in
asthma pathology through use of knockout mice209 and antibody block-
ade.210 However, the initial randomized control trial assessing anti-IL-5
therapy (mepolizumab) in a broad asthma population failed to demon-
strate any clinical effect.211 It was not until subsequent trials limited
recruitment to patients with demonstrable eosinophilic asthma (a patient
subset that is more closely modeled by the experimental mouse system)
that clinical improvements were observed.212,213

8.14.2 Future directions for animal models
In a similar way to experimental human infection models, there has been
a narrow focus in animal models. In mice, focus has largely been on RV
infection alone with a growing body of literature assessing asthma exacer-
bations. While difficult to model in mice, RV-induced COPD exacerba-
tions models are emerging through use of elastase administration and
cigarette smoke�induced COPD. A summary of key findings from mouse
models of RV-induced exacerbations of airway disease is presented in
Table 8.2. Limited studies have reported on RV effects or potential inter-
ventions in these models. As with human experimental infections, animal
infection models may also be relevant to an expanding array of diseases in
the future (e.g., CF, bronchiectasis).

To date, there has been limited assessment across different RV
strains in both animal and human studies. The primary focus of RV
models has been on RV-A1 in mice, or RV-A16 and RV-A39 in
human, possibly due to the availability of these strains and the ease of
growing these strains in cell culture. In particular (due to its relatively
recent discovery), RV-C infection has yet to be assessed in animal mod-
els. There has so far been difficulty in generating sufficient quantities of
RV-C for research purposes (particularly at infectious titers required for
mouse models). With the recent establishment of a suitable cell line (E8
HeLa cells) that supports RV-C replication this gap in the literature
will likely be rectified.214
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Table 8.2 Key experimental infection studies in mouse models of exacerbations
Mouse asthma exacerbations

Authors Model Interventions Main findings

Toussaint et al.
(2017)178

HDM1RV-A1
infection

DNAse and NETosis inhibition Treatment suppressed type 2 immunopathology

Girkin et al. (2017)163 HDM1RV-A1 Deletion of TNF-related apoptosis inducing ligand
(Tnsfs102/2)

Deletion suppressed cellular infiltration and AHR
Reduced apoptotic cell death and reduced IFN- λ2/3

Han et al. (2016)146 OVA1RV-A1 Gene targeted deletion of TLR2 (TLR22/2) Deletion reduced neutrophilic and eosinophilic
inflammation and AHR

Hatchwell et al.
(2015)183

HDM1RV-A1 Targeted deletion of TLR7 Treatment attenuated eosinophilic inflammation and AHR
Exogenous IFN
Adoptive transfer of TLR7-competent pDCs

Phan et al. (2014)177 HDM1RV-A1 Nil HDM and RV had additive increases in neutrophilia and
tissue elastance

Hatchwell (2014)184 HDM1RV-A1 Salmeterol Treatment reduced inflammation via increased PPA2
activity

Chen et al. (2014)181 HDM1RV-A1 Deletion of Foxa3 (Foxa32/2) Deletion inhibited RV clearance
Beale et al. (2014)99 OVA1RV-A1 IL-25 receptor blockade Treatment attenuated type 2 cytokine expression, mucus

production and inflammatory cell recruitment
Hong et al. (2014)174 OVA1RV-A1 Gene targeted deletion of IL-4 receptor (IL-4R) Deletion shifted from type 2 to type 1 response and

increased neutrophilic inflammation
de Souza Alves

(2013)187
HDM1RV-A1 Anthraquinone (PI3K-mediated AKT

phosphorylation inhibitor)
Treatment reduced AHR, viral replication, neutrophilic

and eosinophilic inflammation
Traub et al. (2013)186 OVA1RV-A16 Anti-ICAM-1 Treatment suppressed TH2 cytokine/chemokine

production
Glanville et al. (2013)175 OVA1RV-A1 Anti-gamma-delta-T-cell receptor antibody Treatment increased TH2 inflammation and AHR
Collison et al. (2013)179 HDM1RV-A1 Inhibition of the E3 ubiquitin ligase MID1 Treatment suppressed allergic airway inflammation and AHR
Schneider et al.

(2013)180
OVA1RV-A1 CCL2 neutralizing antibody Treatment reduced airway inflammation and AHR

Nagarkar et al.
(2010)172

OVA1RV-A1 Antieotaxin-1 Treatment reduced airway eosinophilia and AHR

Bartlett et al. (2008)152 OVA1RV-A1 Nil RV infection exacerbated allergic airway inflammation and
AHR



Mouse COPD exacerbations

Jing et al. (2018)192 Cigarette smoke1RV-
A1

Gamma-secretase inhibitor (Notch
inhibitor)

Attenuated mucin expression

Farazuddin et al. (2018)193 Cigarette smoke1RV-
A1

Querceptin Reduced inflammation, goblet cell metaplasia, and
AHR

Singanayagam et al.
(2018)170

Elastase1RV-A1 Fluticasone propionate Suppressed antiviral immunity

Impaired virus clearance
Mucus hypersecretion
Increased bacterial loads

Singanayagam et al.
(2015)190

Elastase1RV-A1 Nil Enhanced airway inflammation
Increased mucus production
Exaggerated AHR

Ganesan, et al. (2014)191 Cigarette smoke1RV-
A1

Nil Viral persistence
Increased neutrophilia
Increased mucus production

Sajjan et al. (2009)189 Elastase/LPS1RV-A1 Nil Deficient antiviral immunity
Increased inflammation
Exaggerated AHR
Increased mucin expression

Key findings from studies of RV infection in mouse models with underlying allergic airway disease (asthma) and COPD, including information on the approach used, interventions where applicable, and key
experimental findings. AHR, airway hyperresponsiveness; HDM, house dust mite; ICAM-1, intracellular adhesion molecule 1; IL, interleukin; IFN, interferon; LPS, lipopolysaccharide; MID1, midline 1; OVA,
ovalbumin; pDCs, plasmacytoid dendritic cells; RV, rhinovirus; TH2, T-helper type 2; TLR, Toll-like receptor.



As is the case for the majority of human virus�mouse infection mod-
els, the mouse is semipermissive to RV infection and as such a high-titer
inoculum is required to induce prolonged replication and robust, repro-
ducible host immune responses. A mouse-adapted RV strain (RV-1BM)
has been generated by serial passage in mouse epithelial cells (LA-4 cells)
though this mouse-adapted virus has only been characterized in vitro with
primary mouse tracheal epithelial cells215 and has not yet been tested
in vivo.

The clinical translation of novel therapies identified in animal models
for the treatment of RV infection in humans is yet to come to fruition.
However, there are multiple molecules currently in the drug development
pipeline, ranging from virus-targeting molecules, drugs targeting host fac-
tors of the viral replication cycle, and biologics such as innate immune sti-
mulators and cytokine blocking monoclonal antibodies, all of which are
elaborated on in Chapter 9, Emerging therapeutic approaches.

8.15 CONCLUSION

There are significant opportunities for further research in both human and
nonhuman models, including assessment of infections in various unex-
plored disease backgrounds that are exacerbated by RV infection (e.g.,
cystic fibrosis) and expansion of studies using newly identified RV strains
(e.g., RV-C strains). Human and mouse RV experimental infection mod-
els effectively complement each other and have contributed immensely to
our understanding the mechanisms shaping RV-induced pathology.
Human experimental RV challenge studies have shed light on the biology
of RV infection and the mechanisms associated with RV-induced exacer-
bations of chronic respiratory diseases. Mouse models of RV infection in
particular are readily manipulatable to identify cause and effect between
specific molecules and disease outcomes for preclinical testing. An excel-
lent example of how human and mouse models complement each other
is the growing understanding of the disease mechanisms during RV-
induced asthma exacerbations. Human experimental infection revealed a
potential role for induced type 2 immunity following RV infection in
individuals with asthma.90,98 Subsequent mouse model studies have dem-
onstrated a causal role for RV-induced type 2 immune effector molecules
in exacerbations,99,152,176,179 allowing preclinical assessment of the efficacy
and safety of novel therapies. Findings from these studies have not yet
resulted in the development of approved therapies for RV infections, cold
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symptoms, or exacerbations of respiratory diseases associated with RV
infection. However, the wealth of knowledge derived from experimental
RV infections has broadened our understanding and identified many
potential therapeutic approaches.
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