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Abstract

Gustatory receptors (Grs) expressed in insect taste neurons signal the presence of carbohy-

drates, sugar alcohols, CO2, bitter compounds and oviposition stimulants. The honeybee

(Apis mellifera) has one of the smallest Gr gene sets (12 Gr genes) of any insect whose

genome has been sequenced. Honeybees live in eusocial colonies with a division of labour

and perform age-dependent behavioural tasks, primarily food collection. Here, we used RT-

qPCR to quantify Gr mRNA in honeybees at two ages (newly-emerged and foraging-age

adults) to examine the relationship between age-related physiology and expression of Gr

genes. We measured the Gr mRNAs in the taste organs and also the brain and gut. The

mRNA of all Gr genes was detected in all tissues analysed but showed plasticity in relative

expression across tissues and in relation to age. Overall, Gr gene expression was higher in

the taste organs than in the internal tissues but did not show an overall age-dependent dif-

ference. In contrast Gr gene expression in brain was generally higher in foragers, which

may indicate greater reliance on internal nutrient sensing. Expression of the candidate

sugar receptors AmGr1, AmGr2 and AmGr3 in forager brain was affected by the types of

sugars bees fed on. The levels of expression in the brain were greater for AmGr1 but lower

for AmGr2 and AmGr3 when bees were fed with glucose and fructose compared with

sucrose. Additionally, AmGr3 mRNA was increased in starved bees compared to bees pro-

vided ad libitum sucrose. Thus, expression of these Grs in forager brain reflects both the

satiety state of the bee (AmGr3) and the type of sugar on which the bee has fed.

Introduction

The chemical sense of gustation enables food identification and toxin avoidance. In insects, the

pre-ingestive assessment of tastants relies on a diverse set of gustatory receptors (Grs) expressed

across chemosensory tissues such as the labial palps, antennae and tarsi. These receptors are

located in the membranes of gustatory receptor neurons (GRNs) housed in hair-like sensilla
chaetica and sensilla basiconica [1–3]. Insect Grs have a membrane topology that is an inverted

version of the G-protein coupled receptors (GPCRs) of mammals, with an intracellular N-
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terminus and extra cellular C-terminus [4, 5]. Studies using G-protein signalling inhibitors,

gamma subunit suppression, null mutants and RNA-interference (RNAi) indicate that both G-

protein-dependent and -independent signal transduction pathways mediate gustatory coding

[6–9], but the exact function of insect Grs is still unclear. Thus, the insect gustatory system is

highly complex and knowledge concerning its function and regulation is currently lacking.

All animals rely on their chemical senses to assess the dynamic external environment. Gusta-

tion in particular allows animals to identify potential food sources, aiding efficient selection of

nutritious foods and detection and aversion by noxious chemicals, often represented by a bitter

taste. For many insect species, in-depth functional assessment of Grs expressed in the canonical

chemosensory tissues, which we refer to here as ‘external’ Grs, is ongoing. However, in an

increasing number of insect species gustatory receptor gene expression has been observed in a

number of ‘internal’ non-canonical tissues, including the brain and gut [9–11] and is assumed to

be associated with post-ingestive nutrient sensing. The most convincing evidence to date con-

cerns the narrowly tuned Drosophila fructose receptor DmGr43a. In addition to its presence in

classic gustatory appendages, DmGr43a was detected in a small number of brain neurons[11].

While glucose and trehalose are generally the most abundant sugars in Drosophila haemolymph

(~9–13 μg/mg) and remain relatively stable regardless of feeding, fructose is found at lower con-

centrations (~0.07 μg/mg) but increases up to 10-fold following a meal [11]. Elevated fructose lev-

els in the haemolymph were shown to activate the DmGr43a-expressing brain neurons and were

strongly correlated with the continuation or cessation of feeding in a satiation-dependent manner

[11].

To achieve nutritional homeostasis, appropriate responses to external stimuli must be cou-

pled with the accurate assessment of internal status. While we know of some proteins and reg-

ulatory pathways associated with feeding regulation, for example insulin-like peptides (ILPs)

and adipokinetic hormones (AKH) [12–15], it is becoming apparent that this important mech-

anism may additionally involve gustatory receptors.

In the assessment of Gr function, the honeybee offers a unique advantage by possessing one of

the smallest Gr gene repertoires of any insect species annotated to date (12 Gr genes) [16–18].

The Gr1 and Gr2 genes are likely to encode sugar receptors [16, 19]. A high level of conservation

amongst the Dm43a-like receptors additionally suggests that the Gr3 gene will likely play a role in

fructose detection [9, 11, 20]. Little is known about the function of the other Gr genes—particu-

larly Gr12, which has been discovered only recently [18]. There is weak sequence similarity

between Gr4 and Gr5 and the Drosophila bitter receptor complex DmGr28a-e [16], Gr11 is

thought to be a pseudogene [17]. All remaining Apis Grs may potentially represent a species-spe-

cific lineage. Similarly, the recently published Bombus terrestris genome includes a number of

additional duplications among these unknown genes[18]. While ligand specificity is still unknown

the authors highlight that the Bombus expansion may play a role in the ‘more diverse nest-build-

ing habits’ of bumblebees compared to honeybees [18]. As we lack total functional analysis for

any honeybee Gr, in the current work we refer to the genes as ‘candidate’ receptor genes for the

function we speculate they have, such as AmGr1 and AmGr2 as candidate sugar receptors.

As adult worker honeybees age, they progress through a series of behavioural castes includ-

ing nursing, wax building, guarding, and lastly, foraging [21]. The transition from the time of

eclosion to foraging is accompanied by a number of metabolic, physiological and behavioural

changes [22–26]. Young adult worker honeybees consume pollen—which is mainly made of

protein and fats—to produce glandular secretions to feed the larvae, the queen, and other

adult workers [27, 28]. In contrast, adult forager honeybees subsist on a diet that is primarily

carbohydrate [21, 29]. Gustatory sensitivity increases following the transition from in-hive

tasks to foraging, resulting from an increase in juvenile hormone (JH) and a decrease in vitello-

genin protein titre [30,31].
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While Grs are important for the detection of nutrients regardless of age, foraging-age work-

ers are more likely to encounter toxins from plants as they forage [32] and less likely to con-

sume pollen [33]. Interestingly, the hypopharyngeal and mandibular glands of forager bees are

enriched in transcripts for detoxification enzymes, antimicrobial peptides and immune

responses, compared to nurse bees [34] Additionally, due to the physiological differences

between honeybee age castes, there are also differences between nutrient requirement and

regulation.

Both long and short term changes in gustatory sensitivity, including physical changes in

sensilla number, have been previously reported in insects [35–37] but few have examined how

Gr expression changes as a function of age in insects, or indeed nutrition. In the present study

we use quantitative reverse transcription PCR (RT-qPCR) to measure expression of the 10 Gr

genes discovered initially [16] throughout the tissues of newly emerged and forager honeybees.

Additionally, we explored the effect of diet-restriction and carbohydrate consumption on Gr

expression after observing internal expression and apparent plasticity. We chose to focus on a

sugar-only diet, firstly because the honeybee diet primarily consists of sugars and we knew

both forager and nurse bees would survive throughout the experiment. Secondly, we are most

confident that honeybees possess sugar receptors as suggested by strong homology and an

experimental study [16, 19]. While honeybees are unlikely to collect individual sugars in

nature, some nectar rewards are dominated by sucrose and others by a mixture of glucose and

fructose [38] however, offering one sugar alone allowed us to investigate whether receptor

gene expression was influenced by individual sugars.

Improvement in genome annotation since Robertson and Wanner’s [16] study of 2006 now

predicts splice variants for Gr1, Gr6 and Gr10 bringing the total number of putative honeybee

Grs to 18 [39]. However, molecular studies investigating the existence of these variants are

lacking. For the purpose of this study we therefore investigated expression of the 10 original

Gr genes in internal tissues (brain and gut) and also in the sensory organs (antennae, galea,

labial palps, individual glossa, fore-tarsi, mid-tarsi and hind-tarsi). We make the assumption

that mRNA expression is proportional to protein expression. Validation of this assumption

requires antibodies to the honeybee Grs, which are not currently available.

Materials and methods

Insects

Forager (�3 weeks old) worker honeybees (Apis mellifera Buckfast strain) were collected

returning to one hive situated outdoors at Newcastle University, Newcastle upon Tyne (UK)

between July and September, 2013. Bees with pollen on their corbiculae were avoided and all

foragers were assumed to be a mix of water and nectar collectors or bees returning with an

empty crop. Newly emerged bees (�24 hours old) were collected from two brood frames taken

from the outdoor hive and stored in a mesh box (275 mm X 440 mm X 140 mm) in an incuba-

tor at 34˚C. Honeybees were captured individually in plastic vials and placed on ice for cold

anaesthetisation. When bees ceased moving they were either dissected under a light micro-

scope for immediate measurement of Gr gene expression (forager and newly emerged bees),

or approximately 20 individuals (foragers only) were transferred to feeding cages for experi-

mental feeding assays (see below).

Preparation of brain tissue of starved bees

Following cold anaesthetisation, approximately 60 forager honeybees were restrained in a

modified pipette tip using duct tape as described in [40]. Subjects were left to acclimatise at

room temperature for 20 min then fed 10 μl of 0.7 M sucrose using a Gilmont syringe
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(Gilmont Instruments). Following feeding, bees remained at RT without food for 24 h in a

humidified box. After 24 h the bees still alive were cooled on ice and the whole brain was dis-

sected directly into TRIzol solution (see below). These brain samples represented the ‘starved’

condition.

Preparation of brain tissue from bees fed specific sugars

Following cold anaesthetisation forager honeybees were immediately placed in six plastic

boxes (approximately 20–30 bees per box, 11W x 20L x 6H cm) and allowed to recover at RT

for approximately 1 h without access to food. Experimental solutions were added and boxes

were placed in a temperature controlled room 34 ± 1˚C, 60 ± 5% relative humidity (RH) and

kept under a D:L 22h:2h light regime. The darkness was intended to replicate the interior of

the hive and the 2h light occurred during the period of the day in which the experimental diets

were being changed.

Feeding solutions were provided via 2 ml microcentrifuge tubes inserted horizontally. One

of three carbohydrate solutions was provided to the bees over a 96 h period: 0.7M sucrose, 0.7

M fructose or 0.7 M glucose. One water tube remained available to bees at all times. Tubes

were replaced by a new tube containing a fresh solution every 24 h.

Extraction and reverse transcription of RNA

For ’hard’ tissues, 75 honeybees were dissected and parts were pooled into biological samples

containing 75 individual tissues (1 sample for glossa and 2 for duplicated appendages e.g. tarsi,

antennae, labial palps, galea). Smaller numbers of individual body parts did not yield sufficient

mRNA to measure Gr expression. Body parts collected were: both antennae, both galea, both

labial palps, individual glossa, 6 tarsi separated into pairs: fore-tarsi, mid-tarsi and hind-tarsi.

Tarsi consisted of five tarsomeres, including basitarsus, distal pretarsus and tarsal claw. Dis-

sected body parts were immediately transferred into 500 μl of TRIzol reagent (Invitrogen) and

to -80˚C storage until homogenisation.

The RNA yield from ’soft’ tissues (>0.4μg/mg of tissue) allowed the use of pooled samples

from fewer whole brains and guts, 20 in total (4 biological replicates consisting of 5 pooled

individual tissues, guts: from the crop to the rectum). These were immediately transferred into

1 ml of TRIzol reagent and placed in -80˚C until further processing.

Separate ‘hard’ and ‘soft’ tissue samples were collected from both forager and newly

emerged honeybees.

All hard tissue samples were removed from -80˚C freezer, allowed to thaw and homoge-

nised by hand using an Eppendorf micropestle (Sigma-Aldrich), a further 500 μl of TRIzol was

added to each sample (1 ml total). Soft tissues did not require homogenisation.

Total RNA was extracted using TRIzol reagent (Invitrogen) with a few modifications to

the manufacturer’s protocol that were necessary to achieve sufficient RNA to quantify Grs

expressed at low levels. Chloroform (200 μl) was added to each sample, followed by vigorous

shaking (15 s) then incubation (3 min at RT) and centrifugation (15 min at 12,000g, 4˚C). The

aqueous phase was removed and added back to 750 μl of TRIzol reagent. The purification pro-

cedure was repeated and the aqueous phase was transferred to a clean microcentrifuge tube.

Isopropanol (500 μl, Sigma-Aldrich) and co-precipitant (2.5 μl Glycoblue, Ambion) was added

to each sample and samples were held at -80˚C overnight (min. 12 h). RNA was collected by

centrifugation (10 min at 12,000g) then pellets were washed twice with 75% ethanol. RNA was

allowed to air dry then suspended in 20 μl of RNase/DNase-free water. Samples were treated

with RNase-free DNase (Promega) following the manufacturer’s instructions then RNA yield

was determined using a Nanodrop spectrophotometer ND-1000. Optical density ratios for all
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samples were >1.8 for both 260/280 and 260/230. Reverse transcription was carried out using

Superscript III reverse transcriptase (Invitrogen), following the manufacturer’s instructions.

Polymerase chain reaction

Standard PCR was carried out using MyTaq HS Mix DNA polymerase (Bioline) to confirm

specificity of primers. Thermal cycling parameters after denaturing at 95˚C for 1 min were: 35

cycles of 95˚C for 15 s, 55˚C (for Gr genes) or 60˚C (for reference genes) for 15s, 72˚C for 10 s.

PCR products were sequenced by Geneius Labs (Cramlington, UK). Primers were manually

designed (S1 Table).

Quantitative real time-PCR was performed on a Roche LightCycler 480 using LightCycler

SYBR Green I Master (Roche), 0.25 μM of each primer and 1 μl cDNA. Each sample was run

in duplicate with the following cycling parameters: 95˚C for 5 min, 50 cycles of 95˚C for 15 s,

55˚C for 30 s, 72˚C for 1 min, followed by one cycle of 95˚C for 5 s and 65˚C for 1 min, then

40˚C for 10 s.

Relative mRNA expression was calculated using the 2ΔΔCt method [41] against the refer-

ence gene RP49 (RPL32, Gene ID: 406099, [42]) and relative to the level in forager brain for

which the expression of gustatory receptor 1 (Gr1) was assigned a value of 1. A standard curve

was run for each gene in order to confirm amplification efficiencies for each primer set,

including the reference gene. We compared expression between different genes by running

reactions with all primer sets on a pooled brain tissue sample on a single plate, then included

this sample as the standard against which all other tissues were normalised. Samples were addi-

tionally analysed against a second reference gene, RPS8 (Gene ID: 406126, [16]), as a control

for differences in reference gene expression between age groups (S2 and S3 Figs).

Statistical analyses

Each external tissue sample was 75 body parts that were pooled and analysed as one or two bio-

logical replicates therefore no statistical analyses were carried out on expression levels of any

Gr in any tissue except brains and guts (four biological replicates each consisting of five pooled

body parts). Measurements of gustatory receptor mRNA in brain and gut samples were ana-

lysed using SPSS version 21.0. A generalised linear model (GZLM) was carried out separately

for each gustatory receptor with age (forager vs newly emerged) and body part (brain vs gut)

used as independent variables. A pairwise comparison was carried out with Sidak adjustment

for multiple comparisons.

In the feeding manipulations (both the fed versus starved conditions and the carbohydrate

diets) expression of the candidate sugar receptor genes (AmGr1, AmGr2 and AmGr3) in the

brain of forager bees were analysed using a One-Sample Wilcoxon Signed Rank Test. The one

sample test was carried out on each Gr individually, comparing each sample to the appropriate

control which was always normalised to 1.0. All gene expression was compared between the

same gene in the 0.7 M sucrose ad libitum 96 h feeding ‘control’ condition which was normal-

ised to 1.0 in all tests respectively.

Results

Gustatory receptor gene expression is widespread and is greater in the

taste organs than in internal tissues

Expression of mRNA for all 10 honeybee Grs was observed in all tested tissue types in both for-

ager and newly emerged bees (but Gr9 mRNA was at levels too low to quantify reliably) (Fig

1). The candidate bitter receptor genes, Gr4 and Gr5, had the lowest expression levels of any of
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the 9 genes we could quantify, and expression of these was relatively stable across all tissue

types in both age groups (Fig 1B). Overall, expression of the other Gr genes was higher in the

taste organs than in the internal tissues (gut and brain) (Fig 1A and 1C).

Of the three genes thought to encode receptors for sugar detection, the candidate fructose-

sensing gene (Gr3) was expressed at greatest levels across all forager tissues and the majority of

tissues of newly emerged bees. The two candidate sugar-sensing genes (Gr1 and Gr2) were

expressed at lower levels than Gr3 in the brain, labial palps and all tarsi (Fig 1A). The mRNA

levels of these three Gr genes in the antennae of newly-emerged bees were almost double that

of the antennae of foragers. The expression of Gr3 mRNA was also higher in the fore-tarsi of

newly emerged bees (Fig 1A).

For the remaining four candidate ‘Apis-specific’ genes that could be quantified, the expres-

sion levels were more variable. Internal expression (brains and guts) of these four was notably

higher in the foragers compared with newly emerged bees (Fig 1C), with Gr6 and Gr10 gener-

ally showing greater expression levels than Gr7 or Gr8. For both age groups the highest levels

of expression for all these four genes is generally in the mouthparts, primarily the labial palps

and the galea, with Gr6 dominating (Fig 1C). Additionally, the Gr7 gene is expressed at the

greatest level in the fore-tarsi of both age-groups.

Expression in internal tissues is greatest in the forager brain

All 10 Gr mRNAs were detected in both the brain and gut of newly emerged and forager hon-

eybees (Fig 1, S1 Fig). The mRNA for all but one Gr gene (Gr8) was greater in the forager

brain compared with the forager gut. Whereas individual Gr mRNA levels in the guts of the

two age groups was similar (Fig 1, Table 1, S1 Fig), in brain most mRNAs were higher in the

foragers than in newly-emerged adults.

Expression of the candidate sugar receptors in the forager brain is

dependent on nutritional status and energy source

We proposed that the relatively high levels of expression of some Grs in the forager brain was a

result of regulation in relation to satiety state and/or specific source. Testing this hypothesis

with respect to specific Grs requires knowledge of their ligand, and functional analysis of the

honeybee Grs is lacking. However, due to relatively strong orthology with Drosophila sugar

receptors [16, 18] and a single study on the sugar ligands of AmGr1 and AmGr2 [19] we rea-

soned that ligands could be assigned with reasonable confidence to the three candidate sugar

receptor genes (AmGr1, AmGr2 and AmGr3).

Fig 1. Gustatory receptor mRNA levels are not equal in every body part in both newly-emerged and

forager honeybees. All expression levels are relative to the expression of the reference gene RP49 (RPL32)

and are normalised to AmGr1 in the forager brain. A. Expression levels of the candidate sugar receptors (AmGr1

and AmGr2) and fructose receptor (AmGr3) genes across the un-manipulated forager (�2–3 wk old) and newly

emerged honeybee (�24 h old) anatomy. B. Expression levels of the candidate bitter receptors in forager and

newly emerged bees (NA represents unavailable data.). C. Expression levels of the unknown and potentially

Apis-specific receptor genes in forager and newly-emerged bees. Note: AmGr9 mRNA expression levels were

detected in all tissue types in both groups however levels were too low to include reliable expression values.

Cells are shaded to indicate level of expression. Nsoft tissue: 20 individual tissues. Nhard tissue: 75–150 individual

tissues.

https://doi.org/10.1371/journal.pone.0175158.g001
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To test if expression of these candidate sugar receptors is determined by satiety state we

compared the concentration of mRNA in the brains of forager honeybees that had been fed

only a small volume of 0.7 M sucrose solution (10μl) and starved for 24 h with the concentra-

tion in brains of bees that had ad libitum access to 0.7 M sucrose solution for 96 h. AmGr3

mRNA was elevated approximately 2-fold in the brains of starved foragers (Fig 2) compared

with the ad libitum fed foragers (One-Sample Wilcoxon Sign Rank Test, P = 0.012). Expression

of AmGr1 (One-Sample Wilcoxon Sign Rank Test, P = 0.916) or AmGr2 (One-Sample Wil-

coxon Sign Rank Test, P = 0.401) was not affected by this feeding regime. Thus, out of the

three candidate sugar and fructose receptor genes only AmGr3 expression in forager brain

appears to be influenced when bees are starved.

To test if expression of these candidate sugar receptors reflects exposure to specific sugar

ligands we measured AmGr1, AmGr2 and AmGr3 mRNA after ad libitum feeding with

sucrose or the constituent monosaccharides (glucose or fructose) over 96 h. Compared with

sucrose, forager-age bees fed with glucose or fructose had greater expression of AmGr1

mRNA in the brain (Fig 3A). The brains of bees fed with 0.7 M glucose diet exhibited a 2-fold

increase in expression of AmGr1 mRNA compared to 0.7 M sucrose diet (One-Sample Wil-

coxon Sign Rank Test, P = 0.028) and a 2.5-fold increase of AmGr1 mRNA following a 0.7 M

fructose diet (One-Sample Wilcoxon Sign Rank Test, P = 0.017). Conversely, both monosac-

charide diets resulted in lower mRNA expression for both AmGr2 (Fig 2B) and AmGr3 (Fig

2C). The brains of bees fed with the fructose diet exhibited lower expression of AmGr2 (One-

Sample Wilcoxon Sign Rank Test, P = 0.028) and AmGr3 mRNA (One-Sample Wilcoxon Sign

Rank Test, P = 0.028). Whereas, bees fed with the glucose only diet exhibited lower levels of

AmGr3 mRNA in the brain (One-Sample Wilcoxon Sign Rank Test, P = 0.012). Thus, expres-

sion of these Gr genes in forager brain reflects dietary energy source.

Discussion

Our experiments show that while honeybees possess seemingly few Gr genes (12 Gr genes

total) compared with other insects [16, 18], the expression of 10 of these genes is widespread

across the honeybee anatomy. Messenger RNA corresponding to all 10 Gr genes was detected

in every tissue analysed, including the non-canonical gustatory tissues: brain and gut. In gen-

eral, however, Gr mRNA levels were low, which made quantification especially challenging.

This was the case particularly for Gr9, which we were unable to quantify via RT-qPCR but

detected by standard RT-PCR in all tissues analysed.

Table 1. GZLM for gustatory receptor expression in brains and guts of newly emerged and forager honeybees with age and body part as indepen-

dent variables for a full factorial analysis.

Age Internal body part Age*Internal body part

x2 df P-value x2 df P-value x2 df P-value

Gr1 8.3 1 0.040 2.0 1 0.159 10.0 1 0.020

Gr2 5.3 1 0.022 4.3 1 0.039 3.6 1 0.059

Gr3 25.0 1 <0.001 22.3 1 <0.001 41.9 1 <0.001

Gr4 30.6 1 <0.001 18.1 1 <0.001 20.4 1 <0.001

Gr5 98.5 1 <0.001 115.3 1 <0.001 93.4 1 <0.001

Gr6 10.8 1 0.001 25.5 1 <0.001 14. 1 <0.001

Gr7 33.3 1 <0.001 24.0 1 0.001 23.5 1 0.001

Gr8 5.6 1 0.018 2.1 1 0.152 1.8 1 0.186

Gr10 42.7 1 <0.001 31.0 1 <0.001 35.7 1 <0.001

All P-values < 0.05 are shown in bold. N = 4 Pooled biological replicates consisting of 5 brains or 5 guts each (20 bees total).

https://doi.org/10.1371/journal.pone.0175158.t001

Age and nutrition on honeybee gustatory receptor expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0175158 April 12, 2017 7 / 15

https://doi.org/10.1371/journal.pone.0175158.t001
https://doi.org/10.1371/journal.pone.0175158


The primary difference in Gr gene expression between bees in the two age groups measured

was the relatively high expression of genes in the forager brains compared with brains of

newly-emerged bees. This Gr expression in the forager brain is surprising, and adds to the

known series of physiological and hormonal changes that accompany the transition from hive

to foraging [21, 43–45]. This finding could indicate that adult forager honeybees sense nutri-

ents internally, an idea that was substantiated by the observation that expression of Grs in for-

ager brain was affected by nutritional status and specific dietary sugar source. Unexpectedly,

all quantifiable genes were also discovered in the gut of both newly emerged and forager bees.

Expression of Grs in gut has been previously observed in some insect species. However, this is

the first example of almost an entire Gr gene repertoire being expressed in the gut. Foraging

honeybees have a high metabolic rate to maintain flight and the relatively high concentration

of sugars and quantity of nectar they collect allows them to fuel this rapid metabolism [46, 47].

Fig 2. mRNA expression of the three candidate sugar receptors, AmGr1, AmGr2 and AmGr3 in the brains of ‘starved’ forager honeybees

(provided with 10μl of 0.7M sucrose then held for 24 h without food). All expression levels are relative to mRNA expression of the reference

gene RP49 (RPL32) in the brain. The expression of each gene has been normalised to the mRNA expression of that same gene under 0.7M sucrose

ad libitum feeding conditions over 96h, ‘fed’ condition, set at a value of 1.0 (represented by the hashed line). Expression levels are not comparable

between genes. *: P < 0.05 One-Sample Wilcoxon Signed Rank test. N = 3–4 biological replicates (15–20 whole brains measured as mRNA pooled

from groups of 5 brains).

https://doi.org/10.1371/journal.pone.0175158.g002
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Multiple internal Grs may allow the bee to assess its internal nutritional state more effectively,

by detecting different sugars in the gut and/or haemolymph and therefore regulate energy lev-

els through carbohydrate consumption, in order to maintain foraging. In the current work we

measured Gr mRNA in the entire gut and the crop. Thus, the specific location of Gr gene

expression in the gut remains unknown. Expression in the gut lumen would detect food con-

centration and may regulate consumption and digestion, whereas expression in the crop may

detect recently consumed food and aid movement through the proventriculus. Additionally,

Grs may be expressed in the epithelial cells or on the haemolymph side of the gut to assess the

concentration of haemolymph nutrients. It is important to note that the same gene may be

expressed differentially in different tissues within the same structure [48]

The collection and consumption of carbohydrates is vital to the honeybee. Floral nectar,

honey and even honeybee haemolymph often contain high concentrations of carbohydrates

[46, 49, 50]. The candidate sugar (Gr1 and Gr2) and candidate fructose (Gr3) receptor genes

generally exhibited the highest expression levels of all the 10 Gr genes in all tissues of both for-

ager and newly emerged bees. The strong, widespread expression of candidate sugar receptor

genes is probably linked to the high carbohydrate diet of the honeybee. Recently, Jung et al

[19] quantified the expression of Gr1 and Gr2 in the honeybee antennal tip and assessed sensi-

tivity using electrophysiological tip recordings. By expressing these receptors in Xenopus
oocytes, they found that Gr1 responded to sucrose, glucose, trehalose and maltose but not fruc-

tose. Interestingly, the sensitivity toward these four sugars was increased when Gr1 and Gr2

were co-expressed [19], indicating a potential heterodimeric complex, similarly to some Grs

observed in Drosophila [51, 52]. In addition to increasing sensitivity, Gr dimerization in Dro-
sophila also increases the range of detectable nutrients [51–54]. The comprehensive Gr expres-

sion observed in the internal tissues of the honeybee may be related to function as heterodimers.

The ability to detect nutrients internally in a manner that is comprehensive, flexible and sensitive

would facilitate advantageous adaptation to the rapidly changing haemolymph titres of the hon-

eybee. Therefore, internal Gr expression may be contributing to sugar homeostasis in the honey-

bee.

Fig 3. mRNA expression of the three candidate sugar receptors, A. AmGr1, B. AmGr2 and C. AmGr3 in the brains of forager honeybees following

96 h ad libitum feeding on one of three 0.7 M carbohydrate diets (disaccharide sucrose or either monosaccharide glucose or fructose). All

expression levels are relative to mRNA expression of the reference gene RP49 (RPL32) in the brain. The expression of each gene has been normalised to

the mRNA expression of that same gene under 0.7M sucrose ad libitum (first bar in each graph), set at a value of 1.0. Expression levels are not comparable

between genes. *: P < 0.05 One-Sample Wilcoxon Signed Rank test. N = 2–4 biological replicates (10–20 whole brains, measured as mRNA pooled from

groups of 5 brains).

https://doi.org/10.1371/journal.pone.0175158.g003
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Internally expressed Grs acting as nutrient sensors were identified initially in mammals. In

the rodent gut, the sodium-dependent glucose transporter isoform 1 (SGLT1) protein is

responsible for transporting dietary sugars from the intestinal lumen into enterocytes. Taste

receptors from the T1R family, along with the G-protein gustducin, were also found in the gut

and play a role in carbohydrate sensing and absorption by regulating expression of SGLT1

mRNA and protein [55, 56]. The internal expression of Grs in insects however, has only

recently been reported [9–11]. For example, the first study on Gr expression in the Drosophila
midgut discovered 12 out of the existing 68 Grs in enteroendocrine cells that were co-localised

with three regulatory peptides (neuropeptide F, NPF; locusta tachykinin, LTK and diuretic

hormone 31, DH31), suggesting a role in food uptake and nutrient regulation [10]. However,

no specific function was identified and only one study to date has provided direct evidence for

a Gr functioning as a nutrient sensor in Drosophila [11].

We suggest that the increase in AmGr3 we observed in starved bees and the reduction we

observed in bees fed fructose is a component of the circuitry that senses and regulates the

intake of this sugar. Sucrose is a disaccharide of glucose and fructose and additionally glucose

can be converted to fructose via the polyol pathway [57]. Therefore, fructose sensing may be

an accurate way to detect low levels of all three tested nutrients. The increase in (fructose-sens-

ing) AmGr3 in starved bees may reflect a ‘scavenging response’ to drive consumption of this

nutrient when alternative energy sources are scarce (as signalled by low haemolymph glucose

and fructose concentration). A study in Drosophila provides a precedent for this idea. Starved

flies expressed more DmGr64a and had a lower threshold for sucrose detection, which was

interpreted as higher gene expression leading to greater sensitivity to sucrose to afford starva-

tion-resistance to hungry flies via the acceptance of less nutritious food components [58]. Fol-

lowing the ‘increased expression equates to increased sensitivity’ hypothesis we could posit

that AmGr1 is primarily a candidate for sucrose detection, therefore expression and subse-

quently sensitivity increases when bees receive a sucrose-free diet. However, considering the

small quantity of sucrose likely to reach the haemolymph un-metabolised, this is unlikely.

Alternatively, there are a whole host of sugars that bees respond to [2, 59], and this receptor

could primarily be responsible for the detection of one or more of those compounds. However,

we must also note that the differential expression of Gr genes in the honeybee brain as a func-

tion of sugar consumption does not confirm that these receptors function as gustatory recep-

tors in the brain. Changes in expression level may be resulting from a nutrient sensing

pathway that doesn’t involve the Gr genes directly.

Unexpectedly, gustatory receptor mRNA expression levels in the antennae of newly-

emerged bees were almost double the expression in the antennae of foragers, especially for the

candidate sugar receptors (Gr1, Gr2 and Gr3). However, as all the antennal analysis was car-

ried out on pooled samples it is difficult to determine if this is the case for all newly emerged

bees. Adult honeybees undergo task differentiation as they age within the hive. Shortly after

emergence, young adult workers care for brood and the queen including the production of

royal jelly and regulating temperatures around the brood [60]. The completion of such tasks is

strongly mediated by chemical and pheromone signals that the bees interpret through anten-

nal assessment. An enhanced level of Gr expression on newly-emerged bees’ antennae may

promote efficient assessment of the brood, particularly for food presence in the larval cells and

larval feeding status.

In contrast to the current work, the original study by Robertson and Wanner [16] found

the candidate sugar and fructose receptor genes had the lowest expression levels within four

honeybee tissues. It is difficult to compare their work as our study used the brain as the refer-

ence tissue for Gr expression, whereas [16] used the honeybee body (without heads and legs).

Importantly, they did not provide information about comparisons between level of expression
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of each gene. In our study, the expression of all Grs were arbitrarily referenced to the expres-

sion of Gr1 in the brain.

In the honeybee there are only two additional genes that maintain any homology with Grs

in other insects, although the sequence similarity is considerably weaker than those of the

sugar and fructose receptors. The Gr genes Gr4 and Gr5 are most similar to the conserved Dro-
sophila complex DmGr28a-e [16]. This complex has been identified in labellar bitter neurons

[61] and the high level of conservation in this complex lends support to the honeybee receptors

mediating a similar function. In Drosophila, Gr28b.d functions as a thermosensor [62]. In the

honeybee, thermosensing has been mainly attributed to a Transient Receptor Potential A

channel (AmHsTRPA). Interestingly this receptor also functions as a chemosensor for mole-

cules such as camphor [63] and so it is possible that Gr4 or Gr5 could be co-receptors with

other Gr genes, or also be used in other, non-gustatory functions including thermosensing,

but this has not yet been tested. The Gr4 and Gr5 genes have also been highlighted as a spe-

cies-specific duplication as only one similar gene has been identified in the bumblebee, Bom-
bus terrestris (BtGr4PSE), and this is now considered a pseudogene [18].

The remaining gustatory receptor genes (Gr6, Gr7, Gr8, Gr9 and Gr10), were expressed at

the highest levels (excluding Gr9) in the mouthparts. Of all the taste organs, the mouthparts

are the only areas thus far to have been identified in electrophysiological studies to have neu-

rons that spike in response to stimulation with toxic compounds [64, 65, 67]. The fact that

these Grs are expressed at the highest level in the mouthparts may indicate one or more of

these Grs function as a receptor for the detection of bitter compounds. The corresponding

genes in B. terrestris show enhanced duplication and the potential to detect bitter compounds

has been reported [18]. These Grs could also permit the detection of nutrients, such as amino

acids or carbohydrates. For example, hummingbirds lack the vertebrate sweet taste receptor

T1R2 [66] but the structure of the heterodimeric mammalian umami receptor, T1R1-T1R3,

appears to have adapted in this species such that it permits carbohydrate detection [66]. Simi-

larly, the high carbohydrate diet of the honeybee may have driven an evolutionary adaptation

of receptor function to promote sugar detection.

While the number of Gr genes possessed by honeybees seems low it is important to note

that gustatory receptors may not solely be responsible for the general perception of taste.

Work on insect ionotropic receptors (IRs) is gaining momentum, and recently a number of

studies have highlighted that IRs play a role in gustation [68–70]. To date honeybees are

thought to possess 21 IRs [18], some or all of which may act independently or in conjunction

with gustatory receptors to increase the scope or sensitivity of the honeybee gustatory system.

However, further detailed analysis to identify the ligands of the 10 Apis Grs is required to gain

an understanding of this system and its potential interaction with other molecules.

Supporting information

S1 Table. Apis mellifera gustatory receptor gene information and associated primers.

(DOCX)

S1 Fig. Expression levels in internal tissues of most gustatory receptor mRNA is greatest in

the forager honeybee brain. Expression of mRNA for Apis mellifera gustatory receptors

(AmGr): in newly-emerged and forager bees, brain and gut tissues A. AmGr1 (N = 3–4 biologi-

cal replicates), B. AmGr2 (N = 3–4 biological replicates), C. AmGr3 (N = 4 biological replicates),

D. AmGr4 (N = 3–4 biological replicates), E. AmGr5 (N = 2–4 biological replicates), F. AmGr6

(N = 3–4 biological replicates), G. AmGr7 (N = 3–4 biological replicates), H. AmGr8 (N = 2–4

biological replicates), I. AmGr10 (N = 3–4 biological replicates). Data are mean ± SEM. All

mRNA levels are relative to the reference gene RP49 and values are all normalised to the level of
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expression in the forager brain. a, b, c represent GZLM pairwise comparison, Sidak P< 0.05.

(TIF)

S2 Fig. Raw Ct values from the RT-qPCR for the two reference genes Ribosomal Protein

49 (RP49) and Ribosomal protein S8 (RPS8) showing relatively stable expression across all

assessed body parts of forager (~2–3 weeks old) and newly emerged (~24 h old) honeybees.

Body parts: Brain (N = 20 pooled tissues), Gut (20 pooled tissues), Ant: antenna (N = 150

pooled tissues), Galea (N = 150 pooled tissues), Glos: Glossa (N = 75 pooled tissues), L palps:

Labial palps (N = 150 pooled tissues), F-tarsi: fore-tarsi (150 pooled tissues), M-tarsi: Mid-tarsi

(150 pooled tissues), H-tarsi: Hind-tarsi(150 pooled tissues).

(TIF)

S3 Fig. Expression levels of the 10 honeybee gustatory receptor genes across the un-manip-

ulated forager (�2–3 wk old) and newly emerged honeybee (�24 h old) anatomy, as seen

in Table 1, relative to RPS8 as a reference gene (NA represents unavailable data).

(TIF)

Acknowledgments

We would like to acknowledge the two anonymous reviewers for their helpful comments. We

would like to thank M. Thompson for beekeeping, J. Scott and K. L. Simcock for help with

experiments and H. Robertson for providing the gene sequences and comments on the

manuscript.

Author Contributions

Conceptualization: NKS GAW.

Formal analysis: NKS.

Funding acquisition: GAW.

Investigation: NKS.

Methodology: NKS LAW DF GAW.

Project administration: NKS.

Resources: DF GAW.

Supervision: LAW DF GAW.

Validation: NKS.

Visualization: NKS.

Writing – original draft: NKS.

Writing – review & editing: NKS LAW DF GAW.

References
1. Nayak SV, Singh RN. Sensilla on the Tarsal Segments and Mouthparts of Adult Drosophila melanoga-

ster meigen (Diptera: Drosophilidae). Int J Ins Morph and Embry. 1983; 12(5–6): 273–291.

2. Whitehead AT, Larsen JR. Ultrastructure of the Contact Chemoreceptors of Apis mellifera L (Hymenop-

tera, Apidae). J Ins Morph and Emby. 1976; 5: 301–315.

3. Stocker RF. The Organization of the Chemosensory System in Drosophila melanogaster: A Review.

Cell Tissue Res. 1994; 275: 3–26. PMID: 8118845

Age and nutrition on honeybee gustatory receptor expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0175158 April 12, 2017 12 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0175158.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0175158.s004
http://www.ncbi.nlm.nih.gov/pubmed/8118845
https://doi.org/10.1371/journal.pone.0175158


4. Zhang HJ, Anderson AR., Trowell SC, Luo AR., Xiang ZH., Xia QY. Topological and Functional Charac-

terization of an Insect Gustatory Receptor. PLoS ONE. 2011; 6(8): 1–10.

5. Xu W, Zhang HJ, Anderson A. A Sugar Gustatory Receptor Identified from the Foregut of Cotton Boll-

worm Helicoverpa armigera. J Chem Ecol. 2012; 38: 1513–1520. https://doi.org/10.1007/s10886-012-

0221-8 PMID: 23224441

6. Ishimoto H, Takahashi K, Ueda R, Tanimura T. G-protein Gamma Subunit 1 is Required for Sugar

Reception in Drosophila. The EMBO Journal. 2005; 24(18), 3259–3265. https://doi.org/10.1038/sj.

emboj.7600796 PMID: 16121192

7. Ueno K, Kohatsu S, Clay C, Forte M, Isono K, Kidokoro Y. G-alpha is Involved in Sugar Perception in

Drosophila melanogaster. J Neuroscience. 2006; 26(23): 6143–6152. https://doi.org/10.1523/

JNEUROSCI.0857-06.2006 PMID: 16763022

8. Kain P, Badsha F, Hussain SM, Nair A, Hasan G, Rodrigues V. Mutants in Phospholipid Signaling

Attenuate the Behavioral Response of Adult Drosophila to Trehalose. Chem Senses. 2010; 35(8):

663–673. https://doi.org/10.1093/chemse/bjq055 PMID: 20543015

9. Sato K, Tanaka K, Touhara K. Sugar-Regulated Cation Channel Formed by an Insect Gustatory Recep-

tor. PNAS. 2011; 108: 11680–11685. https://doi.org/10.1073/pnas.1019622108 PMID: 21709218

10. Park JH, Kwon JY. Heterogeneous Expression of Drosophila Gustatory Receptors in Enteroendocrine

Cells. PLoS ONE. 2011; 6(12): 1–7

11. Miyamoto T, Slone J, Song X, Amrein H. A Fructose Receptor Functions as a Nutrient Sensor in the

Drosophila Brain. Cell. 2012; 151(5): 1113–1125. https://doi.org/10.1016/j.cell.2012.10.024 PMID:

23178127

12. Masumura M, Satake S, Saegusa H, Mizoguchi A. Glucose Stimulates the Release of Bombyxin, an

Insulin-Related Peptide of the Silkworm Bombyx mori. Gen and comp Endocrinology. 2000; 118(3):

393–399.

13. Kim SJ, Rulifson EJ. Conserved Mechanisms of Glucose Sensing and Regulation by Drosophila Cor-

pora Cardiaca Cells. Nature. 2004; 431: 316–320. https://doi.org/10.1038/nature02897 PMID:

15372035

14. Wheeler DE, Buck N, Evans JD. Expression of Insulin Pathway Genes during the Period of Caste Deter-

mination in the Honey Bee, Apis mellifera. Ins Mol. Bio. 2006; 15(5), 597–602

15. Gronke S, Partridge L. The Functions of Insulin-like Peptides in Insects. In: IGFs: Local Repair and Sur-

vival Factors Throughout Lifespan. Clemmons D., Robinson I. C. A.F., Christen Y., editors. Springer

Berlin Heidelberg; 2010, pp 105–124

16. Robertson HM, Wanner KW. The Chemoreceptor Superfamily in the Honey Bee, Apis mellifera: Expan-

sion of the Odorant, but not Gustatory, Receptor Family. Genome Res. 2006; 16(11): 1395–1403.

https://doi.org/10.1101/gr.5057506 PMID: 17065611

17. Smith CD, Zimin A, Holt C, Abouheif E, Benton R, Cas e, et al. Draft Genome of the Globally Wide-

spread and Invasive Argentine Ant (Linepithema humile). PNAS. 2011; 108(14): 5673–5678. https://

doi.org/10.1073/pnas.1008617108 PMID: 21282631

18. Sadd BM, Barribeau SM, Bloch G, de Graaf DC, Dearden P, Elsik CG, et. al The Genomes of Two Key

Bumblebee Species with Primitive Eusocial Organization. Genome Bio. 2015; 16:76

19. Jung JW, Park KW, Ahn YJ, Kwon HW. Identification and Characterization of Sugar Receptors in the

Western Honey Bee, Apis mellifera. J. Asia Pac Entomol. 2015; 18(1), 19–26.

20. Jiang XJ, Ning C, Guo H, Jia YY, Huang LQ, Qu MJ, et al. A Gustatory Receptor Tuned to d-fructose in

Antennal Sensilla chaetica of Helicoverpa armigera. Ins Biochem and Mol Bio. 2015; 60: 39–46.

21. Winston M. 1987. The Biology of the Honey Bee, 1st ed. First Harvard University Press.

22. Robinson GE, Page RE, Strambi C, Strambi A. Hormonal and Genetic Control of Behavioral Integration

in Honey Bee Colonies. Science. 1989; 246: 109–112. https://doi.org/10.1126/science.246.4926.109

PMID: 17837770

23. Schulz DJ, Huang ZY, Robinson GE. Effects of Colony Food Shortage on Behavioral Development in

Honey Bees. Behav Ecol Sociobiol. 1998; 42: 295–30.

24. Schulz DJ, Robinson GE. Octopamine Influences Division of Labor in Honey Bee Colonies. J Comp

Phys A. 2001; 187(1): 53–61.

25. Whitfield CW, Cziko AM, Robinson GE. Gene Expression Profiles in the Brain Predict Behavior in Indi-

vidual Honey Bees. Science. 2003; 302(5643): 296–299. https://doi.org/10.1126/science.1086807

PMID: 14551438

26. Toth AL, Robinson GE. Worker Nutrition and Division of Labour in Honeybees. Anim Behav. 2005; 69:

427–435.

Age and nutrition on honeybee gustatory receptor expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0175158 April 12, 2017 13 / 15

https://doi.org/10.1007/s10886-012-0221-8
https://doi.org/10.1007/s10886-012-0221-8
http://www.ncbi.nlm.nih.gov/pubmed/23224441
https://doi.org/10.1038/sj.emboj.7600796
https://doi.org/10.1038/sj.emboj.7600796
http://www.ncbi.nlm.nih.gov/pubmed/16121192
https://doi.org/10.1523/JNEUROSCI.0857-06.2006
https://doi.org/10.1523/JNEUROSCI.0857-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16763022
https://doi.org/10.1093/chemse/bjq055
http://www.ncbi.nlm.nih.gov/pubmed/20543015
https://doi.org/10.1073/pnas.1019622108
http://www.ncbi.nlm.nih.gov/pubmed/21709218
https://doi.org/10.1016/j.cell.2012.10.024
http://www.ncbi.nlm.nih.gov/pubmed/23178127
https://doi.org/10.1038/nature02897
http://www.ncbi.nlm.nih.gov/pubmed/15372035
https://doi.org/10.1101/gr.5057506
http://www.ncbi.nlm.nih.gov/pubmed/17065611
https://doi.org/10.1073/pnas.1008617108
https://doi.org/10.1073/pnas.1008617108
http://www.ncbi.nlm.nih.gov/pubmed/21282631
https://doi.org/10.1126/science.246.4926.109
http://www.ncbi.nlm.nih.gov/pubmed/17837770
https://doi.org/10.1126/science.1086807
http://www.ncbi.nlm.nih.gov/pubmed/14551438
https://doi.org/10.1371/journal.pone.0175158


27. Knecht D, Kaatz HH. Patterns of Larval Food Production by Hypopharyngeal Glands in Adult Worker

Honey Bees. Apidologie. 1990; 21(5): 457–468.

28. Crailsheim K, et al. Pollen Consumption and Utilization in Worker Honeybees (Apis mellifera carnica):

Dependence on Individual Age and Function. J Ins Phys. 1992; 38(6): 409–419.

29. Paoli PP, Donley D, Stabler D, Saseendranath A, Nicolson SW, Simpson SJ, Wright GA. Nutritional Bal-

ance of Essential Amino Acids and Carbohydrates of the Adult Worker Honeybee Depends on Age.

Amino Acids. 2014; 46, 1449–1458. https://doi.org/10.1007/s00726-014-1706-2 PMID: 24623119

30. Page E, Erber J, Fondrk MK. The Effect of Genotype on Response Thresholds to Sucrose and Foraging

Behavior of Honey Bees (Apis mellifera L.). J Comp Physiol A. 1998; 182: 489–500. PMID: 9565478

31. Amdam GV, Norberg K, Page RE, Erbera J, Scheiner R. Downregulation of Vitellogenin Gene Activity

Increases the Gustatory Responsiveness of Honey Bee Workers (Apis mellifera). Behav Brain Res.

2006; 169: 201–205. https://doi.org/10.1016/j.bbr.2006.01.006 PMID: 16466813

32. Adler LS. The Ecological Significance of Toxic Nectar. Oikos. 2000; 91 (3): 409–420

33. Moritz B, Crailsheim K. Physiology of Protein Digestion in the Midgut of the Honeybee (Apis mellifera L).

Insect Physiol. 1987; 33: 923–931.

34. Vannette R.L., Mohamed A. & Johnson B.R., Forager bees (Apis mellifera) Highly Express Immune and

Detoxification Genes in Tissues Associated with Nectar Processing. Sci Reports. 2015; 5:16224.

35. Rolls BJ. Sensory-Specific Satiety. Nutr Rev. 1986; 44(3): 93–101. PMID: 3515243

36. Rogers S, Simpson S. Experience-Dependent Changes in the Number of Chemosensory Sensilla on

the Mouthparts and Antennae of Locusta migratoria. J Exp Biol. 1997; 200: 2313–2321. PMID:

9320233

37. Bernays EA, Chapman RF. Phenotypic Plasticity in Numbers of Antennal Chemoreceptors in a Grass-

hopper: Effects of Food. J Comp Phys A. 1998; 183(1): 69–76.

38. Percival M. S. Types of Nectar in Angiosperms. New Phytologist. 2007; 60(3): 235–281.

39. Puritt KD, Tatusova T, Brown GR, Maglott DR. NCBI Reference Sequences (RefSeq): Current Status,

New Features and Genome Annotation Policy. Nucleic Acids Res. 2012; 40:130–135.

40. Wright GA, Smith B. Different Thresholds for Detection and Discrimination of Odors in the Honey bee

(Apis mellifera). Chem senses. 2004; 29:127–135 PMID: 14977809

41. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data using Real-Time Quantitative

PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25, 402–408. https://doi.org/10.1006/meth.

2001.1262 PMID: 11846609

42. Ament SA, Velarde RA, Kolodkin MH, Moyse D, Robinson GE. Neuropeptide Y-like Signalling and

Nutritionally Mediated Gene Expression and Behaviour in the Honey Bee. Ins Mol Bio. 2011; 20(3):

335–345.
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