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1  |  INTRODUC TION

Mutations in genes that provide a selective advantage early in life often 
have pleiotropic adverse effects late in life (Byars & Voskarides, 2020; 
Williams, 1957) and the genetic changes that suppress telomerase 
activity in somatic cells of long-lived animals to limit their replication 
potential are no exception (Lansdorp, 2022). Limits to cell proliferation 
late in life are expected to impact cells of the immune system and car-
diovascular system in particular. Of all leukocytes, NK cells and mem-
ory T cells show the most rapid decline in telomere length with age 
(Aubert et al., 2012) and replicative exhaustion of these and other im-
mune cells is likely to impair immune responses in the elderly. Indeed, 

short telomeres have been linked to adverse COVID-19 outcomes, in-
dependent of known risk factors for COVID including age (Wang et al., 
2021). Short telomeres in leukocytes have also been associated with 
cardiovascular disease (Scheller Madrid et al., 2016; Xu et al., 2020) 
and telomere erosion in endothelial cells has been linked to vascular 
pathology (Chang & Harley, 1995). Infectious diseases and cardiovas-
cular diseases are leading causes of death, and a link between telo-
mere length and age-related mortality is supported by several studies 
(Cawthon et al., 2003; Codd et al., 2021).

Most studies agree that the average leukocyte telomere length 
is between 0.1 and 0.3 kb longer in females than in males (Gardner 
et al., 2014). The telomere length in umbilical cord blood leukocytes 
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Abstract
Telomerase levels in most human cells are insufficient to prevent loss of telomeric 
DNA with each replication cycle. The resulting “Hayflick” limit may have allowed lifes-
pan to increase by suppressing the development of tumors early in life be it at the 
expense of compromised cellular responses late in life. At any given age, the average 
telomere length in leukocytes shows considerably variation between individuals with 
females having, on average, longer telomeres than males. Sex differences in average 
telomere length are already present at birth and correspond to reported differences 
in the average life expectancy between the sexes. Levels of telomerase RNA and dys-
kerin, encoded by DKC1, are known to limit telomerase activity in embryonic stem 
cells. X-linked DKC1 is expressed from both alleles in female embryo cells and higher 
levels of dyskerin and telomerase could elongate telomeres prior to embryo implanta-
tion. The hypothesis that embryonic telomerase levels set the stage for the sex differ-
ences in telomere length and lifespan deserves further study.
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was found to be longer in females compared with males by Q-
FISH (Mayer et al., 2006), flow FISH (Aubert et al., 2012), and by 
telomere restriction fragment (TRF) analysis (Factor-Litvak et al., 
2016) (Table 1 and Figure 1a,b). The rate of telomere attrition in 
adult human leukocytes was measured by TRF is 26 bp/year (Daniali 
et al., 2013), whereas by flow FISH, telomeric DNA is lost in adult 
lymphocytes at a rate of 43 bp/year (Aubert et al., 2012). By com-
paring the average telomere length and telomere attrition rate in 
adults with the average telomere length at birth, sex differences 
in telomere length correspond to a difference in average life ex-
pectancy between 5 and 8 years (Table 1 and Figure 1a,b), in close 
agreement with reported sex differences in average lifespan (Baum 
et al., 2021).

Currently, the sex difference in telomere length at birth is un-
explained. On average, boys are typically heavier at birth than girls 
(Jelenkovic et al., 2018) and the male conceptus seems to grow not 
only more, but also earlier than the female (de Zegher et al., 1999). 
The telomere length in leukocytes declines most rapidly in the first 
few years of life in support of a mitotic clock ticking in blood form-
ing stem cells and lymphocytes (reviewed in Lansdorp, 2022). In 
view of these observations, both gestational age and birth weight 
are expected to correlate with the telomere length in neonatal 
leukocytes. Such a correlation was indeed found in a small study 
(Sibert et al., 2021) but not in the large study that reported sex 
differences in leukocyte telomere length at birth (Table 1, Factor-
Litvak et al., 2016). Further studies of the telomere length in dif-
ferent pre- and post-natal cells are needed to clarify the role of 
accumulated cell divisions in the sex-specific difference in telomere 
length shown in Table 1. Given the shortcomings of all current telo-
mere length measurements (Lansdorp, 2022), such studies should 
aim to measure the average as well as the distribution of telomere 
length values in cells.

Sex hormones provide another possible explanation for the sex 
differences in telomere length. Androgens are known to benefit pa-
tients with telomere biology disorders (Townsley et al., 2016), and 
the rate of telomere attrition in adult leukocytes is slightly higher 
in males than females (Figure 1a,b). Among other explanations, 
these observations could reflect the effect of sex hormones on 

TERT expression (Calado et al., 2009). Differences in the type and 
level of hormones secreted by the fetus and the placenta could also 
contribute to sex differences in average telomere length at birth. 
Alternatively, or in addition, differences in the expression of telo-
merase during early embryogenesis could also play a role. In a study 
of gene expression in single cells from human embryos, it was found 
that many X chromosome genes maintain bi-allelic expression prior 
to embryo implantation and lineage specification (Petropoulos et al., 
2016). During this time males, with only one copy of the X chro-
mosome, express lower levels of X chromosome genes including 
the DKC1 gene that encodes the dyskerin protein (Figure 1c,d and 
Table 2). Telomerase RNA is sandwiched between two copies of dys-
kerin in the telomerase holoenzyme (Ghanim et al., 2021) and dys-
kerin is critical for folding and stabilizing primary telomerase RNA 
transcripts, telomerase assembly, and telomerase activity (Wong & 
Collins, 2006). Whereas in most somatic cells, TERT expression is 
limiting telomerase levels, telomerase RNA is limiting the telomerase 
activity in embryonic stem cells (Chiba et al., 2015). Higher dyskerin 
levels in female embryo cells could increase telomerase levels by in-
creasing the capture efficiency and stability of telomerase RNA prior 
to assembly with TERT, producing higher levels of active telomerase. 
Reduced telomerase levels were found in murine cells with reduced 
dyskerin levels (Ruggero et al., 2003) and allelic differences in DKC1 
are a plausible explanation for the reported X-linked inheritance of 
telomere length in humans (Nawrot et al., 2004). Higher telomerase 
activity in female embryo cells before the random inactivation of 
one DKC1 allele could result in longer telomeres in female compared 
with male embryos prior to embryo implantation. Longer telomeres 
in female embryo cells could explain why leukocytes from females 
at birth and throughout life have, on average, longer telomeres. 
Compared with males, longer telomeres in stem cells, endothelial 
cells, and lymphocytes from females could enable additional cell 
divisions before cells with critically short telomeres undergo either 
apoptosis or replicative senescence.

The relationships between sex, telomere shortening, and lifes-
pan found in humans are not ubiquitous throughout the animal king-
dom (Barrett & Richardson, 2011). The telomere length in several 
tissues from mice (Mus spretus) was found to be longer in females 

TA B L E  1 Average telomere length in different umbilical cord blood cells is longer in female compared to male newborns

Technique (year) Cell type Location TL female (n) TL male (n) Δ TL Δ lifespan

Q-FISH T-C
2006
(Mayer et al., 2006)

Cultured
T cells blood

Germany 12.03 kb
(53)

11.81 kb (55) 0.22 kb 5.1 years

Flow FISH
2012
(Aubert et al., 2012)

Naive T cells
blood

Canada 11.24 kb
(29)

10.92 kb
(29)

0.32 kb 7.4 years

TRF
2016
(Factor-Litvak et al., 2016)

Leukocytes USA 9.58 kb
(216)

9.44 kb
(274)

0.14 kb 5.3 years

Note: Results from three independent studies using three different techniques. Assuming a telomere attrition rate in cells from adults of around 
26 bp/year for leukocytes (Factor-Litvak et al., 2016) and 43 bp for lymphocytes (Aubert et al., 2012), telomere length differences at birth could 
account in principle for a sex difference in life expectancy between 5.1 and 7.4 years.
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compared with males (Coviello-McLaughlin & Prowse, 1997). In 
general, the mouse model has been extremely useful to identify 
genes that regulate telomere length (Ding et al., 2004). However, 
possible correlations between lifespan and telomere length are only 
expected in long-lived species in which telomerase activity is sup-
pressed to limit the replication potential in somatic cells and sup-
press tumor growth (Lansdorp, 2022). To test the hypothesis that 
embryonic dyskerin and telomerase levels are connected to human 
life expectancy represents an enormous challenge. Both the large 
variation in average telomere length between human individuals as 
well as the indirect role of telomeres in life expectancy represent 

major hurdles. Even if enough human embryos could be made avail-
able for study, telomere length measurements by either TRF or flow 
FISH would be unsuitable given the numbers of cells required for 
such studies. While novel techniques promise to overcome some of 
the limitations of current telomere length measurements (Lansdorp, 
2022), further studies of the relation between telomere length and 
life expectancy are expected to strengthen correlations, not estab-
lish causality. For these reasons, the proof that higher levels of dys-
kerin and telomerase in early embryos are a major contributor to 
the sex difference in average human life expectancy is not expected 
in the near future.

F I G U R E  1 Sex differences in average telomere length, lifespan and embryonic dyskerin levels. (a, b) The average telomere length in 
T lymphocytes from males and females as reported in two independent studies (a) Quantitative fluorescence in situ hybridization was 
used to measure the ratio of fluorescence signals, expressed as T/C values, derived from fluorescent probes specific for resp. telomere, 
and centromere repeats on Chr 2 in metaphase cells from T-cell cultures of 205 normal individuals in different age groups and sexes. See 
(Mayer et al., 2006) for details, reproduced with permission of S. Karger AG, Basel. (b) The telomere length in naive T cells from females 
(n = 414) and males (n = 418) and a male volunteer (asterikses: two different time points) was measured by flow FISH (Aubert et al., 2012). 
Note the large variation in average telomere length at any given age. Based on the difference in average telomere length in cultured (a) 
or circulating naive T cells (b), females are on average 8 years “younger” than males. (c, d) Delayed X chromosome inactivation results in 
bi-allelic expression of most X chromosome genes in female embryo cells (c) including DKC1 (d) prior to embryo implantation (Figure and 
data modified from (Petropoulos et al., 2016). (c) gene expression of 228 highly expressed X chromosome genes in single embryo cells; 
(d) expression of DKC1. Mean and standard deviation of normalized gene expression in single cells at indicated days 3–7 of embryonic 
development (E3–E7) expressed as reads per kilobase of transcript per million mapped reads (RPKM). The ratio of reads mapping to DKC1 in 
female compared to male embryo cells is inserted in the bar graphs in (d). See (Petropoulos et al., 2016) for details
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