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ABSTRACT: Determining the redox potentials of protein

cofactors and how they are influenced by their molecular ? .
neighborhoods is essential for basic research and many ’-%V
biotechnological applications, from biosensors and biocatalysis to .

bioremediation and bioelectronics. The laborious determination of 2, ”

redox potential with current experimental technologies pushes A”“’?jﬁgﬂﬁgﬁt“res s
forward the need for computational approaches that can reliably ' E_ o
predict it. Although current computational approaches based on g . H
quantum and molecular mechanics are accurate, their large E,, collection 5 o~ »
computational costs hinder their usage. In this work, we explored LR

the possibility of using more efficient QSPR models based on m P m

machine learning (ML) for the prediction of protein redox

potential, as an alternative to classical approaches. As a proof of

concept, we focused on flavoproteins, one of the most important families of enzymes directly involved in redox processes. To train
and test different ML models, we retrieved a dataset of flavoproteins with a known midpoint redox potential (E,,) and 3D structure.
The features of interest, accounting for both short- and long-range effects of the protein matrix on the flavin cofactor, have been
automatically extracted from each protein PDB file. Our best ML model (XGB) has a performance error below 1 kcal/mol (~36
mV), comparing favorably to more sophisticated computational approaches. We also provided indications on the features that
mostly affect the E,, value, and when possible, we rationalized them on the basis of previous studies.

B INTRODUCTION enzymatic molecular systems with tailored redox behavior is
crucial. Current and prospective biotechnological applications
include biosensors,” biocatalysis, % bioremediation,” and
bioelectronics."’

Due to the relevance and versatility of flavoproteins, several
systematic studies have been carried out with the aim of
disclosing key structural determinants affecting the redox
properties of the flavin cofactor.''™'* As an example, structural
and functional studies on flavodoxins have established that
electrostatic interactions are a dominant factor affecting the
SQ/HQ_ equilibrium. In particular, since the flavin hydro-
quinone in flavodoxins is not protonated at N1,'* the
isoalloxazine moiety is anionic, and it is expected to generate
substantial repulsions in the negatively charged protein
environment commonly observed in flavodoxins.'>'® Indeed,
mutations in D. vulgaris flavodoxin have revealed a strong

The qualitative and quantitative evaluations of the relation-
ships between the redox properties of protein cofactors and
their molecular environments are key areas of study for both
basic research and technological applications.'™* Structure—
property relationships in molecular systems are not always
experimentally accessible (e.g., in research projects aimed to
design proteins with tailored redox properties). Consequently,
computational approaches that allow for a reliable and fast
prediction of protein redox potential are very important to
complement and enrich the data obtained from “wet”
experiments.

Among the very large number of enzymes directly involved
in redox processes, flavoproteins represent one of the most
important families, both for the high number of known
flavoproteins and for the large variety of redox reactions
catalyzed by these enzymes,™® due to their ability to catalyze
either one or two-electron transfer reactions. In fact, flavins can Received: July 8, 2022
go through three relevant redox forms (Scheme 1): quinone Published: September 20, 2022
(OX), semiquinone (either as anionic, ASQ, or neutral, NSQ,
species), and hydroquinone (HQ).

In addition, flavoproteins are very promising systems for
biotechnological applications, where the availability of
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Scheme 1. Redox and Protonation States Accessible to the Isoalloxazine Ring in Flavoproteins: Quinone (OX), Semiquinone
(either as anionic, ASQ, or neutral, NSQ, species), and Hydroquinone (HQ)
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correlation of the NSQ/HQ potential with the number of
negatively charged groups in the neighborhood of the flavin,'®
confirming that the flavin mononucleotide cofactor bound to
flavodoxins is more difficult to convert to the fully reduced
form than free FMN. Investigation of wild type and mutated
flavodoxins from D. vulgaris'®~" and C. beijerinckii"> showed
that unfavorable aromatic stacking interactions can also play
critical roles in tuning the redox potential. Several other studies
have also highlighted and disclosed the roles of specific
hydrogen bonds and electrostatic, hydrophobic, and #—x
stacking interactions, as well as conformational changes of the
tricyclic ring or its environment on the flavin reduction
potential.”*~>* However, the quantitative prediction of the
effects of these interactions and features on the redox potential
of flavoproteins is extremely difficult to predict because the
contribution of these effects is expected to scale in a nonlinear
fashion and is therefore particularly difficult to quantify only on
the ground of structural analysis. The redox potentials of
proteins can be computed using ab initio, semiempirical, or
classical methods,”* ™" some of which were tested and used to
predict the redox potential of flavoproteins.”®*’ Truhlar and
collaborators reported a series of seminal density functional
theory investigations about lumiflavin in different solvents and
with different substituents, which were used as benchmarks for
subsequent quantum mechanics/molecular mechanics (QMm/
MM) studies aimed at investigating the redox properties of
small flavoproteins.’® However, even though QM and QM/
MM studies allow one to estimate the flavin reduction
potential with an average error of only 10—20 mV, the
massive and systematic application of QM and QM/MM
methods in virtual screening protocols is still hindered by the
large computational cost of such calculations.”’ ~** In parallel
to QM and QM/MM studies, approaches based on a
molecular mechanics description of flavoproteins have been
reported. Specifically, Sattelle and Sutcliffe’ carried out a
thermodynamic integration (TI) study on a series of natural
and engineered flavodoxins, differing for one amino acid in the
cofactor environment. Also, in this case, results were very
encouraging, with an average difference between calculated and
measured redox potential of 20—100 mV. However, the
computational cost of a TI investigation is also quite large, and
it does not yet allow one to investigate many possible
flavoprotein variants differing for one or more amino acids in a
systematic way.
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Machine learning (ML) might be a promising approach for a
computationally efficient prediction of protein redox potential,
since it can be generally used to assist and derive quantitative
structure—property relationships (QSPR) for chemical sys-
tems.”> "> Once the computationally demanding step of model
training and testing is completed, a ML model can indeed be
employed to quickly predict the redox potential of any
flavoprotein. Recently, ML techniques have been extensively
applied to predict, or rationalize, quantitative relationships
between molecular structures and properties, showing how
these methods can nicely and successfully complement ab initio
or semiempirical approaches.””~>* However, to the best of our
knowledge, ML has not been used yet for the prediction of
protein redox potential. Prompted by these considerations, we
propose a ML-based QSPR pipeline that can be used within a
high-throughput framework to predict the redox potential of
flavoproteins using only their 3D structure as input.

To build a labeled dataset, suitable for the training and
testing of ML-based QSPR models, we scanned the scientific
literature searching for information on the redox potential
associated with available 3D structures. From each identified
molecular structure, we automatically extracted 246 features
that may influence the redox potential. To take into account
both local and global factors, we considered the physicochem-
ical properties for both the whole protein and a portion of it.
We compared the performances of different ML regression
models, namely, linear regression, support vector regression,
Gaussian process regression, k-nearest neighborhood, random
forest, and extreme gradient boosting, as well as different
methods of feature extraction. In addition, we analyzed the
importance of each feature for the accuracy of the prediction,
and when possible, we rationalized our results on the basis of
previous investigations.

B RESULTS

Flavoproteins Dataset. The first step to train and test
each regression model was the reconstruction of a labeled
dataset. To this aim, we identified a dataset of flavoproteins for
which both the 3D structure and the midpoint redox potential
(E,,) were known. In this study, we focused only on E,, which
is the average redox potential between E; and E, (Scheme 1),
and not on the one-electron redox processes E; and E,, to
increase as much as possible the number of entries in the
dataset (which is a crucial parameter for robust training and
prediction). In fact, for several flavoproteins of the dataset only

https://doi.org/10.1021/acs.jcim.2c00858
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E,_, was available. Indeed, E; and E, are hard to measure, for
example, because the flavoprotein reacts as a two-electron
redox species, or the cofactor is characterized by crossed redox
potential.**~>°

We retrieved most flavoproteins from the Flavoprotein
Database (http://flavoproteindbwebdev-
theflavoproteindatabase.webplatformsunpublished.umich.edu/
) and some others by applying a systematic literature search
strategy (see Methods for further details). We considered only
flavoproteins with noncovalently bound flavin(s) and including
a single cofactor (FAD or FMN). We obtained a set of 141
flavoproteins. The dataset covers a wide range of redox
potentials (see Figure 1, u = =223 mV, 6 = 109 mV, max = 71
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Figure 1. Histogram of distribution of redox potential in the
flavoprotein dataset used in this study.

mV, min = —399 mV) and significant structural variation, at
different levels. First, it is composed of various families of
flavoproteins, such as oxidoreductases and electron-trans-
porting proteins, with different overall architectures (Support-
ing Information File 2). Second, for each protein (when
possible), variants from different species are included that have
the same fold but different sequences (Supporting Information
File 2) (note: the inclusion of proteins from different
organisms in the same dataset should not affect the
performance of the model, since we do not expect that there
are species—specific variables that may affect flavin redox
potential). Third, mutants with available 3D structures and
redox potentials were also included, allowing one to tune the
model sensitivity toward subtle structural changes.

The method used to acquire all the 3D structures collected
in the dataset is X-ray diffraction. The resolution ranges
between 0.78 A (3W5SH) and 3.3 A (2B76), with a mean value
of 2 A and a standard deviation of 0.47 A. When multiple PDB
files were available for the same flavoprotein, we considered
the one with the highest resolution.

For each protein in the dataset, we extracted several
molecular descriptors that may affect the E,, value. We focused
on descriptors that take into account exclusively the properties
of the protein amino acids, thus excluding those features
regarding the chemical interaction pattern of the cofactor with
the protein residues (such as the presence of H-bond(s)
between a specific flavin atom and its surroundings). In this
way, the model will be as general as possible, potentially
applicable to any type of protein regardless of the chemical
nature of the cofactor considered. The cofactor coordinates are
used, when necessary, just as reference points to extract the
features of interest, on the basis of geometric considerations

(vide infra).

Protein.X
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O

Figure 2. Examples of features for flavin surrounding description. (a) Features related to physicochemical properties of protein portions of
decreasing size: from the entire protein (Protein.X descriptors, in yellow) to a sphere defined by r; (Bar.X descriptors, in orange) to smaller spheres
defined by r, (RingX descriptors, in pink). (b) Features describing the nature and property of residue(s) found in the proximity of NS

(NS_nearest.X and Around.NS.X descriptors).
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Figure 3. Comparison of MAE values (mV) using LR (a), GPR (b), SVR(c), KNR(d), RF(e), and XGB(f) for different radii, , and , (in A). For

each estimator, the lowest MAE is highlighted by a green box.

The descriptors that we used provide information about the

following:

(i) Electronic, steric, and overall physicochemical properties
(165 features), including countings (e.g, of charged,
hydrophobic, polar, and apolar residues or of specific
residue types) and sums of physicochemical quantities
(e.g., volume, flexibility, hydrophobicity) taken from ref
57 for residues belonging to either the entire protein or a
spheric portion of the protein surrounding the flavin
cofactor to include from long-range effects to strictly
local effects. The definition of the size of the flavin
environment to be considered, and of an adequate cutoft
radius, is of central relevance and nontrivial. For this
reason, we followed different strategies to define a cutoff
distance from the isoalloxazine moiety (Figure 2a). This
set of 165 features results from the union set of 55
features repeatedly extracted according to the three
following strategies:

o Considering the entire protein. This subset of
features is labeled as “Protein.X” where “X”
describes the feature (for example, “Protein.Res-
Polar” refers to the number of polar residues in
the entire protein chain).

o Considering a sphere of radius r;, centered in the
barycenter of the isoalloxazine ring of the flavin.
We labeled the features of this subset as “Bar.X”
(for example, “Bar.nNats in side chain” refers to
the number of N atoms contained in the side
chain of all the residues found within a r; distance
from isoalloxazine barycenter).

o Considering spheres of radius r, centered on each
atom of the isoalloxazine ring. These descriptors
are labeled as “Ring.X” (for example, “Ring.Steric
hindrance” refers to the steric hindrance of
residues found at a r, distance from the N1
atom of the isoalloxazine ring). In this case, three
additional features were extracted, counting the
number of nitrogen, oxygen, and carbon atoms
within r, (labeled Nitrogen_ Around, Oxygen_-
Around, and Carbon_Around, respectively). In
this way, the accuracies of the chemical
descriptions of molecular groups found in close
proximity to the flavin (thus likely interacting with
it) are increased.

(ii) Properties of the amino acids located in proximity to the
NS atom of the isoalloxazine ring (28 features) because
it is known that the nature of the residue(s) interacting

https://doi.org/10.1021/acs.jcim.2c00858
J. Chem. Inf. Model. 2022, 62, 4748—4759
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Table 1. Comparison of Mean and Standard Deviation of MAE (mV), RMSE (mV), R2, and SC

Model i ) MAE

LR 10 3 44.87 + 6.70
GPR 10 6 40.96 + 8.44
RF 10 S 39.87 + 6.86
KNR 13 4 41.60 + 6.16
SVR 13 3 39.39 + 6.95
XGB 13 3 36.36 + 6.13

RMSE R2 sC
61.18 + 10.65 0.66 + 0.14 0.81 + 0.09
5§7.98 + 12.28 0.69 + 0.13 0.85 + 0.06
57.65 + 10.28 0.70 + 0.10 0.86 + 0.06
59.57 £ 9.64 0.68 + 0.12 0.85 + 0.04
56.10 £ 10.5 0.71 % 0.12 0.85 + 0.06
51.99 + 9.87 0.75 + 0.11 0.87 + 0.06

with NS can strongly affect flavin redox potential (Figure
2b).”>*® Flavin NS changes its protonation state along
with the double reduction, and protonation can occur at
the semiquinone or quinone state according to the NS
environment, thus altering E,. The same 28 features
were calculated for the residue nearest to NS, labeled
“NS_nearest X”, and for the same residue plus the two
adjacent ones in the amino acid sequence, labeled
“Around NS.X” (for example, Around NS.Hydropho-
bicity describes the sum of the hydrophobicity, as
defined in ref 57 of the three residues that are found in
proximity to NS). Note: In the case of application to
other protein families, with a different cofactor, these
features may be neglected, or alternatively, N5 may be
replaced by another atom or group of atoms that, for
instance, change protonation state upon reduction.
These descriptors and the ones described in (i) should
also implicitly capture the essential physicochemical
properties and steric features of the flavin binding site.
(iii) Composition, transition, and distribution of amino acid
attributes along the amino acid sequence (21 features).
Introduced by Dubchak and collaborators,®” these
features describe the global attribute of residue “types”
in a protein (such as hydrophobicity, secondary
structure, and solvent accessibility) and their relative
positions along the sequence. This class of descriptors
was calculated using the integrated “CTD” function
(composition, transition, distribution) by PyBioMed
library.*
(iv) pH value at which the measure of E,, was carried out
(when available).

In total, 246 molecular descriptors were calculated for each
flavoprotein. The values of the descriptors depend on the
choice of the radii r; and r,. To assess the robustness of the
regression models as a function of the derived features, we
considered different combinations of r; and r,. In particular, we
scanned r; = 8,9, ..,16 A, and r, = 3, 4, 5, 6 A, for a total of 36
different configurations. Hence, we obtained 36 different final
datasets of dimension 141 X 247 (features plus E,,). Note that
we tested different combinations of bar radius r, and ring
radius r,, scanning values greater than the worst PDB
resolution in the dataset.

XGB Outperforms Other Estimators. For each of the
obtained 36 datasets, we compared the prediction performance
of six different estimators, namely, linear regression (LR),
support vector regression (SVR), k-nearest neighborhood
(KNR), Gaussian process regression (GPR), random forest
(RF), and extreme gradient boosting (XGB) (Methods). All
tested estimators underwent a S-fold cross validation on the
training data (80%) to find the best combination of
hyperparameters, with a grid search strategy (details in
Methods). Once the best hyperparameters were obtained,
the estimator was retrained with the optimal hyperparameters

4752

set on the entire training set, while the prediction performance
was evaluated on the subset of unseen data (20%). We
repeated the overall procedure 10 times to evaluate the
performance variability in terms of mean and standard
deviation.

In Figure 3, we report for each estimator the mean absolute
error (MAE) as a function of the radii r, and r,. Each value
represents the mean across the 10 repetitions. All the ML
models, except for the LR estimator (Figure 3a), reach a MAE
value lower than 42 mV for at least one combination of radii.
In fact, LR clearly shows a worse performance compared to the
other models with the MAE values ranging from 44.9 mV (r, =
10A, r,=3A) to 60.9 mV (r, = 16 A, r, = 4 A). This result
indicates that a simple linear relationship is not sufficient to
well describe the relationship between input and output. On
the contrary, the XGB model (Figure 3f) always outperforms
the other models (Figure 3a—e), for any choice of the radii r,
and r,, with the MAE values ranging from 36.4 mV (r; = 13 A°,
r,=3A)to41.4mV (r, = 15 A, r, = 6 A). Most estimators
tend to show better performances when a low value for r; and a
medium value for r, are used. No model achieved its best
performance for r, < 10 A or r, > 13 A. Worth noting is that
two models (XGB and SVR, Figure 3f and c) achieved the best
performance for the same configuration, i.e., r, = 13 A and r, =
3A

In view of the results of the comparison of different
configurations of r| and r,, we considered for each estimator its
specific best radii r; and r, configuration (e.g., r; = 10 A and r,
3 A for LR), and we analyzed in more detail the
performances of the models. The mean values of MAE, root
mean squared error (RMSE), square correlation coefficient
(R2), and Spearman correlation (SC) for the best radii
configurations and their standard deviations are reported in
Table 1. Regarding the mean values, the XGB model achieved
better predictive performance than other methods, with the
lowest MAE and RMSE values and the highest R2 and SC. In
more detail, the XGB model achieved a MAE of 36.36 mV, a
RMSE of 51.99 mV, a R2 of 0.75, and a SC of 0.87. LR
displayed the worst performance for all the metrics.

In summary, the best performance is obtained with XGB,
followed by SVR.

Given the non-negligible value of the standard deviations
observed for all the metrics, we investigated whether the
differences in the performances obtained by XGB and the
other models are statistically significant. To this aim, we
performed a pairwise statistical analysis based on the Mann—
Whitney U rank test. We rejected the null hypothesis if p <
0.0S. All the obtained p-values of the statistical analysis are
reported in the Supporting Information File S2. Generally, we
observed that XGB performs better than GPR, KNR, and LR
for all the performance metrics and, in most cases, better than
SVR and RF. There are some cases in which the distribution of
XGB is not statistically different from those of RF and SVR.

https://doi.org/10.1021/acs.jcim.2c00858
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Figure 4. (a) SHAP summary plot for XGB trained on the entire flavoprotein dataset, with r, = 3 A and r, = 13 A. The x-axis stands for the average
absolute SHAP values, and the y-axis has the first 15 features ranked in descending order. (b) SHAP violin plot for the same model in (a). The x-
axis displays the distribution of SHAP values, and the color represents the directional impact of the features (higher values of the feature are marked

in red, whereas lower values are marked in blue).

For example, regarding the MAE values, we observed that the
performance of XGB is not significantly different from SVR (p
= 0.054). However, taken together, our results indicate that
XGB generally outperforms all the other models.

SHAP Values Explain the Feature Relevances. Besides
the possibility of using ML models to predict the redox
potential of new flavoproteins, it is relevant to exploit them to
investigate the features that have greater impacts on
modulation of the output. Therefore, once it is ascertained
that XGB produces the best ML model, we retrained it using
the entire dataset (reinserting the test set) with r, =3 A and r,
=13 A, and we computed SHAP values (Methods) to study
the impact that each feature has on the predicted E,, value.
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In Figure 4, we reported the SHAP summary plot (a) and
the violin plot (b) for the best ML model (i.e,, XGB). In both
plots, features are ranked in descending order (average
absolute SHAP values). In Figure 4a, the horizontal location
shows whether that feature influences or not the model
prediction. Figure 4b displays a violin plot of the distribution
of the SHAP values. Positive SHAP values indicate a positive
impact on the prediction, and negative SHAP values indicate a
negative impact. The color represents the directional impact of
the feature (higher values of the feature are marked in red,
whereas lower values are marked in blue). As it can be
observed from the barplot and violin plots, the number of N
(nitrogen) atoms in the molecular neighborhood calculated
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with respect to the barycenter (“bar.nNats in side chain”)
appears to have a particularly high impact. Indeed, it strongly
correlates with the experimentally observed midpoint redox
potential values (Supporting Information File S1, Figure S1).
Also, the number of glutamine residues in the protein
(“Protein.GLN), the number of histidine residues in the
molecular neighborhood with respect to barycenter (“bar.-
HIS”), and the pH has a high impact. The first three features
may correlate with one another since both glutamine and
histidine residues have N atoms in their side chains.

While it is not always straightforward to rationalize the
importance of these features, in the following, we provide a
reasonable explanation of the importance of some of them, on
the basis of previous studies.

A lower number of N atoms in the side chains of residues
around the cofactor leads to a smaller E,,. Average values of the
feature have a negligible impact on the output, whereas high
values tend to be associated with higher E_, values. Amino
acids that have atoms of N are lysine (Lys), arginine (Arg),
histidine (His), and tryptophan (Trp). With the exception of
Trp, all the above-mentioned amino acids can be protonated,
influencing the charge of the molecular neighborhood. Since
the higher the positive charge of the flavin environment is, the
easier is the flavin reduction, it is reasonable that the increase
in Lys, Arg, and His numbers in proximity to the flavin cause a
shift of the redox potential toward more positive values. This is
also in line with several investigations on flavoproteins, such as
flavodoxins, revealing that the flavin redox potential can be
tuned by controlling the number of charged residues around
the cofactor.'®'?°" To corroborate this fact, we analyzed the
Spearman correlation between “nats in side chain” and all the
other features (Supporting Information File S2), and it turned
out that this feature has a high correlation with the number of
arginine residues (r = 0.872) and of positive residues (r =
0.871) in the flavin surrounding.

It can be noticed (Figure 4b) that most of the flavoprotein
entries have an experimental pH value ~ 7, which corresponds
to the average value. Therefore, as expected, the violin plot
shows that the impact tends to zero. However, high values
(alkaline pH, in red) and low values (acid pH, in blue),
although few compared to the average values, tend to be
selectively localized to the left and right of the plot,
respectively. On the whole, it is therefore possible to affirm
that an acid pH corresponds to higher E,, while an alkaline pH
results in lower E_. Such a correlation can be explained by
referring once again to the charge of the flavin surrounding:
high concentrations of protons lead to positively charged
amino acids and consequently to higher E.

Also, the hydrophobicities of the residues around NS
(Around NS.Hydrophobicity) influence the redox potentials:
the greater the hydrophobicity is, the more unfavorable the
flavin reduction becomes. Since the N5 of the flavin gets
protonated upon the first or second reduction (Scheme 1), the
reduced forms of the isoalloxazine should be destabilized by a
highly hydrophobic neighborhood of NS, which would lower
the cofactor redox potential.

Finally, it is interesting to note how a high number of
residues capable of forming hydrogen bonds in the protein
correlates with higher redox potentials. The content of H-
bonds in a protein can be related to its polarity, so a higher
number of H-bonds corresponds to a higher polarity of the
protein and thus to a higher redox potential value.
Furthermore, residues accepting/donating H-bonds found in
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close proximity to the flavin may also be involved in direct
interactions with the isoalloxazine ring. This would cause a
shift of redox potential in the positive direction by lowering
flavin’s lowest unoccupied molecular orbital energy levels, as
indicated previously.”»**~%

B CONCLUSIONS

The accuracies of ML-based QSPR models strictly depend on
the quality of the training data. Labeling a proper number of
training samples requires an extensive search and manual
curation of experiments reported in the literature. To reduce
the heterogeneity of the population to be sampled, we focused
at first instance on a single family of proteins. Specifically, we
selected the family of flavoproteins because of their relevance
in redox processes and the consequent major interest in the
prediction of their redox potential. We proved the possibility of
using a ML-based QSPR model to predict the redox potential
of flavoproteins.

Among the various ML estimators tested in our QSPR
analysis, XGB demonstrated superior ability in terms of MAE,
RMSE, R2, and Spearman metrics. This result is consistent
with recent work that suggests that in general tree-based
models perform very well for tabular data.”” The reduction
potentials predicted with our ML approach are characterized
by an average error of ~36 mV, which is comparable to or even
better than that obtained using more sophisticated (and
therefore time-consuming) computational methods.*****
Indeed, an error of less than 1 kcal/mol was also obtained
by Sattelle and Sutcliffe who used thermodynamic integration
to quantify the redox potential variation of long-chain
Anabaena flavodoxin upon site-specific mutations.” The
MAE values that we obtained for some specific objects (i.e.,
wild type Clostridium beijerinckii flavodoxin and its G57D and
GS7T mutants) are also comparable to the ones reported in
the literature, obtained with computations based on the
electrostatic continuum model by solving the linear Poisson—
Boltzmann equation (15.6 and 16.0 mV, respectively).®'

In addition, it was possible to rationalize, on the basis of
previous observations and considerations, both the weight and
nature of some of the molecular descriptors that have high
impacts on the prediction. Remarkably, our approach also
highlighted a series of other protein properties that can
influence redox potential, although less intuitively. This
information could turn useful in protein engineering
applications, aiming at quantitatively tuning flavoprotein
redox potential by targeted sequence modifications. In the
absence of the experimental 3D structure of a flavoprotein
and/or its mutants, the prediction may be extended also to
computationally derived models (if characterized by high
confidence) that can be obtained via homology modeling, in
silico mutagenesis or ab initio structure prediction using, for
instance, AlphaFold.”

The performance of the described ML-based QSPR model
will benefit from future collection of new experimental data,
allowing a further increase in the homogeneity of the
flavoprotein set, especially in regions of slightly negative
and/or positive potentials. An increase of experimental
information would also allow the development of predictive
models for E, and E, or for the gap between the two. This last
application would be particularly intriguing, since the
separation between flavin first and second redox potentials
has recently emerged as a key feature for the design of electron
bifurcating proteins, with potential implications in the context
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of energy conversion.”*>*’°~"? Finally, an important advantage
of the model is that all the considered features can be
automatically extracted from the PDB file of the associated
protein. We would also like to specify that we reperformed
predictions including additional features, describing the pattern
of interaction of the isoalloxazine ring of the flavin with the
protein neighborhood (e.g., presence of H-bonds or aromatic/
aliphatic stacking interactions between one atom of the
isoalloxazine ring and the protein matrix). However, none of
these features had a significant impact on the prediction.
Furthermore, the inclusion of such information did not
increase the performance of our estimators (data not
shown), suggesting that our chosen descriptors, that are
exclusively based on the protein atomic coordinates, implicitly
account for it. Such features are independent from the
chemical nature of the cofactor, so the same framework
could be applied to other families of proteins to determine
their redox potentials. Only when training data will be available
for other families of proteins we will be able to test whether
our model can be generalized to different families of proteins,
indicating that general principles were uncovered or, on the
contrary, whether ML models need to be trained specifically
for each family.

The encouraging results that we obtained for flavoproteins
pave the way for a community effort to collect training datasets
for other families of proteins.

B METHODS

ML Models. As regression models, we considered the linear
regression (LR), Gaussian process regression (GPR),74’75
support vector re_}gression (SVR),”® k-nearest neighbors
regression (KNR),”” and two decision tree ensemble methods,
random forest (RF)’® and gradient boosting (GB).””*" A
detailed description of these methods is available in Supporting
Information File S1.

Performance Metrics. All the ML models are evaluated on
the basis of different evaluation criteria. The main evaluation
criterion used for hyperparameter selection in this paper is
mean absolute error (MAE). The smaller the values of MAE
are, the higher are the performances of the model. To compare
different models, we used other evaluation metrics, namely
root mean squared error (RMSE), square correlation
coefficient (R2), and Spearman correlation (SC).

Dataset Reconstruction. The dataset that we used to
develop the ML models consists of 141 records, i.e.,
experimental studies in which midpoint redox potential (E,,)
of a flavoprotein was measured. Some of these records have
been obtained from the Flavoprotein Database (http: //
flavoproteindbwebdev-theflavoproteindatabase.
webplatformsunpublished.umich.edu/), whereas the other
records were collected by us by applying a systematic literature
search strategy. In more detail, such a strategy consisted of two
phases. First, we searched the Protein Data Bank (PDB) for
3D structures belonging to the flavoprotein class and
containing FAD or FMN as cofactors. Then, for each of
these, we searched on Scopus for possible works in which the
redox potential was measured, using as keywords the name of
the flavoprotein, the organism from which the 3D structure
was isolated and purified, and the term “mV” (i.e., milliVolt). If
different PDBs are available for the same flavoproteins, we
selected the one for which there is the most similarity between
the experimental condition used to obtain the crystallographic
structure and to measure the redox potential. If the E_, of a
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flavoprotein was measured at a different pH, we selected and
included all these records.

The correspondence between flavoprotein and flavin is not
bijective, since there are many flavoproteins containing more
than one flavin cofactor. To manage this fact, we applied the
following procedure:

e When the flavoprotein has just one flavin cofactor
(FMN or FAD), we report in the dataset the molecular
descriptors of the interaction between the cofactor and
the associated chain of the flavoprotein.

e When the flavoprotein has two or more flavin cofactors,
we report in the dataset one example, where the values
of the molecular descriptors correspond to the mean
over the various chains containing a flavin cofactor.

ML Experimental Setup. To perform both hyper-
parameter optimization and model selection, we used a nested
cross validation. We used a S-fold cross-validation procedure
for model hyperparameter optimization nested inside a 10-fold
cross-validation procedure for model selection. The S5-fold
cross-validation procedure involves fitting a model on all folds
but one and evaluating the fit model on the holdout fold (i.e.,
validation set). Under this procedure, the hyperparameter
search does not have the opportunity to overfit the dataset as it
is only exposed to a subset of the dataset provided by the outer
cross-validation procedure. For each estimator, the hyper-
parameters were selected as the ones which minimize the MAE
scores using a grid-search strategy. We repeated this procedure
10 times to explore the feature space extensively and evaluate
performance variability, avoiding possible bias due to the
stochasticity of the split procedure.

We applied several preprocessing operations on the dataset.
First, since the pH values at which the measure of redox
potential was carried out are not always present in the
corresponding literature, i.e., is a missing value, we replaced it
with the mean value computed on the training set. Then, we
removed all the features having no variance or having high
correlation (Pearson correlation above 0.99) with other
features in the training set.

When LR, SVR, KNR, or GPR are considered as ML
models, we standardize the features by removing the mean and
scaling to unit variance, whereas for both RF and XGB, such a
preprocessing operation is not necessary.

Given that the number of descriptors exceeds the training
data size, we also applied feature selection to reduce the
number of descriptors and avoid possible overfitting during the
training process. In more detail, for LR, SVR, KNR, and GPR
models, we applied an elastic net (EN) strategy to reduce the
number of descriptors before the training process. EN is a
regression method that obtains a linear model that estimates
sparse coeflicients, minimizing a specific cost function

1
min—IIXw — Il + ap lwll, + a(1 — p)lwll,
w 2n

where 1 is the number of training samples, w the coeflicients of
the linear model, @ > 0 a constant value which weighs both the
L' and L? regularization terms, and 0 < p < 1 a parameter
which weighs the two penalty terms. The advantage of such a
method is that it allows for learning a sparse model with few of
the weights w;. Indeed, trying to minimize the cost function,
EN selects those features that are useful, discarding the useless
or redundant features, making its coefficient equal to 0. So, the
idea of using EN for feature selection consists of using only
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those features that have coefficients different from 0. Since the
choice of a and p for EN could strongly affect the results of the
feature selection, we tested two different values for «, i.e., a =
10 and 100, and three different values for p, i.e., 0.5, 0.75, and
1.

RF and XGBoost models apply feature selection automati-
cally to build their own trees during the training process.
However, since too deep of trees can cause overﬁtting, we
selected five as the maximum depths of the trees for both RF
and XGB, and we tested three different values (3, 4, and 5) for
this hyperparameter.

For hyperparameter optimization, we used a grid-search
strategy over a parameter grid. In more detail, we used the grid
search provided by GridSearchCV of the Scikit-Learn library,”’
which generates candidate configurations from a grid of
hyperparameter values. The descriptions of the grids, specific
for each estimator, are reported in Supporting Information File
S2. Any other hyperparameter of the model is set to the default
value provided by the original code.

Interpretation of ML Models Using SHAP. Once a ML
model to predict redox potential was obtained, we used
SHapley Additive exPlanations (SHAP)*” to interpret the
result. SHAP is a quite recent methodology that enables
quantitative estimation of model interpretability. SHAP uses
concepts from cooperative game theory, assigning to each
feature a score based on its impact on the model prediction
when the feature is present or not during the SHAP estimation.
In order to explain complex models, SHAP uses a linear
additive feature attribute method as a simpler explanation
model

flo) = g(x) =y + ). b/

i=1

where f is the original ML model, g the simpler explanation
model, N the total number of features, ¢, the SHAP values
measured across all possible inputs, and «’; the simplified input
vector that indicates if a particular feature is present or not
during the estimation; ¢, is associated with the model
prediction when all the attributes are not considered in the
estimation.

B DATA AND SOFTWARE AVAILABILITY

The code and data used in this work are publicly available at
the GitHub repository https://github.com/CompBtBs/
Prediction_Flavoprotein EM. All the PDB structures have
been downloaded from the Protein Data Bank (PDB). For all
the estimators, except for GB, we used the implementations
provided by Scikit-Learn. For GB, we used the XGB
implementation provided by Chen and Guestrin.*” To analyze
the importance of the variables in the XGB model, we used the
SHAP (SHapley Additive exPlanations) Python library.

B ASSOCIATED CONTENT

© Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.2c00858.

File S1: A brief description of the machine learning
regression models used in this study and correlation plot
between the feature “Bar.nNats in side chain” and the
observed midpoint potential across the various flavo-
proteins (PDF)
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File S2: Input flavoproteints dataset. Correlation
between the feature “Bar.nNats in side chain” and all
the other features. P values of Mann—Whitney U rank
test. Search ranges for hyperparameter tuning of each
considered estimator (XLSX)
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