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CD137, a member of the TNFR family, is a costimulatory receptor, and CD137L, a
member of the TNF family, is its ligand. Studies using CD137- and CD137L-deficient mice
and antibodies against CD137 and CD137L have revealed the diverse and paradoxical
effects of these two proteins in various cancers, autoimmunity, infections, and
inflammation. Both their cellular diversity and their spatiotemporal expression patterns
indicate that they mediate complex immune responses. This intricacy is further enhanced
by the bidirectional signal transduction events that occur when these two proteins interact
in various types of immune cells. Here, we review the biology of murine CD137/CD137L,
particularly, the complexity of their proximal signaling pathways, and speculate on their
roles in immune responses.

Keywords: CD137, CD137 ligand, signalosome, bi-directional signal transduction pathways, CD137/CD137L-
mediated immune modulation
INTRODUCTION

Themammalian immune system is a highly evolved complex of cells and proteins that defends against
intruders (1). It comprises adaptive and innate immune responses carried out by various specific cells
(1, 2). Communication between immune cells is critical for initiating, modulating, and maintaining
immunity against infections and controlling dysregulated immune responses (3–5). Cytokines
produced by immune cells and cell-cell contact are the main means of communication (5, 6). Cell-
cell contact via adhesionbetween extracellular proteins and receptor/ligand interactions plays key roles
in information flow (3–5). Amajor example of cell-cell contact in the immune system that we focus on
here is the interaction of T lymphocytes with antigen-presenting cells (APCs) (7–9). APCs deliver
antigenic information to T lymphocytes. In addition to major histocompatibility complex (MHC)/
T-cell receptor (TCR) interaction, costimulatory receptors must associate with their ligands for APCs
to achieve antigen-dependent activation of T cells. Upon activation of pattern recognition receptors
such as Toll-like receptors (TLRs) by pathogen-associated molecular patterns such as
lipopolysaccharide (LPS), APCs mature into functional immune cells that present antigens to T
cells. This maturation process involves the expression of molecules such as MHCs, adhesion proteins,
ligands for costimulatory receptors, and chemokines (7, 10).

Twenty-nine members of the tumor necrosis factor receptor (TNFR) superfamily (TNFRSF)
and 19 members of the TNF ligand superfamily (TNFSF) have been identified. They include
org December 2020 | Volume 11 | Article 5537151
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OX40/OX40 ligand (L), CD27/CD70, glucocorticoid-induced
TNFR-related protein (GITR)/GITRL, and CD137/CD137L
pairs, which are all costimulatory receptors and their ligands
expressed on T lymphocytes and APCs, respectively (11–13).
Ligation of TNFRSF members by the corresponding TNFSF
members induces signaling via dedicated signal transduction
pathways (11, 14). At the same time, TNFSF ligation activates
ligand-dependent signal transduction pathways, so-called
“reverse signals,” that elicit reverse signal-induced cellular
responses (15–17). CD137 (4-1BB, TNFRSF9), a 30-kDa
glycoprotein, is an inducible type I TNFRSF transmembrane
protein expressed on murine T lymphocytes following antigen
recognition by the TCR (12, 18). CD137 ligation evokes survival
signals in CD8+ T lymphocytes (11, 14). CD137 is expressed in
various cells including natural killer (NK) cells, NKT cells,
regulatory T cells (Tregs), dendritic cells (DCs), follicular DCs,
mast cells, differentiating myeloid-lineage cells, eosinophils,
neutrophils, and monocytes (19–23). CD137L, a 34-kDa type II
transmembrane glycoprotein, was originally identified as a
binding partner to soluble forms of CD137 (sCD137) (24). It is
expressed on monocytes, macrophages, B cells, DCs, T cells,
differentiating hematopoietic cells, bone marrow cells, and
tumor cells (25).

Crosslinking of CD137 with CD137L induces various
immune responses involving both adaptive and innate
immunity (11, 25–28). In addition, CD137L reverse signals
increase the antigen-presenting capacity and inflammation of
APCs (29–31). Because binding between CD137 and CD137L on
various cells can trigger bidirectional signals, it is difficult to
dissect the individual effects of CD137 and CD137L using
current experimental tools such as knockout mice and
antibodies (Abs) against the two molecules in animal models.
Table 1 summarizes CD137/CD137L-mediated immune
responses in mouse models. Although it is accepted that
CD137 provides T cells with strong survival signals, it also
inhibits CD4+ T-cell responses in autoimmune disease models
and B-cell responses in vivo (44, 48, 64). CD137 knockout results
in hyperimmune responses in mice and in hyperproliferation of
T cells and myeloid progenitors in vitro (27, 40, 41, 65). In
contrast, CD137L deficiency lowers CD8+ T-cell responses in
virus infection models (66, 67) and reduces cytotoxic T
lymphocyte activity against vesicular stomatitis virus (27).
Reverse signaling via CD137L, elicited by treating myeloid cells
with recombinant CD137-Fc protein (rCD137-Fc), enhanced
myelopoiesis during inflammation (25, 65). In contrast, CD137
deficiency increased the number of myeloid cells in vitro, and this
effect was abrogated by treatment with rCD137-Fc, implying that
CD137L provides negative signals to myeloid cells (27, 65). Even
in cell culture, treatment with CD137Ab or rCD137-Fc can
influence CD137-mediated cellular responses because certain
types of cells express both CD137 and CD137L. Therefore,
CD137/CD137L-mediated immune responses appear
paradoxical and puzzling. Although plausible explanations
have been suggested for the complex effects of mouse CD137/
CD137L (mCD137/CD137L), none of the explanations are
definitive yet. In this review, we discuss the major factors
Frontiers in Immunology | www.frontiersin.org 2
contributing to the complexity of mCD137/CD137L signals
and recent findings that hint at links between the mCD137/
CD137L axis and other key immune processes.
MAJOR CONTRIBUTORS TO THE
COMPLEXITY OF CD137/CD137L-
ELICITED IMMUNE RESPONSES

Members of the TNF/TNFR superfamilies, such as CD137L/
CD137, evoke dual cellular responses by initiating bidirectional
signals (11, 14–17). The interaction between CD137L and CD137
can give rise to a great variety of cellular responses because their
expression on both innate and/or adaptive immune cells is
induced or enhanced by primary cell activation, such as TCR
activation for CD137 and TLR4 activation for CD137L (18, 19,
66–68). For example, resting T cells express little, if any, CD137
(14, 19); however, TCR ligation by antigenic epitopes/MHCs on
APCs induces or upregulates CD137 expression on T cells (69,
70). Differences in the affinity and/or avidity of antigenic
epitopes for the TCR can influence the level, time of onset, and
duration of CD137 expression (Figure 1). However, the
expression of CD137L on APCs including DCs can be
enhanced via TLR4 or other receptors in response to stimuli
such as LPS (66–68) (Figure 1).

The strength and/or type of stimulus may also affect CD137L
expression on APCs. Consequently, the CD137/CD137L pair can
generate diverse cellular responses depending on the
spatiotemporal pattern of their expression and the direction of
signaling. Numerous parameters contribute to the complexity of
the immune responses elicited by the mCD137/CD137L
signalosome. However, in this review, we focus on the
bidirectional signal transduction pathways evoked by CD137
and CD137L in the context of T-cell/APC interaction.

Expression of CD137 and CD137L
mCD137 transcript expression is regulated by multiple elements
on the promoter (PI, PII, and PIII). There exist multiple
mCD137 transcripts. Types I and II are dominant in the
mouse. Type I transcript is preferentially induced in stimulated
T cells by TCR activation via NF-kB binding on PI. Although
type II mRNA is also upregulated in activated T cells via AP-1
binding on PI, it is constitutively expressed in various cells via
AP1 binding on the PI, PII, and PIII elements (71). CD28
costimulation strongly upregulates CD137 expression,
presumably via binding of both NF-kB and AP-1, as CD28
stimulation sustains TCR signaling pathways such as NF-kB,
AP-1, and NFAT (72) (Figure 1). The spliced transcript lacking
exon 8 encodes sCD137. It is expressed in activated T cells. It has
been suggested that sCD137 may antagonize CD137 signal and/
or act as an agonist for CD137L reverse signals, and that sCD137
may antagonize CD137 signaling as a decoy receptor (73, 74).
However, Tu et al. reported that sCD137 can deliver CD137L
reverse signal in CD137L-positive cells such as APCs and T cells
(75). They showed that sCD137 protein levels were elevated in
adipose tissues of obese subjects, and sCD137 apparently
December 2020 | Volume 11 | Article 553715

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Choi and Lee CD137/CD137L Bi-Directional Signaling Pathways
TABLE 1 | Immune responses generated by CD137/CD137L in animal models.

Mice Stimulation Disease model Outcome Ref.

Reduced T cell responses in CD137−/− or CD137L−/− mice
C57BL/6 CD137 KO – Reduced humoral responses in CD137−/− mice

Reduced CTL activity of CD137−/− CD8+ T cells against VSV
(27)

C57BL/6 CD137L KO EAE Ameliorated EAE symptoms in CD137L−/− mice (32)
C57BL/6 CD137L KO Influenza infection Decreased CD8+ T cell accumulation in the lungs and viral

clearance and increased mortality in CD137L−/− mice
(33)

C57BL/6 CD137L KO Chronic MHV-68 model Impaired cytolytic function and secondary expansion of MHV-68-
specific memory CD8+ T cells in CD137L−/− mice

(34)

(B6 × 129) F2 CD137L KO LCMV peptide NP396-404 Reduced CD8+ T cell responses in CD137L−/− mice (35)
C57BL/6 CD137L KO LCMV infection Reduced CD8+ T cell expansion in CD137L−/− mice (36)
C57BL/6 CD137L KO Influenza infection Primary CTL response of CD137L−/− mice was normal, but the

secondary CTL response was reduced.
(37)

Enhanced T cell responses in CD137−/− or CD137L−/− mice
Balb/c CD137 KO CD137−/− MRL/MpJ-Tnfrs(lpr) Enhanced onset and severity of autoimmune lacrimal gland

disease in CD137−/− mice.
(38)

Balb/c CD137 KO CD137−/− MRL/MpJ-Tnfrs(lpr) Enhanced onset and severity of systemic lupus erythematosus in
CD137−/− mice.

(39)

C57BL/6 CD137 KO CD137−/− OT-II Enhanced clonal expansion of CD137−/− OT-II CD4+ T cells (40)
C57BL/6 CD137 KO CD137−/− OT-1 Enhanced clonal expansion of CD137−/− OT-I CD8+ T cells (41)
C57BL/6 CD137 KO Mouse tumor models Enhanced anti-tumor CD8+ T cell responses in CD137−/− mice (42)
C57BL/6 CD137 KO – Enhanced proliferation of CD137−/− T cells in vitro

Increased myeloid progenitors in CD137−/− mice
(27)

C57BL/6 CD137 KO MCMV infection CD137−/− mice have elevated early but reduced persistent
MCMV‐specific CD8 responses

(43)

Suppression of T cell responses by agonistic anti-4-1BB mAb
DBA 3H3 clone Collagen-induced arthritis Suppression of auto-reactive CD4+ T cell responses by CD137

agonist
(44)

Balb/c 2A clone Fas-deficient MRL/lpr mice Suppression of lupus-like autoimmune processes by CD137
agonist

(45)

Balb/c Agonistic anti-CD137 Experimental allergic
conjunctivitis

Suppression of experimental allergic conjunctivitis by CD137
agonist

(46)

C57BL/6 3H3 clone Experimental autoimmune
uveoretinitis

Suppression of experimental autoimmune uveoretinitis by CD137
agonist

(47)

C57BL/6 2A clone Experimental autoimmune
encephalomyelitis

Suppression of experimental autoimmune encephalomyelitis by
CD137 agonist

(48)

Enhanced T cell responses by agonistic anti-4-1BB mAb
C57BL/6 2A clone Poorly immunogenic C3, TC-1,

and B16-F10
Enhanced T cell responses toward E7 peptide (COPP) by CD137
agonist

(49)

C57BL/6 3E1 & 3H3 clone GVHD Increased cytotoxicity against P815 (50)
– Agonistic Ag104A & P815 Anti-CD137 mAb eradicates established large tumors in mice via

CD4 and CD8 T cell responses
(51)

B10.A 3H3 clone staphylococcal enterotoxin A
(SEA)

Enhanced T cell responses toward SEA by CD137 agonist (52)

(B6 × 129)F2 3E1 clone LCMV peptide NP396-404 Agonistic anti-CD137 Ab augmented CD8 T cell responses in
CD137L−/− mice similar to those in CD137L+/+ mice

(35)

C57BL/6 3E1, 1D8 MCA205, B16, MC38 Anti-CD137 mAb enhances anti-tumor T cell responses, but the
mice received lymph node cells from agonistic anti-CD137 mAb-
treated animals did not show therapeutic effects.

(53)

DBA 1D8 scFv 1D8 scFv-expressing K1735 Transfected tumor-vaccinated mice rejected established tumor. (54)
Balb/c RAG2−/− Agonistic 2A P1A-expressing J558 2A treatment with transfer of P1A-specific CD8 T cells into

RAG2−/− mice enhanced rejection of established tumor.
(55)

NOD Transgenic NOD mice overexpressing
membrane-bound agonistic anti-CD137
scFv in pancreatic beta cells

Diabetes Anti-CD137 scFv on pancreatic beta cell Tg mice developed more
severe diabetes than their non-transgenic littermates.

(56)

C57BL/6 CD137-Fc OT-1 T Tx CD137 blockade impaired division and IFN-g secretion of OT-1
CD8 T cells, but not CTL activity.

(57)

– Agonistic 3H3 Several animal models CD137 triggering generally enhances CD8 T cell responses, but
the therapeutic outcomes are determined by that CD137-
mediated alteration in immunity will be beneficial.

(58)

Suppression of T/B cell responses by agonistic anti-4-1BB mAb
Balb/c 1D8 clone SRBC, huIgG, Suppression of humoral immunity by CD137 agonist (59)
Nonhuman
primates

Agonistic anti-human CD137 (4B4) OVA Suppression of OVA-specific IgG responses by human CD137
agonist

(60)

(Continued)
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enhanced obesity-induced adipose inflammation by triggering
CD137L reverse inflammatory signals in macrophages and
activated T cells.

mCD137L expression is induced not only in activated T cells,
but also in activated APCs such as LPS-treated macrophages,
LPS- or CD40 mAb-treated splenic DCs, and IgM mAb plus
CD40 mAb-treated B cells (24, 67) (Figure 1). However, the
molecular mechanism of its regulation at the promoter level
remains uncovered. A recent study by Chang et al. suggested that
different APC subsets differentially express costimulatory
molecules early during viral infection (76). Classical dendritic
cells (cDCs) highly express MHC II, CD80, and CD86, whereas
inflammatory monocyte-derived APCs (infAPCs), including
inflammatory macrophages and DCs, exhibit the highest
expression of TNFSF ligands such as GITRL, OX40L, CD137L,
and CD70 (76). Moreover, the authors suggested that GITRL on
infAPCs provides signal 4 for activated T cells by providing a
post-priming survival checkpoint (76). The results of this study
elegantly explained the fundamental roles of inducible
costimulatory molecules, including GITR/GITRL, OX40/
OX40L, and CD137/CD137L, in the survival of activated T cells.
Frontiers in Immunology | www.frontiersin.org 4
Another report also indicated that infDCs are a distinct subset of
DCs that appear during inflammation and are derived from
monocytes that differentiate in situ at the site of inflammation
andmigrate to the lymph nodes to activate T cells, whereas cDCs in
lymph nodes generally spend their entire life in secondary
lymphoid tissues (77). Given that infAPCs migrate from the site
of inflammation while maturing, it is reasonable to expect that
infAPCs are mature APCs and cDCs are immature until they start
to mature by receiving antigen (Ag) from infAPCs (78).
Consequently, inducible costimulatory molecules such as CD137L
would be more important for infAPCs than MHC II, CD80, and
CD86, which are preferentially expressed on cDCs, because infDCs
need to activate T cells and sustain their survival and proliferation.

As mentioned above, CD137 is expressed on activated T cells
and CD137L is primarily expressed onmyeloid immune cells such
as DCs (67). Indeed, when activated CD4+ or CD8+ T cells were
analyzed by flow cytometry, CD137 was readily detected on their
surface even 24 h after their activation, whereas CD137L was not
(67). CD137L expression was induced on mature DCs following
their maturation, but was gradually downregulated as CD137
expression increased (43).
TABLE 1 | Continued

Mice Stimulation Disease model Outcome Ref.

B6 pMHC II-CD137L Tg – Progressive splenomegaly and selective depletion of B cells (61)
C57LB/6 3H3 clone Streptococcus pneumoniae Suppression of humoral immunity by CD137 agonist (62)
C57LB/6 3H3 clone and CD137L KO Streptococcus pneumoniae Pneumococcal surface protein A-specific antibody responses was

suppressed by CD137 agonist and reduced in CD137L−/− mice
(63)
December 2020 | Volume 11 | Article 55
FIGURE 1 | Regulation of CD137 and CD137L expression. Activation of APCs via Toll signals, such as TLR4, B-cell receptor crosslinking, and CD40 ligation
induces CD137L expression. Alternatively, antigenic signal provided by the MHC I/peptide complex and costimulation through CD28 induces T-cell activation and
CD137 expression.
3715
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Surprisingly, CD137L expression was enhanced on activated
T cells and DCs of CD137-deficient mice (26). It is not clear how
T cells and DCs downregulate CD137L during their activation or
maturation, but it can be speculated that CD137L becomes
bound to intracellular CD137, triggering internalization of the
CD137-CD137L complexes, and thus, CD137-mediated signals
are continuously transmitted into the cells without a requirement
for CD137L located on other cells (Figure 2A). Indeed,
Martinez-Forero et al. have shown that anti-CD137 mAb
bound to CD137 was internalized into an endosomal
compartment in vitro and in vivo, and triggered TRAF2-
mediated signaling (79). Since CD137-CD137L complexes are
internalized into the cells, theoretically, both CD137- and
CD137L-mediated signals can be transmitted into the cells;
however, which signal is transmitted in vivo remains unclear.
Alternatively, CD137:CD137L complexes are exchanged between
T:T or T:DC conjugate via trogocytosis—the bidirectional
transfer of molecules between interacting cells—and thus
accumulate in the cells (80) (Figure 2B). When activated T
cells and mature DCs form conjugates, CD137 and CD137L on
each cell interact to form the complex. Since TCR triggering
induces trogocytosis (80), molecules on the plasma membrane
are exchanged between the conjugated cells and thus, the CD137:
CD137L complexes move from donor cells to recipient cells and
are internalized and accumulated in the recipient cells via
receptor-mediated endocytosis. Therefore, it is possible that
Frontiers in Immunology | www.frontiersin.org 5
CD137-mediated signaling in activated T cells is triggered by
trans-activation of CD137 by CD137L on DCs in early immune
responses, but by cis-activation of CD137 via CD137L in
activated T cells in the later phase.

Additionally, if CD137 is more strongly expressed than
CD137L in activated T cells or mature DCs, CD137:CD137L
complex formation will gradually become saturated, and newly
synthesized CD137 begins to be solely located on the plasma
membrane. Indeed, CD137 and CD137L mRNA analysis using
data from the ImmGen database (www.immgen.org) showed
that CD137 is more strongly expressed than CD137L in activated
CD8+ T cells. This speculation not only provides an explanation
for the unsolved question why CD137L is not found on the
surface of CD137-expressing T cells or DCs, but also adds
complexity to the CD137-CD137L interactions.

The CD137 Signalosome and Its Signal
Transduction Pathways
Although CD137 and CD137L are expressed on various cell
types, signaling involving CD137 on T lymphocytes and CD137L
on myeloid cells has been studied the most (11, 25). Like other
TNFRSF members, CD137 forms a multimer when it binds with
CD137L to initiate intracellular signaling. As shown in Figure
3A, human (h)CD137L forms noncovalent trimers, whereas
mCD137L forms disulfide bond-linked dimers. The hCD137L
homotrimer forms three hydrophobic clefts to which the
A B

FIGURE 2 | Cis- and trans-activation of CD137 and CD137L. (A) Cis-activation of CD137 and CD137L. Newly synthesized CD137 and CD137L interact within
activated cells and thus, bidirectional signals are transmitted into the cells. (B) Trans-activation of CD137 and CD137L. Following the encounter of activated T cells
and APCs, CD137, and CD137L are crosslinked and trogocytosis provoked by activation signals induces internalization of the CD137-CD137L complex and thus,
bidirectional signals are transmitted into the cells.
December 2020 | Volume 11 | Article 553715
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hCD137 homotrimer binds. However, the mCD137 dimeric
quaternary structure allows two mCD137 monomers to bind to
each mCD137L protomer (81, 82). Recent studies have shown
that galectin-9 (Gal-9), a bivalent lectin expressed together with
mCD137 on cells, has a critical role in receptor clustering and
mCD137-induced proximal signal transduction (81, 83) (Figure
3B). mCD137 contains four cysteine-rich domains (CDR1–4)
(84) and Gal-9 contains N- and C-terminal carbohydrate-
binding domains. An N-glycosylated amino acid in CDR4 is
involved in interactions between mCD137 and Gal-9 via both the
N-and the C-terminal carbohydrate-binding domains (81). This
interaction may place the two mCD137 monomers in close
vicinity or allow them to cluster, as well as induce a
conformational change of the mCD137 cytoplasmic domain
that facilitates the initial signaling event, namely binding of
TNFR-associated factors (TRAFs) to the cytoplasmic tail of
mCD137 (81). Gal-9 also binds to hCD137, which forms a
trimeric complex with trimeric hCD137L, and this may induce
a conformational change within the cytoplasmic tail of CD137
favoring TRAF binding or clustering (81).
Frontiers in Immunology | www.frontiersin.org 6
A number of TNFRs are not fully activated by soluble ligands
or agonistic Abs, but only by being immobilized or crosslinked.
Even ligation of dimeric or trimeric CD137 did not generate
effective responses (85). Since multimers of a minimum of nine
mCD137 monomers bound to mCD137L nonamer generate
functional signals in the absence of Gal-9, it seems that
clustering of at least nine CD137 monomers is needed to elicit
effective signals (81). It has been suggested that small numbers of
ligand-free CD137 molecules are pre-assembled in a two-
dimensional hexagonal lattice on the cell surface (86), and that
Gal-9 may be involved in the formation of this hexagonal
structure (83). Gal-9 may provide a structural platform for
CD137 to produce initial signaling events via clustering of
dimeric or multimeric CD137 (87–90). mCD137L acts together
with Gal-9 to aid in the clustering of mCD137 monomers to
efficiently initiate mCD137 signaling (81). The Gal-9 lattice may
also serve as a docking site for other receptors and signaling
molecules (91, 92) (Figure 3B). The modulation of TCR
responses induced by exogenous Gal-9 depends on the
presence of components of the TCR complex such as the
A

B

FIGURE 3 | Mechanism of accelerated CD137- and CD137L-mediated signaling in activated T cells and mature APCs. (A) For CD137L on APCs, Toll signals,
including TLR4, are essentially required and CD137L is expressed and becomes dimerized (protomer) via a disulfide bond. Simultaneously, APCs provide antigenic
information to T cells by triggering TCR signals. Signal 1 via TCR on T cells consecutively induces CD137 expression on T cells. (B) After ligation of CD137 and
CD137L, CD137 molecules are multimerized and the CD137 multimer is further stabilized by Gal-9 binding, probably through the formation of a lattice structure. The
organized CD137 multimer recruits TRAF1/2 and generates TRAF (with a RING domain) trimer. CD137 signaling through the TRAF trimer has two distinct functions:
1) re-amplification of TCR signaling for mitogenic signals and 2) CD137-TRAF-mediated signals for the survival, proliferation, and differentiation of T cells. For CD137
signals, TLR4 and CD137L seem to form a heteromultimer through TMEM126A binding and thus, TLR4 signaling is sustained and canonical CD137L reverse
signaling is transmitted.
December 2020 | Volume 11 | Article 553715
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tyrosine kinase, Lck (93). There is no evidence that Gal-9 directly
interacts with any of the TCR/CD3 components (93). However,
it has been suggested that Gal-9 acts on TCR-Lck signals by
linking and assembling specific membrane microdomains of T
cells, such as lipid rafts (93).

Homo- or heterotrimers of TRAF1 and TRAF2, which are
proximal adaptor molecules for the mCD137 receptor
signalosome, associate with the cytoplasmic tails of CD137
upon its ligation with CD137L and relay CD137 activation to
distal intracellular signaling events, including NF-kB activation,
intracellular Ca2+ mobilization, and ERK1/2 activation (94–96)
(Figure 3B). Trimeric TRAFs are made up of combinations of six
TRAFs (TRAF1–6); they bind to the cytoplasmic domains of
TNFRs and function as scaffold proteins forming complexes with
other signaling molecules (97, 98). All TRAFs, except TRAF1,
have a RING zinc-finger domain that confers E3 ubiquitin ligase
activity, which enables them to regulate the activities of
downstream signaling proteins clustered among the TRAFs
(99). Homo- or heterotrimers of TRAFs 1, 2, and 3 cluster
upon hCD137 activation and stabilize two-dimensional
hexagonal lattices of CD137 trimers, forming signalosomes
(reviewed in 73). It has been suggested that binding of TRAF2-
RING finger dimers as well as cIAP1/2-RING dimers between
the TRAF trimers may aid in hexagonal lattice clustering (100–
103). In addition, homo- or heterotrimers of TRAFs 1, 2, and 3
recruit various other molecules involved mainly in protein
ubiquitination and induce signaling events such as NF-kB,
ERK1/2, and p38 MAPK activation [reviewed in (104)].

We have shown that the signaling pathways activated by
mCD137 crosslinking are involved in upregulating the expression
of anti-apoptotic proteins such as bcl-XL, IL-2, and cyclin D2 in
murine T cells (14, 105). These proteins are responsible for CD137-
mediated increases in cell survival and expansion, which are
relevant to the antiviral and antitumor effects of CD137. The
early CD137 signaling pathways also help to relocate lipid rafts to
the area of contact between T cells and CD137L-expressing cells.
Ligation of CD137 leads to the translocation of TCR pathway
proteins such as Lck, pTyr, PKC-q, PLC-g1, and SLP-76 to lipid
rafts (106). Crosslinking of CD137 recruits CD137 and TRAF2 to
lipid rafts and re-activates or sustains TCR signaling. We speculate
that Gal-9 binding to CD137 creates a platform to induce
redistribution of lipid rafts and subsequent recruitment of TCR
and/or TCR signaling proteins, as previously described (106). If that
is the case, this could be the molecular mechanism underlying
reciprocal and continuous regulation of TCR and CD137 signals:
the duration of TCR binding by the antigenic epitope/MHC
complex on APC would control the expression of CD137, and its
ligation by CD137L on APCs would in turn cluster and assemble
sufficient Gal-9/CD137 to affect TCR signaling. Thus, it would be
important to examine the involvement of Gal-9 in CD137-induced
TCR activation.

CD137L Reverse Signal Transduction
Pathways
Crosslinking of mCD137L with rCD137 or anti-CD137L mAb
activates reverse signaling. CD137L reverse signal transduction
Frontiers in Immunology | www.frontiersin.org 7
has been studied in human and murine myeloid cells such as
monocytes and macrophages (28, 105, 107). In human cells, the
CD137L reverse signaling pathways involve Src tyrosine kinase,
PI3K, p38MAPK, ERK1/2, and probably, NF-kB. hCD137L may
associate with hTNFR1 to initiate these reverse signals (108). In
murine macrophages, crosslinking of CD137L increases tyrosine
phosphorylation of PP2-sensitive tyrosine kinases such as Src.
Subsequently, it activates mTOR/p70S6K, leading to enhanced
cell adhesion, survival, and macrophage colony-stimulating
factor expression. It also activates Akt via Src tyrosine kinase/
PI3K, as Akt phosphorylation by CD137L ligation is blocked by
Src kinase inhibitor, PP2 or PI3K inhibitors, Wortmannin, and
LY294002. CD137L reverse signal-mediated Akt activation is
responsible for the upregulation of IL-1b transcript expression
107. Using yeast two-hybrid experiments, we found that CD137L
binds to the novel transmembrane protein, TMEM126A, a
member of the DUF1370 family of proteins, which consists of
several hypothetical eukaryotic proteins with approximately 200
residues. Its biological function is unknown (109). TMEM126A
exists as multimers in immune cells, but as monomers in liver
cells (109), and associates with the C-terminal extracellular
domain of CD137L (109). Binding of TMEM126A to CD137L
is a prerequisite for CD137L reverse signaling, in which
TMEM126A may play the same role as Gal-9 does in CD137
receptor signaling. In unstimulated myeloid cells, endogenous
TMEM126A and CD137L colocalize as widespread spots. Upon
crosslinking of CD137 with plate-bound rCD137-Fc,
TMEM126A and CD137L colocalized predominantly at the
points of contact with the culture plate (109). This suggests
that TMEM126A aids in the multimerization of CD137L as well
as in the linking of CD137L multimers with other signaling
molecules in a CD137L signalosome (Figure 3B). CD137L-
mediated reverse signals can be as diverse and complex as
CD137 receptor signals: a yeast two-hybrid experiment
identified proteins and kinases related to ubiquitination,
adhesion, and endocytosis as binding candidates (109). In
TMEM126A-deficient cells, LPS-induced upregulation of CD54
(ICAM-1), MHC II, CD86, and CD40 expression was
diminished, indicating that TMEM126A is involved in TLR4
signaling (110). Flow-cytometric data showed that LPS-induced
TMEM126A surface expression increased over time, whereas
LPS-induced CD137L expression declined. This implies that
TLR4 signaling regulates the cell surface expression of CD137L
and TMEM126A. Immunofluorescence data revealed that
CD137L/TMEM126A/TLR4 colocalized in spots (109, 110),
suggesting that these three proteins may be associated.
TMEM126A may also act as a linker between the CD137L
signalosome and TLR4 (Figure 3B). LPS treatment induces
binding of CD137L to TLR4, and their association triggers
MyD88-independent TLR4 signals that prolong TNF
production (111, 112). It will be important to examine whether
TMEM126A interacts directly with TLR4 as it does with
CD137L. This would support the hypothesis that TMEM26A
bridges the CD137L signalosome with TLR4. Activation of TLR4
by LPS increases the expression of CD137L and TMEM126A on
APCs, producing reverse signals that strengthen innate immune
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cell function. At the same time, CD137L reinforces TLR4-
induced responses, presumably by binding to TMEM126A. In
other words, mutual interactions take place between CD137L
and TLR4 in APCs, as they do between the CD137 signalosome
and TCR in T cells.

Biased Receptor Signaling
Plenty of experimental evidences support the notion that
multiple receptor conformations exist, and ligands can select
and stabilize the different receptor active states for signal
transmission (113–117). In this way, one signal can be
selectively produced over others (biased signaling). While
signal bias has been extensively studied for G protein-coupled
receptors, theoretical and experimental data suggest that it is a
general behavior of ligands and receptors (114, 118, 119). Signal
Frontiers in Immunology | www.frontiersin.org 8
bias can be generated by any of the three components of the
ligand/receptor/transducer complex, generating ligand bias,
receptor bias, and system bias, respectively (Figure 4). Biased
signaling through stabilization of select, multiple conformations
of the receptor with a wide range of signaling effector molecules
can be used in normal physiology to achieve fine control in
naturally healthy body systems (116). Ligand bias refers to
ligand-induced signal bias through the selection (or induction)
of a unique receptor conformation coupled with preferentially
adopted transducers. Receptor bias can be produced by altering
the receptor to change its ability to bind to specific ligands and/or
activate transducers. Receptor mutation and alternative splicing
can generate biased signal (117). Receptor homodimerization
can produce functional complexity associated with binding and
activation cooperativity originating from allosteric interactions
A B

DC

FIGURE 4 | Biased signal generated by ligand bias, receptor bias, or system bias. (A) Unbiased signal. Unbiased agonist binds to unbiased receptor, equally
activating signal pathways A and B through unbiased transducers T1 and T2, respectively. The dose-response plot shows the equivalent potencies for pathways A
and B. Bias plot displays unbiased signal. (B) Ligand bias. Biased agonist binds and selects a certain unbiased receptor conformation, which relays signal
dominantly through T1 rather than T2. The dose-response plot shows that the potency of response via pathway A is stronger than that via pathway B. The bias plot
indicates that the signal is biased toward A. (C) Receptor bias. Unbiased agonist binds to biased receptor, which drives signal to pathway A rather than pathway B.
The dose-response plot shows that the potency of response via pathway B is stronger than that via pathway A. The bias plot indicates that the signal is biased
toward B. (D) System bias. Unbiased agonist binds to unbiased receptor, interacting with and activating more T2 than T1. Signal via pathway B is preferred over that
via pathway A. The dose-response plot shows that the potency of response via pathway B is stronger than that via pathway A. The bias plot indicates that the signal
is biased toward B.
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between the protomers making up an oligomer and intrinsic
ligand efficacy (116). Moreover, in the receptor homodimer
context, ligand bias changes with ligand concentration (116,
119). System bias can be established by changing the context of
transducers/effectors, such as their expression levels. Since
different cell and tissue types have different signaling systems,
certain ligands acting on the same receptor can have different
signaling properties depending on the cell type, and each
receptor can produce unique responses with same ligand
because of system bias.

Biased Signaling in CD137/CD137L
Bidirectional Pathways
In clustered dimeric CD137/CD137L signalosome complex, the
expression dynamics of CD137 and CD137L may be important to
establish biased signals in a cell. For example, antigen species,
duration of antigenic challenge, and/or antigen levels determine
their expression levels. The levels, degrees, and species of clustering
homodimer of CD137 or CD137L and proximal downstream
signaling molecules, such as TRAFs for CD137 and their
unknown counterparts for CD137L, may generate receptor bias
and ligandbias, aswell as systembias. That is, the sameCD137L (or
CD137) can generate different and unique CD137 signals (or
CD137L reverse signals) in a cell depending on antigenic
differences. As mentioned above, receptor homodimerization
confers receptor bias via allostery-mediated cooperativity for
receptor binding and/or activation of downstream transducers
(116). This notion is supported by a recent finding that the
mCD137L dimeric structure undergoes allosteric changes upon
Frontiers in Immunology | www.frontiersin.org 9
mCD137 binding (82). Receptor homodimerization may also
change the pattern of ligand bias with ligand concentration.
Along with the intrinsic complexity of the homodimeric CD137/
CD137L bidirectional signalosome, steric and topological changes
in conformation induced by CD137/CD137L binding in the
clustered, multimeric state may lead to the diversity and
complexity of receptor/ligand-induced cellular responses
(Figure 5). In addition, cellular diversity in expression of
CD137/CD137L and transducers and their interactions with
other key signaling receptors such as TCR and TLR4 further
complicate CD137/CD137L bidirectional signals and related
responses. These complexities established by signal bias in
CD137/CD137L bidirectional signaling pathways may be
optimal for finetuning of the immune response. We assume that
CD137/CD137L signalosome-mediated in vivo cellular responses
in the immune systemmay not be completely understood because
the experimental tools used to elucidate CD137/CD137L
functions, such as knockout mice, Abs, and recombinant
proteins, can interfere with the complex organization of CD137/
CD137L bidirectional signalosomes.
COMPLEXITY OF CD137/CD137L SIGNAL-
MEDIATED RESPONSES IN VIVO

The complexity of CD137/CD137L signaling pathways in T cells
and APCs in vivo is even more complex. CD137−/− B6 mice
display a reduced humoral response to KLH and reduced
FIGURE 5 | Biased signal in murine CD137/CD137L bidirectional signaling pathways. Expression levels of CD137 and CD137L and their extent of homodimer
clustering can establish receptor and ligand bias in T cells and APCs, respectively. In terms of bidirectional signaling, receptors can be ligands for reverse signal and
vice versa. Species and levels of transducers, such as TRAF trimer, can generate system bias. Because levels of CD137 and CD137L expression are transcriptionally
and posttranslationally regulated by Ag exposure, various cellular responses can be generated by bidirectionally biased signals as shown in the bias plot. In the
receptor homodimer context, ligand binding can generate receptor bias via allosteric interactions between protomers, through which ligand binding affinity and/or
activation of downstream transducers can be altered. Ligand bias can also change with ligand concentration in the receptor homodimer (dotted lines in the bias plot).
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cytotoxic T-lymphocyte activity against vesicular stomatitis virus
(27). In line herewith, CD137L−/− mice show defects in inducing
CD8+ T-cell responses against viral infections, such as influenza
(33), MHV-68 (34), and LCMV (35), and further study revealed
that secondary rather than primary CD8+ T-cell responses
against influenza infection are impaired in these mice (120).
Because CD137/CD137L signals augment T-cell responses by
preventing activation-induced cell death (AICD) (14),
stimulating cell-cycle progression (105) and Th1 responses
(121), and accelerating metabolism (122), these data fit the
expectation that deficiency of CD137 or CD137L in vivo
reduces T-cell immunity.

Although CD137−/− and CD137−/− mice exhibit reduced
CD8+ T-cell responses in viral infection models (33–35), their
T-cell responses in spontaneous autoimmune disease and tumor
models are somehow enhanced (42). CD137 deficiency in MRL/
lpr mice accelerated the development of lacrimal gland and skin
lesions, enhanced lymphadenopathy, and led to early death,
along with increased CD4+ T cells and B-cell activity (38, 39).
Tumor growth rates were reduced in CD137−/− mice compared
to WT B6 mice in an NK- and CD8+ T cell-dependent manner
(42). Moreover, adoptively transferred CD137−/− OVA-specific
OT-I and OT-II cells hyperproliferated in WT B6 mice (26, 41),
and CD137−/− mice had increased numbers of primary CD8+ T
cells and fewer memory CD8+ T cells during chronic/latent
infection with mouse CMV (79). These data indicate that the
CD137/CD137L axis is capable of both stimulatory and
inhibitory cosignaling activities in vivo; however, the
mechanisms underlying the enhanced T-cell responses in
CD137−/− mice are not completely understood. In humans,
CD137 deficiency is highly correlated with autoimmunity,
autoimmune lymphoproliferation, common variable immune
deficiency, and malignancies (123).

Agonistic anti-CD137 mAb also has dual stimulatory and
inhibitory cosignaling activities in vivo. Agonistic anti-CD137
mAb typically enhances CD8+ T-cell responses against
immunizing peptides such as HPV E7 (49) and LCMV NP396-404
(35), staphylococcal enterotoxin A (51), and several mouse tumor
cells including Ag104A, P815,MC38, and B16-F10melanoma (51,
53). The oxygen-deprived tumor microenvironment (TME)
upregulates CD137 expression via the transcription factor HIF-a
in CD4+ and CD8+ tumor-infiltrating T lymphocytes. Hypoxia-
induced CD137 expression in tumor-infiltrating T lymphocytes is
thought to explain why intratumoral injection of agonistic anti-
CD137 mAb can achieve immunotherapeutic antitumor effects
with minimum systemic side effects (124). Since triggering the
CD137 signal on CD8+ T cells has therapeutic potential in cancer,
agonistic anti-CD137 mAbs are under investigation as
immunotherapeutic agents in cancer (125, 126). CD137 has been
recognized as one of the critical immune checkpoint molecules for
tumor Tregs. However, its role in Tregs remains controversial:
some studies have suggested that CD137 mAb can block Treg
activity (127, 128), whereas one study reported that it enhanced
Treg proliferation (129). Recent studies have shown that depletion
of Tregs in the TME by depleting anti-CD137 mAb decreased
tumor growth, indicating that Tregs in the TME express CD137 to
suppress antitumor hyperimmune responses (72, 130). Agonistic
Frontiers in Immunology | www.frontiersin.org 10
anti-CD137 mAb also reduces the incidence and severity of
autoimmune diseases including experimental autoimmune
encephalitis, collagen-induced arthritis, systemic lupus
erythematosus, and experimental autoimmune uveoretinitis (44,
45, 47, 48).

Although CD137 signaling itself seems to be multifaceted in
terms of immune response modulation, the contrasting immune
responses found in tumor-challenged CD137−/− mice—i.e.,
enhanced NK- and CD8+ T-cell responses against tumors—need
to be fully understood because agonistic anti-CD137 mAbs are
being evaluated as antitumor therapeutics based on their positive
effects on CD8+ T cells (125, 126). It seems that the enhanced
T-cell responses in CD137−/− mice are due to intrinsic effects
accumulated during the development of the immune system in the
absence of CD137 signals and thus, cannot be simply mimicked
when CD137 signals are blocked with antagonistic anti-CD137
mAb in vivo. In addition, since the ligation of CD137-CD137L
induces bidirectional signals, agonistic mAb of CD137 or CD137L
will enhance the signal via its target, but block the signal through
its counterpart (Figure 6), which also increases the complexity of
CD137-CD137L signaling.
CONCLUDING REMARKS

Since CD137L is an endogenous ligand that binds to CD137, it is
conceivable that the CD137/Gal-9/TCR signaling complex may
interact with the CD137L/TMEM126A/TLR4 signaling complex
FIGURE 6 | Immune modulation with CD137 or CD137L agonist. Signaling
via CD137 or CD137L into activated T cells and APCs can be modulated with
agonistic mAb. Since the ligation of CD137 and CD137 transmits bidirectional
signals, CD137 agonist will enhance CD137 signal, but block CD137L-
mediated signal, whereas CD137L agonist will have the opposite effects.
December 2020 | Volume 11 | Article 553715

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Choi and Lee CD137/CD137L Bi-Directional Signaling Pathways
at immunological synapses (Figure 7A), which are nanoscale
gaps between T lymphocytes and APCs. In signalosome
complexes at immunological synapses, these six proteins may
influence one another by modulating each other’s expression
level, provoking CD137/CD137L bidirectional signaling, and
modifying TCR/TLR4 signaling during APC maturation and
subsequent antigen presentation to T cells at peripheral infection
sites or in lymphoid organs. Encounters with pathogen-
associated molecular patterns (and/or damage-associated
molecular patterns) activate pattern recognition receptors on
APCs such as TLR4 at peripheral sites, and this usually induces
pro-inflammatory responses as well as APC maturation
involving increases in the expression of MHC proteins,
adhesion molecules, and costimulatory molecules. During APC
maturation, CD137L expression is upregulated together with
TMEM126A expression (Figure 7B), and CD137L may adopt a
specific conformation by forming a complex with TMEM126A
and TLR4. This conformation may be needed for prolonged
activation of TLR4, as well as for initiating CD137L reverse
signals upon engagement with CD137 on T cells at a later time
Frontiers in Immunology | www.frontiersin.org 11
when APCs encounter T cells in lymphoid organs. CD137L
reverse signals induce further maturation of APCs, which
enhances antigen presentation to T cells. When just-matured
APCs meet T cells in lymphoid organs, the MHC/epitope on the
APCs binds to the TCR on the T cells, and TCR signals are
produced with the help of costimulatory molecules such as
CD28/B7. TCR activation induces or enhances CD137
expression (Figure 7B). CD137 then interacts with Gal-9 and
adopts a state that enables it to bind to a suitable form of CD137L
and initiate CD137 signals. In the complex, crosslinking of
CD137/Gal-9 re-recruits TCR signaling molecules and
maintains TCR signaling, which promotes the differentiation of
naïve T cells to effector and/or memory T cells.

The hyperproliferation of CD137-deficient T cells may be due
to CD137/CD137L-induced suppression of T-cell proliferation.
CD137L reverse signals suppress T-cell activation (29, 131)
(Figure 7C). Alternatively, highly expressed CD137 generated
by TCR activation with high-affinity Ag may form complexes
with TCR/Gal-9. The conformation of TCR/Gal-9/CD137
adopted upon contact with CD137L may tune TCR signals to
A B

D E F

C

FIGURE 7 | Multiple factors contribute to complexity of CD137-CD137L signal. (A) Bidirectional signaling complex. During direct interaction of activated T cells and
APCs, CD137-Gal-9 complex and CD137L-TMEM126A-TLR4 complex simultaneously transmit signals. (B) Multiple factors, including Ag affinity, costimulatory
signals, and APC maturation triggers, are involved in CD137 and CD137L expression. (C) Co-expression of CD137 and CD137L. CD137 and CD137L are well
known to be expressed on activated T cells and mature APCs, respectively. However, a recent study demonstrated that CD137L is also expressed in activated T
cells. Therefore, CD137 and CD137L can interact not only in the T cell-APC conjugate, but also in T cell-T cell or APC-APC conjugates. (D) Differential functions of
CD137 in T-cell subsets. CD137 triggering induces proliferation and anti-apoptosis in CD4 and CD8 T cells and Tregs. CD137 triggering enhances CD4 and CD8 T
cell-mediated immunity and induces Treg-mediated immune suppression because CD137 signal expands activated Tregs that can suppress the overall immune
response. (E) Unbalanced expression of CD137 and CD137L. (F) Limited ligation of CD137 and CD137L leads to inefficient formation of the TRAF network that is
required to re-amplify TCR signal and CD137-mediated signal.
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block their hyperproliferation, but promote their survival and
differentiation. Either way, CD137/CD137L may be able to
induce optimal T-cell responses during antigen contact. The in
vivo situation may be even more complex. CD137 and CD137L
bidirectional signals may affect the expression and/or signaling
pathways of other costimulatory proteins and/or cytokines.
Moreover, TLR4 and TCR signals modified by CD137/CD137L
signals may influence other molecules at immunological
synapses. Signal bias due to the clustering of dimerized
CD137/CD137L, CD137/CD137L expression levels and
duration, the degree of binding with cis proteins such as Gal-9,
TRAFs, and TMEM126A, and interaction with other key
proteins such as TCR and TLR4, gives rise to the complexity
of CD137/CD137L bidirectional signalosome-mediated cellular
responses (Figures 3 and 7C).

In general, CD137 signal positively regulates T-cell responses.
However, in the case of Tregs, CD137 signal not only increases
number of Tregs by enhancing their proliferation, but also
temporally neutralizes the suppressive function of activated
Tregs, but not naïve Tregs (47). Since CD137 triggering increases
the numbers of Tregs and transiently neutralizes their suppressive
activity, overall T-cell responses will be strongly inhibited by the
suppressive activity of the increased Tregs when CD137L is
discontinued (Figure 7D). Therefore, although CD137 signal
exerts similar effects such as proliferation enhancement and anti-
apoptosis on T-cell subsets, the outcomes of CD137 triggering can
differ depending on the function of the T-cell subsets, which
increases the complexity of CD137/CD137L signaling.

Another factor contributing to the complexity of CD137/
CD137L signaling is unsynchronized CD137 and CD137L
expression. Multiple factors, including TCR strength,
costimulation, and Toll ligand, are involved in CD137 and
CD137 expression on T cells and APCs. If the expression of
these molecules is not spatiotemporally synchronized,
unbalanced CD137 and CD137L expression may lead to
limited ligation of CD137 and CD137L, eventually resulting in
inefficient TRAF network formation and delayed T-cell
activation (Figures 7E, F).

Immunity against danger signals may be controlled by these
web-like interactions. It is difficult to systemically dissect this
complexity. However, it is clear the complexity of the molecular
interactions gives rise to the immunity required to protect us
from the many menaces, and that derangement of the
interactions may lead to hypo- or hyperimmune status and to
immunopathogenic conditions such as infective inflammation,
autoimmune diseases, and possibly, tumors. This may be why
Frontiers in Immunology | www.frontiersin.org 12
contradictory responses have been reported in disease models
when anti-CD137 mAb or rCD137L was administered. For
example, viral infection or tumors that can escape immune
surveillance may create conditions that inhibit the association
of CD137 with CD137L and thus suppress T-cell activation.
Ligation of T-cell CD137 with agonistic anti-CD137 Ab or
rCD137L may reverse the T-cell inhibition induced by viral
infection or tumors. In contrast, hyperimmunity in autoimmune
diseases may be caused by strong association of CD137 with
CD137L. CD137 Abs may restrain this and dampen the CD137/
CD137-mediated signals in T cells and APCs.

Sophisticated in vivo mouse experiments using natural
antigenic challenge and monitoring changes in mCD137/
CD137L expression, localization, and steric structure should
provide some answers to the following questions: 1) How are
signalosome complexes formed? 2) What is the driving force
behind their formation? 3) How do they provide the array of
intracellular signals needed for dealing optimally with host
immunological cues?
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