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Abstract

Brain decoders use neural recordings to infer the activity or intent of a user. To train a decoder, 

one generally needs to infer the measured variables of interest (covariates) from simultaneously 

measured neural activity. However, there are cases for which obtaining supervised data is difficult 

or impossible. Here, we describe an approach for movement decoding that doesn’t require access 

to simultaneously measured neural activity and motor outputs. We use the statistics of movement

—much like cryptographers use the statistics of language—to find a mapping between neural 

activity and motor variables, and then align the distribution of decoder outputs with the typical 

distribution of motor outputs by minimizing their Kullback-Leibler divergence. By using datasets 

collected from the motor cortex of three non-human primates performing either a reaching task or 

an isometric force-production task, we show that the performance of such a distribution-alignment 

decoding algorithm is comparable with the performance of supervised approaches. Distribution

alignment decoding promises to broaden the set of potential applications of brain decoding.

Introduction

The aim of brain decoding is to infer the relationship between neural activity and a covariate 

of interest. Thus by measuring neural activity, we can predict what someone is viewing[1, 

2], what word they are thinking about[3, 4], or even their movements[5, 6]. Decoding 

approaches can also be used to elucidate the link between external factors (stimuli) and the 
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brain, which is essential for understanding how the brain encodes information. In all of these 

settings, training data are collected by simultaneously recording brain activity along with the 

covariates that we wish to predict.

In many situations, obtaining simultaneous recordings of both neural activity and the 

covariates of interest is challenging, expensive, or impossible[7]. This includes settings 

where complex task variables are difficult to track[8], as well as in motor decoding settings 

where the user is paralyzed and thus cannot generate motor outputs. In these situations, we 

seek an alternative to applying a supervised approach to learn a mapping between neural 

activity and the underlying covariates that we wish to predict[9].

To train a decoder without simultaneous measurements of neural activity and covariates, 

we looked to cryptography for inspiration. When code breakers crack a cypher, they 

leverage prior information about the distribution of both individual characters and their 

joint statistics[10, 11]. For example, the probability of observing a written ‘E’ is much 

higher than the probability of observing a ‘Z’. Using such information, Alan Turing and 

his Bletchley Park team cracked the World War II German Enigma code by exploiting the 

distribution of words known to appear in encrypted messages from their enemies. The key 

idea underlying this type of code-breaking strategy is to learn a mapping from the encrypted 

to decrypted text that produces a distribution with structure similar to what we expect based 

upon prior knowledge. Here, we ask if the same concept could be used to learn a mapping 

from neural activity to motor outputs.

We will highlight this concept with a movement example, where the aim is to decode the 

2D velocity of a user’s hand from recorded neural activity (Fig. 1). In this example, the 

goal of the decoder is to produce an output that is matched to the distribution of the desired 

movement (e.g., reaching, drinking, or shaking an object) (Fig. 1a). If the decoder is tuned 

correctly, the distribution of the decoded movement variables should roughly match the 

distribution of the kinematics of the actual movement (Fig. 1b, aligned movement in green). 

If the decoder is not tuned correctly, then its output should produce a different distribution 

(misaligned movement in red). Thus, we can effectively train a decoder that relates brain 

activity to motor variables by simply asking whether decoder outputs match the distribution 

of the intended movement.

Just as in cryptography, where breaking a cypher is easier when the underlying signal has 

clear statistical structure[10], distribution alignment requires that the decoded distribution of 

movements also be highly structured. Fortunately, there is evidence that natural movements, 

such as eating, walking, and dancing, exhibit a great deal of structure and regularity[12, 13, 

14, 15]. The existence of structure in natural movements suggests that deviations from a 

typical movement distribution could be statistically detected. By aligning the distribution of 

predicted movements with a prior over natural movements, we can relate neural activity to 

movement without the need to measure them simultaneously.

Here we introduce an approach for movement decoding called distribution alignment 

decoding (DAD), which finds a low-dimensional mapping of neural activities that matches 

the distribution of movements. DAD learns a decoder that minimizes the deviation 
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between the distribution of projected (low-dimensional) neural activities and kinematics 

(see Methods). We applied DAD to neural datasets collected from the primary motor cortex 

(M1) of three non-human primates (NHPs) performing either a reaching task or an isometric 

force production task. When compared with supervised decoders that have access to both 

neural and behavioral training data, DAD provided comparable performance with standard 

methods. Additionally, we found that DAD can be used to in an across-subject setting by 

using one subject’s movement data to decode the neural activity from a different subject. 

We thus show how cryptography-inspired ideas can be used to solve the movement decoding 

problem.

Results

To test our idea for alignment-based decoding, we used recordings from populations of 

neurons in the arm area of M1 of two NHPs (Subjects M and C) while they performed 

a center-out reaching task (Fig. 2a,b), as well as recordings from the hand area of M1 

from one NHP (Subject J) during an isometric wrist force production task (Fig. 2a,c). To 

produce datasets with meaningful structure, we sub-sampled the data to remove certain 

target directions (see Fig. 2d for details on this choice). This generated a non-isotropic 

movement distribution that we could align with the equally non-isotropic distribution of 

neural activities to test the performance of DAD.

Our approach relies on the fact that we can find a low-dimensional embedding of neural 

activity that can be aligned to a distribution of known motor variables. If there is indeed 

a linear mapping between neural activity and motor variables, then we expect to see task

related structure in projected neural data. However, neural data can be quite noisy and 

thus may not reveal the covariates of interest[16]. Instead, if we filter the data to select a 

subset of the data (e.g., before or after the start of a trial or go cue), we can more clearly 

resolve task structure present (Fig. 3). The challenge is finding that key window of time 

when the task structure is apparent and can be revealed through dimensionality reduction. 

To tackle this challenge, we developed a model selection method (Fig. 3) that searches 

over a set of parameters used to subsample and smooth the data to select a model that 

produces factors that match the known movement distribution (see Methods). This approach 

can be used to produce an unsupervised estimate of the best model parameters and can be 

further augmented when supervised data exists. Our model selection approach provides a 

straightforward way to learn a low-dimensional representation of the neural data that most 

closely matches the known distribution of desired motor outputs.

We applied our model selection algorithm to neural and behavioral datasets from all 

three subjects (Fig. 4). In all cases, we found examples where our model selection 

approach effectively pulls out task structure from neural datasets. This is true for our 

fully unsupervised model selection approach (smoothKL), which uses the Kullback Leibler 

(KL)-divergence of each model fit to find the best model with minimum KL-divergence, as 

well as a supervised variant (maxR2), which selects the model that produces the maximum 

decoding performance on a training set. Our results suggest that for simple behaviors like a 

center-out task, we can apply our model selection method to reveal task structure from both 
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movement (Subject M, C) as well as isometric force production (Subject J) datasets, with no 

modifications to our method.

To put the performance of DAD into context, we compared with standard supervised 

approaches, including a standard supervised linear decoder (Eqn. 2) and a Kalman Filter. For 

interpretation purposes we also plotted an effective upper bound on possible performance, 

the Oracle decoder. This decoder, which in practice is impossible to ever construct, trains 

and predicts on the same dataset and thus sets a strict upper bound on the performance of 

a linear decoder. We compared DAD to supervised approaches (Fig. 4, Fig. 5) and found 

DAD to be competitive with both supervised methods we tested. In the case of Subject M, 

we observed that the Kalman Filter was unstable and therefore produced poor decoding 

performance (as measured by the R2 and Mean-Squared Accuracy) when compared with 

a linear supervised and Oracle decoder. When the signal-to-noise is low and resolving the 

trajectory of movements is difficult, we found that DAD can still decode the reach direction 

with high reliability. Through combining model selection and distribution alignment, we 

obtain performance similar to a supervised linear decoder without requiring simultaneously 

recorded motor variables and neural activity.

Since we do not rely on simultaneously measured neural and motor data in DAD, we can 

apply this approach to decode the neural data from one subject using motor data from 

another subject (Fig. 5a,b). As Subject M’s neural data provided the highest signal-to-noise 

ratio, we applied DAD to neural data from Subject M and tested different movement 

distributions for training: DAD-M (movement data from M), DAD-MC (movement data 

from both M and C), and DAD-C (movement data from C only). Our results suggest that 

DAD is relatively insensitive to the choice of movement distribution used for training, as all 

three distributions produce similar R2 values (Fig. 5b). We further confirmed this through 

examining the decoding performance of DAD across individual reaches and across different 

targets (Fig. 5c). When provided with enough training data, we found that DAD performs 

similarly to supervised methods. However, when only a small amount of training data is 

provided (Fig. 5b), DAD tends to outperform supervised approaches as it only relies on 

movement data for alignment and thus has weaker dependence on the size of the training 

set. We note that in our comparisons, the supervised method is allowed to use training 

kinematics and neural data to build a decoder and then is tested on held out neural data. 

In contrast, DAD-M is given the same training kinematics and uses the neural test data to 

solve the alignment problem, thus making it an inherently offline method (see Methods). 

Our results demonstrate that it is possible to meaningfully decode movements even when no 

previous movement data has been recorded from a subject.

To further explore the stability of our method, we used DAD to decode Subject J’s neural 

activity over subsequent recording sessions (Fig. 6). In our experiments, the aim was to 

decode the change in 2D forces applied to the wrist while it is held fixed. When DAD 

is trained using data collected from the first day of recording (D1), we could successfully 

decode data from a second day of recording (D2) without changing any model parameters. 

Additionally, we found that when DAD was applied to neural datasets from either D1 or D2, 

we could use training kinematics from all datasets (D1–D4) to obtain similar results. Our 
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results suggest that DAD can be used to decode data across multiple time points without 

having to modify the model parameters.

It is not only important to know how well DAD performs, but also how expected 

experimental innovations will affect its performance[17]. To characterize DAD’s 

performance as the size of the recorded population grows, we created a synthetic data set 

by simulating the firing rates of a population of neurons with tuning curves drawn from a 

distribution of parameters designed to match the real datasets (see Methods). We compared 

the performance of DAD with that of the Oracle decoder which has access to both the neural 

activity and kinematics of the test set. Our results demonstrate that as the number of neurons 

increases, the performance (R2) improves. For this model, DAD performs as well as the 

Oracle for populations with roughly 1,000 neurons. This model appears to align nicely with 

our results on real data; for populations of 100–200 neurons, the average R2 is around 0.6–

0.8 (R2=0.62 and R2=0.78 for d = 128 and 256 neurons, respectively). Our analysis suggests 

that with recordings from even larger populations, distribution alignment will become more 

accurate, approaching the optimal linear decoder’s (Oracle) performance.

Discussion

We have introduced DAD, a cryptography-inspired approach for brain decoding. In the 

context of motor decoding, we showed how DAD can be used to learn a decoder by 

minimizing the KL-divergence between the distribution of typical motor outputs and a 

projected low-dimensional distribution of neural activity. Thus, instead of requiring access 

to simultaneous recordings of neural activity and motor outputs, our approach relies on 

the structure of movement and the fact that this structure is preserved in low-dimensional 

projections of motor cortical activity to solve the decoding problem. We presented evidence 

that the algorithm works well on simulated data, as well as multiple datasets collected from 

the motor cortex of three NHPs.

One assumption that is integral to our current approach is that the variables of interest, e.g. 

the low-dimensional velocities or forces, appear in the set of the first few components of a 

dimensionality reduction algorithm. This seems a reasonable assumption, as cosine tuning 

is one of the most frequently described properties of motor cortex activity [18]. However, 

this assumption is not true for many datasets[16], to which our current instantiation of 

DAD can not be applied. If motor cortex primarily deals with movement vectors, why 

do they not consistently show up in the first principal components? Variables such as 

response timing, attention, motor preparation, and other factors are likely to play a role in 

whether dimensionality reduction methods find directions that resemble the motor outputs of 

interest. If task-relevant structure is in the top 20 principal components, instead of the top 

three, then a natural extension of DAD could be to solve the alignment problem in these 

higher dimensional spaces. If extended to higher dimensions, DAD could potentially find 

task-relevant structure across a wider range of datasets.

Our approach assumes that projected neural activity depends linearly on the distribution of 

movements. However, this assumption often does not hold in practice[19]. This is likely 

why we observe that the fine-scale structure of the predicted kinematics within each target 
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direction can be warped (Fig. 3a). An exciting line of future research would be to extend 

our approach to incorporate further non-linearities. One possibility would be to explore 

the use of mixture models[20] to model the low-dimensional structure of the data, instead 

of using a single subspace model with PCA or factor analysis. Kernel methods[21] could 

also be used to lift the neural data to a higher-dimensional space where the neural activity 

depends linearly on the kinematics. With approaches that address the non-linearity of the 

data, the underlying structure of movement contained in the neural data can be preserved, 

thus leading to an improvement in the performance of the decoder.

To guarantee a unique solution for the problem of distribution alignment, the distribution of 

movements must be anisotropic (no rotational or reflection symmetry). However, in many 

laboratory tasks such as center-out-reaching tasks, this assumption is often violated. Here, 

we circumvent this problem by sub-sampling the dataset. This introduces asymmetries into 

the motor task and, in turn, guarantees the uniqueness of the resulting solution. While 

requiring nonisotropic movements is clearly a drawback of our approach, natural movement 

tasks[22, 23] (Fig. 1a) are more likely to produce non-isotropic distributions. Moreover, 

in the case of isotropic distributions where multiple alignments exist, we can use prior 

knowledge of the decoder or feedback from the user, to rule out incorrect alignments. 

Since natural movements typically exhibit asymmetries, we expect that our approach can be 

applied to decode motor variables in a wide range of tasks.

Our results demonstrate that DAD can achieve comparable performance to that of a linear 

decoder. While a linear decoding scheme is by no means state-of-the-art, demonstrating 

that DAD can do as well as a decoder with full access to simultaneously recorded 

neural and behavioral data, still represents an important advance. State-of-the-art decoders 

use additional information about neural activity and the task structure to improve the 

decoder’s performance. For instance, temporal dynamics [24], modeling non-linearity in 

neural firing rates [19, 25], target information[6], smooth temporal structure[24], and the 

drift of neural properties[26] can all be used to improve the performance of the supervised 

decoding scheme we presented. While we did not include such additions in our current 

implementation of supervised decoders (or for DAD), we expect that by doing so, their 

performance would also improve.

Another important line of research in movement decoding has focused on closed-loop 

systems, where the user and machine can co-adapt to use neural activity to drive a cursor or 

prosthetic limb[27, 28, 29]. In contrast to the offline setting we consider here, closed-loop 

systems require the user to adapt or modify their neural representation to drive a fixed 

decoder. As many existing closed-loop decoding algorithms[27, 28, 29] rely on initializing 

the decoder with a Kalman Filter, DAD could provide an alternative approach for initializing 

and re-aligning the decoder. Extending DAD to a closed-loop setting could help reduce the 

amount of labeled training data needed to initialize and calibrate closed-loop decoders.

We solved the decoding problem by exploiting the known structure of movements to learn 

a decoder, thus demonstrating one way in which cryptography might be applied to brain 

decoding. The cryptography approach we used here is rudimentary, but we imagine that 

more sophisticated code-breaking strategies could be used in this and other brain decoding 
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scenarios beyond that of movement. For example, one could imagine decoding what 

someone is listening to using cryptography approaches. Thus, ideas from cryptography and 

distribution alignment promise to enable a broad range of approaches into brain decoding 

and new insights into how to crack the neural code.

Methods

0.1 Data collection

Neural and behavioral data were collected from three rhesus macaque monkeys. At the 

time of data collection, Subject M, Subject C, and Subject J, were 5, 6, and 7 years old, 

respectively. All surgical and experimental procedures were approved by the Northwestern 

University Animal Care and Use Committee, and were consistent with the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals.

In the first experiment (Subject M and C), the subjects performed a standard delayed 

center-out reaching movement paradigm. The subjects were seated in a primate chair and 

grasped a handle of a custom 2D planar manipulandum that controlled a computer cursor 

on a screen. The subject began each trial by moving to a 2×2 cm target in the center of the 

workspace. The subject was then required to hold for 500 – 1500 ms before another 2 cm 

target was randomly displayed in one of eight outer positions regularly spaced at a radial 

distance of 8 cm. For Subject M, this is followed by another variable delay period of 500 

– 1500 ms to plan the movement before an auditory ‘go’ cue. The subjects were required 

to reach to the target within 1000 – 1300 ms and hold within it for 500 ms to receive an 

auditory success tone and a liquid reward.

In the second experiment (Subject J), the subject performed an isometric version of the 

center-out task. The hand was placed in a box attached to a 6-axis force-torque sensor (JR3, 

Inc, Woodland, CA), and the subject applied torque about the wrist to move a cursor on a 

screen. The x and y positions of the cursor were linearly related to the applied horizontal and 

vertical forces. The subject began each trial by keeping the hand relaxed so that the cursor 

rested within a start target on the screen. After staying in that target for 200 – 1000 ms, a 

second target appeared and the subject was required to apply force to reach it within a period 

of 2000 ms. There was no delay period in this task, therefore the subject could go to the 

target as soon as it appeared. The subject was then required to hold within this target for 500 

ms to receive an auditory success tone and liquid reward.

After the subjects received extensive training in each task, we surgically implanted a 100

electrode array with 1.5 mm shaft length (Blackrock Microsystems, Salt Lake City) in 

the primary motor cortex (M1) of each subject. We placed the subjects under isoflurane 

anesthesia and opened a small craniotomy above the motor cortex. We localized primary 

motor cortex using both visual landmarks and intracortical microstimulation to identify the 

arm region in Subjects M and C, and the hand region in Subject J. The arrays were then 

inserted pneumatically. During the behavioral experiments, we acquired neural data using a 

Blackrock Microsystems Cerebus system. The cortical signals were amplified and band-pass 

filtered (250 to 5000 Hz). To record the spiking activity of single neural units, we identified 

threshold crossings of 5.5 to 6 times the root-mean square (RMS) noise on each of the 96 
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recording channels and recorded spike times and brief waveform snippets surrounding the 

threshold crossings. For the first experiment, we recorded kinematic data from the robot 

handle at 1000 Hz using encoders in the manipulandum. For the second experiment, we 

recorded force data from the force-torque sensor at 2000 Hz. After each session, we sorted 

the neural waveform data using Offline Sorter (Plexon, Inc, Dallas, TX) to identify single 

neurons and discarded all waveforms believed to be multi-unit activity.

0.2 Data preparation

After sorting the spike data, we estimated the firing rate of each neuron by binning the 

spike trains into non-overlapping windows of equal size (50 ms bin width for Subject C, 

J; optimized bin width of 180–240 ms for Subject M). In all datasets, we select neural 

responses in small window around the ‘go’ cue: this window is specified by the delay after 

the go cue (Nd) and then number of samples (Ns) to acquire until the end of the trial). After 

selecting a subset of data samples (Ngo + Nd : Ngo + Nd + Ns), we apply a box car filter 

of length Bsmooth to temporally smooth the firing rates in time. For this smoothing step, we 

don’t assume that we know the trial boundaries and thus some spillover between trials can 

occur, though we haven’t found an issue with this in practice. In many cases, we found that 

these preprocessing parameters (Nd, Ns, Bsmooth) can be automatically selected by finding 

the set of parameters that produce decoded outputs with minimum divergence to the training 

distribution.

For all of our experiments, we sub-sampled the neural and behavioral datasets by removing 

directions of movement or force-production to produce datasets that were non-isotropic 

(asymmetric and non-reflective). In Figure 4, we use the same movement distribution 

for all three subjects (remove targets at 90, 45, 0, 180 degrees). However, we find that 

DAD is relatively insensitive to the specific pattern of reaches used, as long as the pattern 

have sufficient isometry to avoid incorrect matches due to rotational symmetries. In each 

experiment, we selected the entire movement and neural data to use only the trials in 

the selected directions. This approach is necessary to produce non-isotropic movement 

distributions that can be aligned with DAD.

When applying DAD to motor datasets, we normalize the data by removing the mean and 

whitening the covariance of the data. To later retrieve the scaling of the signal to compute 

the Mean-Squared Accuracy (MSA) in Fig. 4, we rescaled the aligned neural data to have 

ℓ2-norm equal to the training kinematics dataset. Thus we deal with the scale ambiguity by 

solving the alignment problem on normalized data and then rescaling back according to the 

training data.

0.3 Problem setup

Before diving into the details of our decoding approach, we first need to define the variables 

for our decoding problem. Let yi ∈ ℝd denote the firing rate of d neurons at the ith point 

in time (sample). The time-varying neural activity of a population of d neurons can be 

represented as a matrix Y of size d × T by stacking the neural activity vectors {y1, y2, …, 

yT} into the columns of Y. The aim of movement decoding is to make use of the measured 

firing rates of a population to estimate the intended velocity vector ṽi ∈ ℝ2 at the ith point 
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in time, where each entry of ṽi corresponds to the Cartesian velocities of movement in 

the xy-plane. Ultimately, our objective will be to map the neural activities to the space of 

decoded movements.

A large body of work has demonstrated that the relationship between the instantaneous 

velocity vector ṽi and the neural activity signal yi in the motor cortex area M1 is 

approximately linear[30, 31, 32]. More recently, studies have shown that neurons are also 

tuned to to the squared sum (norm) of the 2D velocities[33]. Thus the kinematics and their 

norm, at the ith point in time, can be decoded as vi = Hyi, where H is a 3 × d matrix and vi ∈ 
ℝ3 includes the norm of the kinematics as its third dimension.

In general, the right matrix for decoding (H) is unknown and must be estimated from neural 

and kinematics recordings. Here we assume that this linear model is time-invariant, and thus 

we can also write this model in matrix form as

V = HY, (1)

where V is a 3 × T matrix that contains the kinematics associated with the observed neural 

activities. When we have access to simultaneous recordings of kinematics V and the neural 

activity Y, this information can be used to estimate the matrix H (Eqn. 1). One way of 

solving this problem is to find a regularized least-squares estimate which minimizes the 

following loss function

min
H

1
T ‖V − HY‖F

2 + λ‖H‖F
2 , (2)

where ‖A‖F
2 ≔ ∑ijAij

2  is the Fröbenius norm and λ ≥ 0 is a user specified regularization 

parameter. This loss function defines the interplay between an error term and a term favoring 

simpler solutions.

0.4 Overview of distribution alignment decoding (DAD) approach

In contrast to the standard paradigm described above, we now consider the setting where 

we acquire N samples of the kinematics V ∈ ℝ3×N separately from neural activity. Take 

for instance the case where we have recorded the kinematics from multiple users doing the 

same task and then, at a later time, we collect neural activity Y ∈ ℝd×T from a new user 

performing the same task. Since the kinematics V and neural activity Y are recorded at 

different times and are potentially of unequal dimension, determining the linear model H 
cannot be done by solving Eqn. 1. Even if the datasets contain the same number of samples 

(i.e. N = T), finding correspondence between the columns of V and the columns of Y is a NP 

hard problem[34].

Rather than tackling the problem of finding correspondence, we can leverage the fact that 

the underlying distributions of samples in both spaces have similar structures to find a linear 

mapping that aligns the two. A natural framing of this problem is to find the best linear 

embedding of the neural data which minimizes the KL-divergence between the predicted 

distribution of kinematics (q) and the prior distribution of recorded kinematics (p). More 
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formally, assume that the set of samples {v1, v2, …, vN} are drawn from a distribution p and 

that the predicted kinematics vectors v̂i = Hyi are drawn from a distribution q. To estimate 

H, our goal is to find a solution to the following optimization problem:

H∗ = arg min
H ∈ ℝd × 3

 KL(p‖q) ≔ arg min 
H ∈ ℝd × 3

Ep log  p(x)
q(x) , (3)

where the random variable x ∈ ℝ3 is drawn from the distribution p. By minimizing the 

KL-divergence, our approach essentially finds an affine transformation which maximizes the 

similarity between the distribution of transformed neural activity and prior distribution of 

kinematics.

In general, solving the problem in Eqn. 3 is intractable, due to the fact that the KL

divergence can be a non-convex and non-differentiable function of H. However, we can 

exploit the fact that, without substantial loss of information, Y can be projected into a 

lower-dimensional space where solving this problem is possible. We denote the resulting 

projected neural activities and the corresponding (low-d) decoder as Yℓ and Hℓ, respectively. 

When the mapping between Y and V is linear, the problem of distribution alignment can be 

reduced to finding the best linear transformation Hℓ such that the KL-divergence between the 

distribution of observed kinematics p and predicted kinematics q is minimized. In a lower

dimensional space, the alignment between the distributions of neural data and kinematics is 

feasible. To solve our low-dimensional alignment problem, we use the KL-divergence as a 

metric for alignment.

0.5 Step 1. Dimensionality reduction

The first step of our approach is to reduce the dimensionality of the data in order to reduce 

the complexity of our alignment procedure. To do this, we used a Matlab toolbox[35] 

to apply numerous off-the-shelf methods for dimensionality reduction, including principal 

components analysis (PCA), factor analysis (FA), Isomap[36], stochastic neighborhood 

embedding (SNE) [37], and Probabilistic PCA [38] to the data. We also included 

exponential PCA[39] in our list of methods to try initially. To quickly assess the low

dimensional structure of the data, we designed a module to preprocess and apply a variety 

of dimensionality reduction techniques to the data. Using this Matlab module, a user can 

quickly visually inspect the results of different methods to confirm that the task structure 

is indeed visible in the data. Note that this step can be done in a completely unsupervised 

way. We also describe a model selection procedure which can be used to perform an 

automatic search for low-dimensional representations that have task-related structure. Thus 

by searching for the embedding that produces the smallest KL-divergence with our training 

distribution, our methods can be used to find a low-dimensional representation of the data 

that contains task-related structure.

0.6 Step 2. Distribution alignment

After reducing the dimensionality of the neural data, the next step of DAD is to align 

the projected neural data with the prior distribution over the movement. To do this, we 

implemented a custom global search method which finds a rotation, scaling, and translation 
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of the projected neural data which minimizes their KL-divergence. Our method consists of 

three main ingredients: (i) an efficient method for estimating the KL-divergence between 

two datasets, (ii) a 3D search routine that uses random sampling and refinement to explore 

the search space, and (iii) a fine-scale 2D alignment procedure that uses a more accurate 

measurement of the KL-divergence to measure the goodness of fit.

To measure the KL-divergence between the distributions p (target) and q (source) in Eqn. 

3, we adopt a non-parametric approach that allows us to obtain an accurate estimate 

of these distributions without making any restrictive assumption on the form of either 

distribution. In particular, we rely on the popular k-nearest neighbors (KNN) density 

estimation algorithm[40, 41], which estimates a distribution using only distances between 

the samples and their kth nearest neighbor. To make this concrete, we define the distance 

between a vector x and a matrix A as ρk(x, A) = ‖x − ak‖2, where ak is the kth nearest 

neighbor to x contained in the columns of A. The value of the empirical distribution p at vi is 

then estimated using the following consistent estimator[40]:

p(vi)∝
k

Nρk
3(vi, V)

.

We partition the 3D space and then compute this quantity for every grid point. After 

computing the 3D density, we normalize to obtain a proper probability distribution over the 

space of grid points. Note that the intuition behind this approach is that in regions where we 

have higher density of samples, the k-nearest distance ρk(vi, V) will be small and thus, the 

probability of generating a sample at this location is large.

To estimate the distribution of the predicted kinematics V̂ = HℓYℓ from the projected neural 

activities Yℓ, we again use the same nearest neighbor approach. Assuming that we have 

an estimate for Hℓ and Yℓ, the empirical distribution of the predicted dynamics is given 

by q(vi) ∝ k
Tρk

3(vi, V)
. As with p, we compute this quantity for all D grid points and then 

normalize to produce a probability distribution of these points.

To obtain the results described in this paper, we set the number of nearest neighbors (k) to 

5 in our 3D searches and to 3 for 2D. We found that once the number of time points is 

sufficiently large (T > 300), these values of k produce stable alignments.

Once we compute the empirical distributions p and q over a fixed 3D grid {s1, …, sD}, we 

can use the following formula to estimate the KL-divergence:

KL(p‖q) ≊ 1
D ∑

i = 1

D
p(si) log 

p(si)
q(si)

.

After estimating the probability distributions p and q, the next step is to find the best Hℓ that 

minimizes their divergence. Even for this relatively low-dimensional problem, we found that 

global search methods and other non-convex optimization methods failed to find a stable 
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solution. We thus implemented a global search method that estimates the 3D rotation and 

translation that minimizes the KL-divergence between the aligned embedding and training 

kinematics. This method iteratively refines its estimate of the rotation, translation, and 

scaling of the data to minimize the KL-divergence between the transformed neural data and 

the prior distribution over movements. After finding the best 3D rotation and translation, we 

then project the data into 2D and solve a fine-scale alignment of the data in two dimensions. 

Our results suggest that our search method can efficiently align two low-dimensional 

distributions, even in light of numerous local minima in the solution landscape.

0.7 Model selection

For many of the datasets we studied, selecting the right set of parameters to prepare the 

data can be critical for finding a low-dimensional factorization that contains task-related 

structure. Thus we developed a model selection procedure for doing this automatically. 

Our approach performs an exhaustive search over the parameters used to process the data, 

solves the alignment problem for all of the possible options, and then selects the model 

that provides either small KL-divergence (in unsupervised case) or small decoding/target 

error (in semi-supervised case). The parameters that we use in our optimization procedure 

include: how long we wait after the ’go’ cue before starting to sample data (Nd), the 

number of samples to select (Ns), the width used to temporally smooth the neural firing 

rates (Bsmooth), and in some cases, the bin size. Our model selection approach provides an 

automated way to find task-related structure in firing rates from neural populations.

To optimize the parameters in our model, our goal is to select the value of each parameter 

that produces the best aligned models on average, as measured by their final KL-divergence. 

We start by running DAD on all possible sets of input parameters that the user wishes to 

search over (using a grid search). To compute the model with the smallest KL-divergence, 

our aim is to minimize the following expression:

min
0 < i ≤ ℓ

d(q, pi),

where θi = [θi1, θi2, θi3, …, θik] denotes a vector containing of the parameters that we wish 

to optimize, d(q, pi) denotes the KL-divergence between the prior q and the distribution pi 

of the projected neural dataset obtained with the ith model (θi), and ℓ is the number of model 

parameters.

The KL-divergence provides a good measure of whether a model will be accurate. However, 

we find that selecting the model with absolute smallest divergence is not always the best 

strategy, as this solution often does not generalize. We found that we can get a more 

stable solution by smoothing the KL-divergence as a function of model parameters, which 

rules out the outliers (smoothKL). The divergences can be smoothed by resampling the 

data (bootstrapping), running the method and then taking the average of their resulting 

divergences. In practice, we simply smooth the KL-divergences by applying spatial 

smoothing to the samples, which has the effect of reducing the effect of spurious minima in 

our search procedure.
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When some supervised data is provided (e.g., the hand position or the target information), 

we can reliably pick a model that rules out incorrect alignments in high noise regimes. The 

maximum R2 (maxR2) model returns the solution that produces the best R2 on a training set. 

Likewise, we can also learn a model that produces the best target prediction performance on 

a training set (maxTarg). We provide an implementation of these and other model selection 

criterion online (github.com/KordingLab/DAD).

0.8 Dimensionality of neural representations of movement

When examining the neural representations of movement through dimensionality reduction, 

in two of the three subjects (M,J), we found neural representations of movement (M) and 

force production (J), give rise to projections that can be well approximated by a cone in 

3D. This structure makes sense in light of studies that suggest neurons in M1 are tuned 

to the 2D task (kinematics or force) as well as the speed[33]. Indeed, when we lift the 

2D motor variables measured from Subject M (Fig. 2b) and Subject J (Fig. 2c) to 3D by 

adding speed as the third covariate, we obtain a conical shaped distribution that matches the 

observed 3D projections of neural data that we observed. In the case of Subject C, we found 

task-related structure present in two-dimensional projections but did not find consistent 

three-dimensional structure that could be used for alignment. Thus we projected the neural 

data directly into 2D and performed alignment in this space to decode Subject C’s neural 

activity. In all datasets, we align both the 2D and 3D embeddings of neural data and select 

the result that has minimum KL-divergence.

0.9 Synthetic model

When simulating neural activity, the firing rate of the nth neuron at the tth time point is given 

by

fn, t = exp[αn + βt cos(θn − θt)],

where θn is the preferred direction of the nth neuron, θt = tan−1(υx,t/υy,t) is the direction of 

the movement at the tth time point, υx,t is the velocity in the x-direction at time t, υy,t is the 

velocity in the y-direction at time t, and αn and βn are scalars which shift and modulate the 

firing rate, respectively. To generate spikes for a population of size N, we generate Poisson 

random variables according to the firing rates {f1, …, fN}. In our simulations (Fig. 4), we set 

the baseline αn = 2, for all neurons (∀n) and set the modulation term βt = υ υx, t2 + υy, t2  where 

υ = 1
T ∑i = 1

T υx, i2 + υy, i2 .

0.10 Performance evaluations

In our performance comparisons against supervised approaches (Fig. 4, Fig. 5), we split 

the full neural (Y) and motor (V) datasets into a test and train set to create four non

overlapping datasets, Yte, Ytr, Vte, and Vtr. In the case of the supervised methods, we use 

a standard protocol: the decoders are given access to ordered training data (Vtr, Ytr) to 

learn a mapping H based upon these data and then use this to predict an estimate Vt̂e from 

neural data Yte. To train the regularized linear decoder (Sup), we used regularization to 
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avoid overfitting (see Eqn. 2) and learned the regularization parameter with 10-fold cross 

validation. When comparing the methods, we computed the: R2, the Mean-squared Accuracy 

which is computed as 2|x − y|〈x, y〉/(‖x‖ + ‖y‖), and the Target Accuracy which reports the 

percentage of reach directions correctly decoded. Our implementations of the supervised 

linear decoder and Kalman Filter are provided in our online github repository (github.com/

KordingLab/DAD).

To predict V̂
te from neural data Yte, we give DAD access to Vtr and Yte and allow the 

method to align the test data onto the training kinematics. Note that in many cases, Vtr 

and Yte can either be collected from different subjects or on different days. For decoding, 

we only need a kinematics dataset that will be sufficient for alignment. When performing 

model selection with a supervised metric (maxR2, maxTarg), we use the same set of training 

samples as the supervised methods to obtain our model estimate.

0.11 Data availability

The authors declare that all data supporting the findings of this study are available within the 

paper, as well as at http://github.com/KordingLab/DAD.

0.12 Code availability

The authors declare that all of the code required to run the method and the scripts required to 

create the figures are available at http://github.com/KordingLab/DAD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Decoding structured movements with distribution alignment
(a) Many tasks, such as reaching, eating, and shaking, produce highly structured, yet varied, 

movement distributions. (b) The firing rates of neurons in motor cortex (M1) are mapped 

into a low-dimensional (2–3 dimensions) space using dimensionality reduction. DAD then 

finds an affine mapping that aligns the projected neural activity with the prior distribution 

of kinematics. After aligning the neural data with the prior movement distribution, we 

produce a decoded movement that is similar to the true movement distribution (aligned, 

green). When neural activity is decoded incorrectly, this produces a divergent distribution 

(misaligned, red); the distance between the distribution of predicted movements and the 

distribution of prior movements can be quantified through the Kullback-Liebler (KL)

divergence. The proposed method, distribution alignment decoding (DAD), aims to find 

a decoded movement distribution that minimizes the KL-divergence between the decoder 

output and the prior distribution over the movement.
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Figure 2. KL-divergence minimization for aligning low-dimensional distributions
(a) The setup of the delayed center-out motor task. The task consists of 5 phases: a target 

appears at the center, the subject moves the cursor to the center, one of eight targets around 

the center will turn on, the subject must wait for a delay period to plan their movement, 

and finally they move a cursor towards the illuminated target. (b) A schematic of a monkey 

performing a reaching task by moving a 2D manipulandum towards the target. To the right, 

we show the kinematics (bottom) and 3D movement data when augmented with speed as a 

covariate (top). The kinematics data is shown with the target directions displayed as different 

colors. The resulting lifted 3D data lies on a conical shape in three dimensions. (c) A 

schematic of the force production task. Again, the datasets are conical in shape in 3D but 

the force distributions exhibit significant curvature compared to the reaching data. (d) Here 
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we demonstrate the idea behind distribution alignment on artificially rotated kinematics data 

from Subject M. The KL-divergence is displayed as a function of the rotation angle used 

for alignment in 2D. The correct solution (ground truth), min-KL predicted solution, and 

four non-optimal rotations/reflections are displayed. Note that since the reflections of this 

task are roughly equivalent, the first local minimum (labeled as 1) of the KL-divergence is a 

ipped-version of the correct solution. Kinematics data from Subject M, C, and J are denoted 

by filled triangles, circles, and squares, respectively.
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Figure 3. Finding task-related structure in low-dimensional embeddings of neural data
We explore the impact of data processing parameters on our ability to find task-relevant 

structure in low-dimensional embeddings of the neural firing rates. High-lighted at the top 

left in orange, we show an exemplar solution of DAD. Then along each axis, we show the 

result of DAD as we vary the parameter of interest while holding the other parameters fixed. 

For all three parameters, we display the distribution of KL-divergences obtained using DAD.
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Figure 4. Distribution alignment decoding across different motor tasks
Along the top two rows, we show examples of reaching datasets from Subject C (top) and 

Subject M (middle). In the bottom row, we show the an isometric force production dataset 

from Subject J. In each row, from left to right (colored according to the target), we show 

the test data, the results from the Oracle, a Supervised decoder, a Kalman Filter, and for 

DAD: a supervised maximum R2 model and unsupervised minimum-KL model. Above 

each solution, we display the R2, the Mean-squared Accuracy, and the Target Accuracy 

(percentage of correct targets estimated). Kinematics data from Subject M, C, and J are 

denoted by filled triangles, circles, and squares, respectively. Projected neural data from 

Subject M, C, and J are denoted by open triangles, circles, and squares, respectively.
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Figure 5. Decoding neural data using kinematics from another subject
In (a–b), we show the results from three different decoding settings where we vary the 

training kinematics: DAD-M (train and test on M), DAD-MC (train on M,C and test on M), 

and DAD-C (train on C and test on M). Performance comparisons for supervised approaches 

(in shaded green regions) and DAD (in shaded purple regions) are shown for different 

amounts of training and test data. Each boxplot shows the R2 values obtained over 20 trials; 

the median is displayed as a red line in each box, the edges of the box represent the 25% 

and 75% percentile, the whiskers indicate the range of the data not considered an outlier, 

and the outliers are displayed in red (+). In (a) we show the R2 values obtained when we 

use 50% of the total data for training and 50% for test for Subject M and C, respectively. In 

(b), we display the R2 values obtained when we use 20% of the total data for training and 

80% for test. Both (a,b) compare the performance of DAD, with a supervised linear decoder 

(Sup), the average between the predictions of Sup and DAD-M (Sup+DAD), and the Oracle. 

In (c), we show the R2 values obtained for DAD-C (dashed, R2=0.612), when overlaid on 

the true kinematics of individual reaches (solid). The horizontal and vertical velocities are 
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displayed in blue and red, respectively. Eight randomly selected reaches are organized into 

colored boxes according to their corresponding target.
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Figure 6. Aligning motor outputs across multiple days of recordings
In this example, we apply DAD to datasets collected from Subject J over multiple recording 

sessions. Each subplot displays the decoded estimate of the change in applied forces 

obtained by DAD (colors indicate different targets). In each row, we show the effect of 

varying the testing data for a fixed training set (from left to right, D1, …, D4). In each 

column, we show the effect of varying the training data for a fixed testing set (from top to 

bottom, D1, …, D4). Kinematics and projected neural data from Subject J are marked with 

filled and open squares, respectively.

Dyer et al. Page 24

Nat Biomed Eng. Author manuscript; available in PMC 2021 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. How distribution alignment scales with the number of recorded neurons
To understand the limits of DAD, we visualize the performance of DAD on synthetic data 

as we increase the number of neurons in our model. As we increase the size of the neural 

population, we plot the trimmed mean of the R2 values (the top and bottom 10% of trials are 

removed) obtained for DAD and the Oracle, averaged over 100 trials. We show examples of 

alignments obtained as we increase the number of neurons in our synthetic model (above), 

as well as examples of training and test kinematics (at the bottom).
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