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Abstract

Background: Single Nucleotide Polymorphisms (SNPs) can influence patient outcome such as drug response
and toxicity after drug intervention. The purpose of this study is to develop a systematic pathway approach
to accurately and efficiently predict novel non-synonymous SNPs (nsSNPs) that could be causative to
gemcitabine-based chemotherapy treatment outcome in Singaporean non-small cell lung cancer (NSCLC)
patients.

Methods: Using a pathway approach that incorporates comprehensive protein-protein interaction data to
systematically extend the gemcitabine pharmacologic pathway, we identified 77 related nsSNPs, common in
the Singaporean population. After that, we used five computational criteria to prioritize the SNPs based on
their importance for protein function. We specifically selected and screened six candidate SNPs in a patient
cohort with NSCLC treated with gemcitabine-based chemotherapy.

Result: We performed survival analysis followed by hematologic toxicity analyses and found that three of six
candidate SNPs are significantly correlated with the patient outcome (P < 0.05) i.e. ABCG2 Q141K (rs2231142),
SLC29A3 S158F (rs780668) and POLR2A N764K (rs2228130).

Conclusions: Our computational SNP candidate enrichment workflow approach was able to identify several
high confidence biomarkers predictive for personalized drug treatment outcome while providing a rationale
for a molecular mechanism of the SNP effect.

Trial registration: NCT00695994. Registered 10 June, 2008 ‘retrospectively registered’.
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Background
Gemcitabine (2′-2′ difluorodeoxycytidine) is a deoxycy-
tidine analogue with antitumor activity against a variety
of solid tumors such as non-small cell lung cancer
(NSCLC), breast cancer [1] and pancreatic cancer [2].
Gemcitabine requires phosphorylation to mono-, di-,

and triphosphates (dFdCTP) to be active. This mechan-
ism results in a unique pattern of self-potentiation of
the drug and when this drug is incorporated into the
DNA during replication, it causes chain termination.
Gemcitabine also has multiple intracellular targets. Up-
or downregulation of these targets may confer resis-
tance to this drug.
Wider availability and lower costs of genome and

expression profile sequencing made application of
those techniques in clinical practice feasible; thus, the
scientific question of how patient-specific mutations
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and chromosomal aberrations influence personal clinical
outcomes via biomolecular mechanisms has become acute
[3, 4]. For example, pharmacogenetics studies published in
the last decades have provided evidence that Single
Nucleotide Polymorphisms (SNPs) can causally influence
patient outcome such as drug response and toxicity after
drug intervention [5]. Most SNPs associated with patient
outcome have been found in genes involved in the drug
pharmacology i.e. affecting drug transport, metabolism
and/or activity with drugs. Soo et al. tested 26 SNPs from
nine genes that are already known to be directly
associated with gemcitabine transport, metabolism and ac-
tivity [6]. They found several SNPs that were associated
with patient outcome in Singaporean NSCLC patients
treated with gemcitabine [6]. However, a systematic ap-
proach to investigate the relationship between gene vari-
ants and patient outcome is still lacking. Therefore, the
purpose of this study is to develop a systematic pathway
approach to accurately and efficiently predict novel non-
synonymous SNPs (nsSNPs) that could be causative to
gemcitabine-based chemotherapy treatment outcome in
Singaporean NSCLC patients. After detailed SNP analysis,
we prioritized the SNPs based on their importance in pro-
tein function and molecular mechanism. From the top-
ranking SNPs, we specifically selected six final candidate
SNPs for clinical validation. We genotyped these six SNPs
in a Singaporean patient cohort and have found that three
out of the six SNPs correlated with patient outcome.

Methods
Pyrimidine metabolism as a starting pathway to find
more genes in the gemcitabine pharmacologic pathway
Pyrimidine metabolism is known to be critical in the
pharmacologic pathway of gemcitabine, which is a pyrimi-
dine analogue. Therefore, we used the pyrimidine metabol-
ism pathway in KEGG (hsa00240; http://www.genome.jp/
kegg-bin/show_pathway?org_name=hsa&mapno=00240&-
mapscale=&show_fdescription=show) [7] which contains
100 genes as a starting point. In addition, we also did exten-
sive literature search to find more genes that are directly
associated with gemcitabine transport [6, 8, 9]. Apart from
literature review, information from PharmGKB (http://
www.pharmgkb.org/) has also been referenced. As a result,
six membrane transporters implicated in the uptake of
gemcitabine i.e. SLC28A1 (Entrez GeneID:9154), SLC28A2
(Entrez GeneID:9153), SLC28A3 (Entrez GeneID:64078),
SLC29A1 (Entrez GeneID:2030), SLC29A2 (Entrez Gen-
eID:3177), SLC29A3 (Entrez GeneID:55315) and three
transporters implicated in the efflux of gemcitabine i.e.
ABCC5 (Entrez GeneID:10057), ABCC10 (Entrez GeneID:
89845) and ABCG2 (Entrez GeneID:9429) were added to
the pathway. In total, 109 genes (the 100 genes in pyrimi-
dine metabolism and the 9 membrane transporter genes)
were used as starting proteins to find more interaction

partners by using our in-house comprehensive protein-
protein interaction (PPI) data.

Adding more potentially related proteins to the pathway
using comprehensive PPI data
We used our in-house comprehensive PPI data to find
additional proteins that could be related to the gemcita-
bine pharmacologic pathway. Comprehensive PPI data
was consolidated by integrating experimentally-validated
PPIs from nine databases, i.e. BIND [10], BioGRID [11],
IntAct [12], DIP [13], MINT [14], MPact [15], HPRD [16],
GNP (http://genomenetwork.nig.ac.jp/index_e.html) and
MPPI [17], to provide unique PPIs together with the accu-
mulation of evidence such as experimental type and
PubMed IDs. The method we used to integrate multiple
databases is provided in detail in this website i.e. http://
ipid.bii.a-star.edu.sg/annie/home.do#ui-tabs-1. The final
interaction set contains 1,148,484 unique PPIs including
227,731 human PPIs. We used only human PPIs in this
study. We extended the pyrimidine metabolism in KEGG
(hsa00240) using the conservative requirement that the
new protein must have been reported to interact with at
least two out of the 100 proteins that are already in the
pathway. After that, we collected nsSNPs from NCBI/
dbSNPs build 136 [18] that are linked to these human
genes using the NCBI E-utilities tool [19] with search
terms “missense”, “nonsense” or “frameshift”. Information
from databases “ensembl_mart_66” and “homo_sapiens_
variation_66_37” [20] was then used to annotate each of
the nsSNPs retrieved from E-utilities i.e. Ensembl’s geno-
type, Ensembl’s transcription ID, Ensembl’s consequence
type, NCBI’s consequence type, HGVS genomic, HGVS
coding, HGVS protein, PolyPhen-2 and SIFT prediction
for reference. A script was written in python and was run
on 1st March 2012.

Finding common SNPs in the Singaporean population
We used allele frequency information from the Singapore
Genome Variation Project (SGVP) [21] to find common
SNPs in the Singaporean population among the retrieved
nsSNPs. The SGVP provides a publicly available resource
of 1.6 million SNPs genotyped in 268 individuals from the
Chinese, Malay, and Indian ethnicities in the Singaporean
population. In this study, a common SNP is defined as
one with a minor allele frequency (MAF) of ≥5% in at least
one out of three ethnic groups i.e. Chinese, Malays or
Indians.

Five criteria to filter candidate SNPs
After common SNPs are selected from the retrieved
SNPs, five criteria were used to narrow down the com-
mon SNPs to select only those that are likely to affect
protein function i.e.
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4.1) The SNP’s MAF from SGVP is specifically higher
in the Singaporean Chinese compared to the
Singaporean Malay or the Singaporean Indian
ethnicity since about 87% of our patients are
Singaporean Chinese (refer to Table 1).

4.2) Result of PolyPhen-2 [22] prediction is “possibly
damaging” or “probably damaging” by using rsID of
each SNP as input. We used the batch query option
of PolyPhen-2 with HumDiv classifier model and
genome assembly GRCh37/hg19. For those SNPs
that could not retrieve result from the batch query
option, we input rsID one by one to the PolyPhen-
2 website (http://genetics.bwh.harvard.edu/pph2/)
to retrieve the result.

4.3) Result of SIFT [23] prediction is “Affect protein
function”. SIFT results were first retrieved using
“SIFT dbSNP batch tool” which was run on 21
March 2012 to pre-screen the results. After that,
orthologue sequences (select only “1:1 orthologs”)
were retrieved from either OMA browser [24] or
Orthologue search against NCBI Non-redundant
protein set on ANNOTATOR [25] and were used
to create a multiple sequence alignment with
MAFFT (L-INS-I settings) [26]. We deleted those
sequences that have large gaps using Jalview [27].

4.4) A SNP is located in the functional domain of a
protein. We used the amino acid sequence of the
gene that the SNP is located in as input to do
“Prim-Seq-An w/Pfam” analysis in ANNOTATOR
[25] using default settings which include HMMER
against many protein domain databases e.g.
SMART, Pfam to retrieve functional domain
information of the protein. Later, we annotated
whether a SNP is located in any functional domain
of the corresponding protein or not.

4.5) Average free energy change (ddG, kcal/mol) of the
protein by the SNP as predicted by FoldX from 5
runs [28] is significant i.e. more than 0.5 kcal/mol
or less than − 0.5 kcal/mol. The menu option
“Mutate residue” in the FoldX plugin for YASARA
[29] was used to predict free energy changes of the
protein when the wild-type amino acid is mutated
to another amino acid to predict the effect of SNPs
on protein structure. The structure of the protein
associated with the SNP of interest was energy
minimized using the “RepairPDB” function in
FoldX before mutating the residue from wild-type
amino acid to the SNP’s amino acid and calculating
stability change. To perform this analysis, a 3D
protein structure or homology model is needed, so
a template or crystal structure that contains the
SNP’s region is retrieved by using either “NCBI-
BLAST” of the protein sequence against PDB
(E-Value cutoff 0.001 with BLOSUM62 matrix) or
HHPRED against PDB (E-Value cutoff 0.001) on
ANNOTATOR [25]. If there is a crystal structure
available where the SNP is located, we use the
crystal structure as an input to FoldX. For SNPs in
proteins without crystal structures but found to
have appropriate homologous template structures,
we model the structure by homology modeling
using MODELLER [30] with loop refinement.

Finally, after consideration of the five criteria in each
of the 77 SNPs, we selected only the top-ranking candi-
date SNPs for genotyping in the Singaporean patient co-
hort with known clinical trial data.

Study population
The Singapore National Healthcare Group Domain Specific
Review Board reviewed and approved the study. All the pa-
tients provided written informed consent before study
entry. The study was conducted in accordance to Good
Clinical Practice guidelines. A total of 92 non-small cell
lung cancer (NSCLC) patients were recruited for the study
and were analysed. All the patients received their treat-
ments in the Department of Haematology-Oncology at
National University Hospital of Singapore. Patients with
not more than two lines of prior systemic chemotherapy

Table 1 Characteristics of patients who were treated with
gemcitabine-based chemotherapy

Characteristics at diagnosis NSCLC patients (n = 92)a

Ethnicity

Chinese 80

Malay 9

Indian 0

Others 2

No data 1

Gender

Male 67

Female 24

No data 1

Stage of Cancer

Stage III 14

Stage IV 77

No data 1

Performance Status (ECOG)

0 58

1 33

No data 1
aCould not retrieve any data from one patient and there is another patient
who had no survival data
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were recruited to receive gemcitabine (750-1000 mg/m2 on
day 1 and day 8) and carboplatin (AUC 5 mg/ml on day 1)
every 3 weeks. Radiographic assessments were done to
evaluate tumor response every two cycles according to
RECIST criteria. Safety assessments were performed at
every cycle including weekly full blood counts to monitor
haematological toxicities. Demographic profiles of the
patients are summarized in Table 1. We could not retrieve
any data from one NSCLC patient and there is another
stage IV NSCLC Chinese, male with ECOG= 0 patient
who had no survival data as well. So in total, 90 NSCLC
patients were available for survival and toxicity analysis.

Blood collection and genomic DNA extraction
A total of 8 ml peripheral blood was obtained from each
patient. The blood was drawn into heparinized vacutai-
ner tubes (Becton Dickinson) and mononuclear cells iso-
lated by Ficoll-Hypaque density gradient centrifugation
according to manufacturer’s instructions (GE Healthcare,
Chalfont St Giles, United Kingdom). The DNA in turn
was extracted from the mononuclear cells using the
Puregene DNA purification kit (Gentra Systems, Minne-
apolis, MN).

PCR (polymerase chain reaction) and pyrosequencing
First, PCR products were immobilized on streptavidin-
coated beads and denatured to produce single-stranded
products. Pyrosequencing was performed using the
PyroMark Gold Q24 reagent and the PyroMark Q24 sys-
tem (Qiagen), according to the manufacturer’s protocol.
Primers for pyrosequencing were designed with the
PyroMark Assay Design Software 2.0. Primers, including
biotin-labelled and sequencing primers are represented
in Additional file 1: Table S1. Sequencing analysis was
performed using PyroMark Q24 version 2.0.6 software
in the allele quantification analysis (QA) mode.

Statistical analysis to find correlation between the
candidate SNPs and patient outcome
Kaplan-Meier methods and log-rank test were used to
analyse results for overall survival and progression-free
survival in the NSCLC patient cohort. Grade 3 or 4
haematological toxicities and its association with gene
variants were analysed using Chi-squared test. All stat-
istical analyses were two-sided and the SPSS software
version 16.0 was used. P value of less than 0.05 were con-
sidered to indicate nominal statistical significance. Predictor
variables – including gender, age, stage and ECOG), and the
6 SNPs – were initially correlated with categorical outcomes
(grade 3/4 neutropenia and thrombocytopenia) using the
chi-squared test, and with time-to-event outcomes (overall
and progression free survival) using the log-rank test in uni-
variate fashion. Next, clinical variables and SNPs which were
found to be significant in the univariate analyses were

included in multivariate Cox or logistic regression to obtain
adjusted p values and effect sizes.

Results
5046 nsSNPs were found to be linked to the 178 genes in
the gemcitabine pharmacologic pathway
The overall workflow and result in each step are described in
Fig. 1. We used 100 proteins in the human pyrimidine me-
tabolism metabolic pathway (KEGG:hsa00240) as a starting
point and then used our in-house comprehensive PPI data
which comprise of unique 227,731 human PPIs integrated
from nine public databases (detail in Method section) to ex-
tend the pathway by using a conservative requirement that
the new protein needs to connect to at least two other out of
the 100 proteins that are already in the pyrimidine pathway.
By using this criterion, we found an additional 69 proteins
from the comprehensive PPI data that can be connected to
the pathway. Therefore, 169 genes (100 genes in the pyrimi-
dine metabolism and an additional 69 new genes) together
with the 9 membrane transporters from literature review
were used to find nsSNPs that are linked to these
genes. By using NCBI E-utilities, 5046 nsSNPs were
found to be linked to all 178 genes from dbSNPs.
2540 of these nsSNPs (50.34%) came from the newly
added proteins. Next, using allele frequency data from
SGVP [21], we found that only 77 (in 54 genes) of
the retrieved nsSNPs have MAF with more than or equal to
5% in at least one ethnicity in the Singaporean population.
We called these 77 nsSNPs as common SNPs in this study.
These common SNPs contain 73 missense, 3 nonsense
and 1 frameshift mutations. Detailed information of all
common nsSNPs are described in Additional file 1:
Table S2. Among the 77 common SNPs, eight were
found to be previously tested in the Singaporean pa-
tient cohort in NSCLC [6] (please refer “*” after rsIDs
in Additional file 1: Table S2). Out of the eight, three
of them were proven to be associated with patient out-
come i.e. SLC28A1 D521N (rs2242046), SLC28A2
P22L (rs11854484) and SLC28A2 S75R (rs1060896) al-
though these SNPs passed only one or none in our cri-
teria (Additional file 1: Table S2). Later, POLA2
G583R (rs487989) which is one of the eight SNPs and
passed two of our criteria was proven to be strongly
associated with mortality rate and survival time among
Singaporean NSCLC patients treated with gemcitabine [31].

15 out of 77 common nsSNPs have significant results in
three out of five criteria
We used five criteria (as described in detail in the
Method section) to narrow down the common SNPs to
select only those that are likely to affect protein function
(Fig. 1). The first criterion was to select SNPs that have
higher MAF in the Chinese population since the major-
ity of our patients are Singaporean Chinese. 23 out of
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the 77 nsSNPs were found to match this criterion. The
second and third criteria were based on prediction results
from PolyPhen-2 and SIFT, respectively, both of which are
evolutionary sequence conservation-based approaches.
We used the batch-query tool of PolyPhen-2 to parse pre-
calculated results of all common nsSNPs. For those SNPs
that could not fetch results from the batch-query tool, we
used RefSeq amino acid sequence ID of each gene as input

to retrieve the result from the PolyPhen-2 website. From
the PolyPhen-2 result (i.e. the second criteria), there were
17 common SNPs predicted to be either “probably” or
“possibly damaging” (Additional file 1: Table S2). For the
SIFT analysis (i.e. the third criteria), we used the “SIFT
dbSNP batch tool” to retrieve prediction results for all
common nsSNPs and found that only 9 of them were
predicted as “Deleterious” with the SIFT score equal to or

Fig. 1 Overall workflow and summary of results in each step. The pyrimidine metabolism (KEGG PATHWAY: hsa00240, 100 genes) has been
chosen as a starting point and then using comprehensive PPI to extend the pathway to add more proteins that could be potentially related to
the pathway in which 69 new proteins can be added. We also added 9 membrane transporters that have been known to be associated with the
gemcitabine pharmacologic pathway. 5046 nsSNPs are found to be linked to the 178 genes (100 together with the new 69 and the 9
transporters’ genes). 77 of them are found to be common in Singaporean population. After that, five criteria have been used to prioritize the
common SNPs. We did detailed SNP analysis for 15 common nsSNPs that passed at least 3 out of 5 criteria and some borderline SNPs. Finally,
after thorough literature review, we selected six SNPs to be genotyped in the NSCLC Singaporean patient cohort. PPI: Protein-protein interaction,
SGVP: Singaporean Genome Variation Project
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less than 0.05 (Additional file 1: Table S2). The fourth
criterion is to check if the SNPs lie on any functional do-
main. To do this, we retrieved HMMER results against
Pfam and SMART using “Prim-Seq-An w/Pfam” analysis
on ANNOTATOR and found that 35 out of the 77 SNPs are
located in a functional domain of their proteins. The final
criterion was to investigate whether the SNP affects protein
structural stability using FoldX. Only 27 common SNPs were
in a region with a known structure or high similarity to a
known structure which allows us to do homology modeling
and FoldX analysis. 17 of them returned significant results
from FoldX. Results of the five criteria of all 77 common
nsSNPs are described in Additional file 1: Table S2.
Finally, we were able to narrow down the 77 common

nsSNPs to 15 which have significant results in at least
three out of the five criteria (Additional file 1: Table S2).
We also considered some SNPs that retrieved border
line results. Lastly, literature review was performed to
understand the functional role of the genes associated
with the SNPs to further select SNPs that are most likely
to affect the gemcitabine pathway. Finally, we identified
the following six SNPs, that is, ABCG2 Q141K (c.421C >
A, rs2231142), SLC29A3 S158F (c.473C > T, rs780668),
HELB T980I (C > T. rs1168312), NT5C2 D549E (c.
1647C > T, rs3740387), POLR2A N764K (c.2292C > T,

rs2228130) and CTDP1 T221M (c.662C > T, rs2279103)
as final candidate SNPs based on the importance of the
SNPs for protein function and drug-related molecular
mechanisms (Fig. 2). Five out of the six final candidate
SNPs passed three out of five criteria and only CTDP1
T221M is selected based on a borderline result of the
computational selection criteria because it seemed plaus-
ible from our literature study. These SNPs are then geno-
typed in a Singaporean NSCLC patient cohort with
known patient outcome for gemcitabine-based therapy.

Genotyping of the six final candidate SNPs
A total of 90 NSCLC patients that have survival data
available were genotyped for the six final candidate
SNPs. Genotype information of 90 samples is shown in
Additional file 1: Table S3. Genotype of HELB T980I
could not be retrieved from 2 out of 90 patients. There-
fore, we used 88 NSCLC patient data to perform survival
and toxicity analyses in the next step. We could not find
any patient who has the TT genotype of POLR2A N764K.

ABCG2 Q141K and SLC29A3 S158F are associated with
increased survival in NSCLC
Kaplan-Meier analysis was performed to determine any cor-
relation of the six final candidate SNPs with overall survival

Fig. 2 Schematic diagram of gemcitabine pharmacologic pathway. Key genes that are directly involved in the gemcitabine pharmacologic
pathway are shown. Genes in blue have been studied or tested with NSCLC patient samples previously in other publications. Other genes are
found from our pathway-based approach. Nine membrane transporters that are included in this study are also shown in this diagram i.e. ABCC10,
ABCC5, ABCG2, SLC28A1, SLC28A2, SLC28A3, SLC29A1, SLC29A2 and SLC29A3. The six SNPs which belong to six genes (in red box) were selected
as final candidate SNPs in our study
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(OS) and progression free survival (PFS) in the NSCLC
patient cohort (n= 88). ABCG2 Q141K (c.421 C>A,
rs2231142) was found to be associated with increased me-
dian PFS. Patients with CA/AA genotype were shown to
have longer PFS compared to CC genotype i.e. 9.12 months
[95% CI 1.83-16.4 months] vs 5.51 months [95% CI 4.31-6.
71 months] respectively, HR 0.51 (95% CI 0.31-0.83), ad-
justed P= 0.007 (Table 2).
SLC29A3 S158F (c.473C >T, rs780668) was found to be

associated with increased OS. Patients with CT/TT
genotype were shown to have longer median OS compared
to CC genotype i.e. 17.64 months [95% CI 10.55-24.
73 months] vs 8.43 months [94% CI 1.21-15.64 months],
HR 0.49 (95% CI 0.27-0.88), adjusted P = 0.017 (Table 2).
Association with OS/PFS could not be found in four other
variants (Table 2).

ABCG2 Q141K and POLR2A N764K are correlated with
gemcitabine cytotoxicity
The ABCG2 Q141K variant (the CA/AA genotype) was
not only associated with improved PFS but was also
found to be associated with increased toxicity i.e. higher
risk of grade 3 or 4 thrombocytopenia (low platelet
count) compared to the wild-type genotype (CC) (70.7%
vs 44.7% respectively, HR 3.79 (95% CI 1.42-10.1) ad-
justed P = 0.008) (Table 3). Interestingly, the wild-type
CC genotype of POLR2A N764K variant was found to
be associated with a higher risk of grade 3 or 4
thrombocytopenia at 61.5% compared to 20.0% of the
SNP’s CT genotype, HR 0.18 (95% CI 0.03-0.98), ad-
justed P = 0.048 (Table 3).

Discussion
In this study, three out of the six candidate SNPs were
confirmed to be associated with NSCLC patient out-
come i.e. OS, PFS and side effect. To the best of our
knowledge, this is the first study showing association of
ABCG2 Q141K (rs2231142), SLC29A3 S158F (rs780668)
and POLR2A N764K (rs2228130) with NSCLC patient
outcome treated with gemcitabine-based chemotherapy.
ABCG2 belongs to the ABCG subfamily and ABC trans-
porter superfamily. The ABCG family has five members
i.e. ABCG2, ABCG1, ABCG4, ABCG5 and ABCG8.
ABCG2 consists of a nucleotide-binding domain (NBD)
in the amino terminus followed by six putative trans-
membrane domains (Fig. 3a). The ABCG2 Q141K SNP
is located at the NBD in the cytoplasmic part of the pro-
tein. The c.421A allele frequency of ABCG2 Q141K is
known as one of the common SNPs in Asian people
(about 26-35%) [32]. Moreover, this SNP has been
shown to be associated with increased risk of gout [33].
When we created our own detailed multiple sequence
alignment using all members in the ABCG family, we
found that glutamine in this position is well conserved

in ABCG2 orthologs but not in other members in the
family, therefore Q141 can be considered as an ABCG2-
subfamily specific conserved residue (Fig. 3b). ABCG2 is
the only member in this family that is not involved in
cholesterol efflux but it mediates the efflux of a wide
range of xenobiotics including gemcitabine, using ATP
as an energy source [34]. There is in vitro evidence that
ABCG2 Q141K decreases efflux activity and increases
intracellular gemcitabine levels and it has been known
to be associated with impaired ABCG2 activity by
lowering protein expression level or decreasing
ATPase activity [35]. The study supports the observa-
tion that ABCG2 itself plays a role in decreasing
intracellular concentration of gemcitabine. Another in
vitro study demonstrates significantly worse overall
survival for carriers of the ABCG2 421A-allele treated
with platinum-based drugs [36]. Mizuarai et al.
described that the ATPase activity of the Q141K vari-
ant was reduced approximately 1.3-fold compared to
the activity of the wild type ABCG2 in polarized
LLC-PK1 cell lines, resulting in increased drug accu-
mulation and decreased drug efflux in the variant
ABCG2-expressing cells [36]. According to BLAST
against PDB, a crystal structure of Malk, the ATP
subunit of the maltose transporter from E.coli (PDB:
1Q12 chain A) [37] was the top hit with a E-value of
2.0E-17. We used this template to do homology mod-
eling of the NBD region (position 41-299) of ABCG2
using MODELLER. The ABCG2 model is shown in
Fig. 3c. We used this model to calculate the stability
change upon mutation by FoldX and found the aver-
age free energy changes (ddG) when mutating Q to K
at position 141 of ABCG2 to be 1.93 kcal/mol with a
standard deviation (SD) of 0.10 kcal/mol. This sug-
gests that the SNP has a destabilizing effect on the
protein structure which is in agreement with a recent
finding that Q141 causes instability in the NBD [38].
The SNP is located in the loop region which is rela-
tively near the ATP binding site of the dimer and
changing the neutral side-chain glutamine to
positively-charged side-chain lysine may affect the
scaffold of the neighboring ATP binding site formed
by the homodimer (Fig. 3c). Therefore, it can be pro-
posed that if a patient has this variant and is treated
with gemcitabine, efflux of gemcitabine can be dimin-
ished resulting in an increase in the intracellular con-
centration of gemcitabine in cancer cells and it is
thus more effective at killing cancer cells. However,
since normal cells also have this SNP which causes
accumulation of the drug and other substrates
exported by this protein, this SNP is also linked to
increased toxicity in normal cells (Fig. 4).
Our study also showed for the first time that patients who

were carrying either the CT or TT of SLC29A3 473 C>T
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(rs780668) were associated with increased OS. SLC29A3 be-
longs to the equilibrative nucleoside transporter (ENT) fam-
ily, responsible for passive nucleoside transport and has 11
transmembrane helices (TMs) within the nucleoside trans-
porter domain (Pfam:PF01733) (Fig. 5a). SLC29A3 S158 is
likely to be a subfamily specific residue since serine at this
position is fully conserved from human to fish among
SLC29A3 orthologs but cannot be seen in other members in
the family (Fig. 5b). This residue may relate to its unique
function compared to other members in that it seems
to function in the inner membrane of mitochondria and/
or in the lysosome which requires an acidic pH environ-
ment and the position of the SNP seems to localize out-
side of the inner membrane of mitochondria [39]. For

homology modeling of SLC29A3, we had a problem re-
trieving correct TMs models using MODELLER with loop
refinement. The template used was a crystal structure of
the glycerol-3-phosphate transporter from E.Coli (PDB:
1PW4) chain A which has only 12% identity to our query.
This problem is common when we used MODELLER
which is more suitable for modeling soluble proteins than
membrane proteins. Therefore, we used another software
called Memoir [40] which is a homology modelling algo-
rithm designed specifically for membrane proteins. A
homology model from this software retrieved 11 TMs
with long N-terminus and long loop regions between
TM6 and 7 and the correct SNP’s position on the 3D
structure (Fig. 5c). According to FoldX, SLC29A3 S158F

a

b c

Fig. 3 Result of detailed SNP analysis of ABCG2 Q141K. a Domain architecture of ABCG2. ABCG2 contains a nucleotide-binding domain (NBD) in
the cytoplasmic region and a membrane-spanning domain transmembrane domain (MSD) consisting of 6 putative transmembrane segments.
ABCG2 Q141K is located in the NBD. b Multiple alignment using all five members in the ABCG subfamily. Orthologs of each member were retrieved
from OMA browser (omabrowser.org/). MAFFT with L-INS-i was used to create the multiple alignment. We used seven representative organisms to
show conservation of SNP’s region. HUMAN: H. sapiens, MACMU: M. mulatta, BOVIN: B. taurus, CANFA: C. familiaris, MOUSE: M.musculus, MONDO:
M.domestica, ANOCA: A. carolinensis. c Homology model of the nucleotide-binding domain of ABCG2 using the ATP subunit of the maltose transporter
from E.coli (PDB:1Q12 chain A) [37] as a template is shown in green. ATPs are shown in blue and Q141 is shown in red. Superimposition of the model
and chain B of the template (shown in purple) was done to show the homodimer of the region
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was predicted to have a significant destabilizing effect with
average ddG of 2.18 kcal/mol which could be explained by
the strong change from the polar side chain serine to the
larger and more hydrophobic side chain phenylalanine
(Fig. 5d). Besides potential involvement of the conserved
wildtype serine in the transport process, increasing the
hydrophobicity through the mutation at the outside inter-
face with the membrane may result in deeper insertion of
the affected helix in the membrane. SLC29A3 can trans-
port gemcitabine into organelles, e.g., mitochondria [39].
Moreover, SLC29A3 could be involved in the mitochon-
drial toxicity of nucleoside drugs [8]. Since SLC29A3
S158F is most likely to affect protein function, it may have
a significant impact on transporting gemcitabine into
mitochondria.
POLR2A (DNA-directed RNA polymerase II subunit

RPB1) encodes the largest subunit (out of 12 sub-
units) of RNA polymerase II (Pol II) which catalyzes
the RNA synthesis from DNA. POLR2A contains a
carboxy terminal domain (CTD) which is composed
of 52 heptapeptide repeats that are necessary for the
polymerase activity (Fig. 6a). POLR2A N764K is
located in the RNA polymerase’s domain 4 (Pfam:
PF05000) which is also known as the funnel domain.
The N764 is highly conserved among orthologs (Fig. 6b)
and both PolyPhen-2 and SIFT analyses predicted that the
SNP affects protein function (Additional file 1: Table S2).
We created a homology model of POLR2A without the

CTD using a crystal structure of yeast RNA polymerase II
(PDB:1I3Q chain A) as a template (%identity = 50.3%)
(Fig. 6c). The SNP is in the loop region and it was pre-
dicted to have a destabilizing effect by FoldX (average ddG
1.13 kcal/mol) (Fig. 6d). This could be due to the longer
and charged lysine side chain causing a change in the con-
formation of the local loop structure. In our study, inter-
estingly, wild type (CC) is found to be associated with
higher grade 3 or 4 thrombocytopenia when compared to
the CT variant (Table 3). Further analysis is needed to
understand the mechanism for this. There is an evidence
that dFdCTP is incorporated into RNA which is concen-
tration- and time-dependent, resulting in inhibition of
RNA synthesis [41]. In human parental NSCLC cells with
a different inherent gemcitabine resistance, sensitivity to
gemcitabine was related to differences in RNA corpor-
ation [42]. Since the SNP is found to be strongly deleteri-
ous from our analyses, it would be interesting to
investigate whether POLR2A itself plays a role in the gem-
citabine pharmacologic pathway and whether POLR2A
N764K SNP has any implications on RNA synthesis.
NT5C2 (5′-nucleotidase, cytosolic II) encodes a hydro-

lase that serves a crucial role in cellular purine metabolism
by acting primarily on inosine 5′-monophosphate (IMP) or
guanosine monophosphate (GMP). The 5′-nucleotidase is
a huge family of enzymes that catalyze the dephosphoryla-
tion of deoxy- and ribonucleoside monosphosphates to nu-
cleoside analogues and inorganic phosphates [43, 44].

Fig. 4 Proposed mechanisms of ABCG2 Q141K SNP and patient outcome. NSCLC patient who is treated with gemcitabine and have ABCG2
Q141K either heterozygous or homozygous allele could increase their survival because of accumulating more gemcitabine inside cancer cells and
is thus more effective in killing cancer cells. However, probability of increasing toxicity can occur since other substrates of ABCG2 can be
accumulated inside normal/healthy cells and thus cause cell death. These healthy cells can include cells in the bone marrow that produce blood
e.g. platelets
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NT5C2 is known to dephosphorylate monophosphorylated
gemcitabine. The NT5C2 D549 is the first charged
amino acid in the last 13 acidic residues on the C-
terminus of the protein (Fig. 7a). A study in 1999
proved the importance of the highly acidic C-
terminus in NT5C2 protein using cDNA constructs
encoding proteins lacking either N- or C-terminus
and obtained the kinetic and molecular characteristics
of the recombinant proteins [45]. When the last 13
acidic residues on the C-terminus were eliminated,
there was a drastic reduction in the catalytic compe-
tence of the enzyme by lowering both the substrate

affinity and the specific productivity. Furthermore, the
capability of the protein to form a tetramer was sig-
nificantly compromised. From the experiment above,
it was concluded that the region of glutamic and
aspartic acid residues in the C-terminus of the en-
zyme is necessary for the complete function of
NT5C2. Another study, on bovine NT5C2 found that
the C-terminus is perhaps involved with the modula-
tion of enzyme function [46]. In our detailed SNP
analysis, the D549 is well conserved among orthologs
of NT5C2 (Fig. 7b) but is not conserved throughout
the NT5C enzyme family (data not shown). D549E

a c

d

b

Fig. 5 Result of detailed SNP analysis of SLC29A3 S158F. a Domain architecture of SLC29A3. The protein has 11 transmembrane helices and
SLC29A3 S158F (red lollipop) lies between TM3 and TM4 which is localized extracellularly. Residues 169-473 correspond to the nucleoside
transporter domain (Pfam:PF01733). b Multiple alignment using all four members in the SLC29 gene family i.e. SLC29A1-4. Orthologs of each
member were retrieved using Orthologue search on ANNOTATOR [25]. MAFFT with L-INS-i was used to create the multiple alignment. c
Homology model of SLC29A3 created by Memoir based on the template of a crystal structure of the glycerol-3-phosphate transporter from E. coli
(PDB ID: 1PW4 chain A). This template was retrieved using HHPRED against PDB on ANNOTATOR [e-value = 1.7e-08]. d Screen shot of the FoldX
result showing wild type and after mutation. The SNP was predicted to be stabilizing on protein structure (average ddG run over 5
times = − 1.14 kcal/mol SD = 0.04)
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was predicted as deleterious by both PolyPhen-2 and
SIFT. However, D and E are both negatively charged
amino acids and the following acidic C-terminus
shows a mixed pattern of the two so it is not mech-
anistically clear how this mutation could alter the en-
zyme activity of NT5C2. In agreement with this, we
do not find significant correlations with survival or
toxicity for NT5C2 D549E.
HELB T980I and CTDP1 T221M, unlike the other

four SNPs that we predicted to directly affect the gemci-
tabine pharmacologic pathway, were selected because
they could potentially affect the pathway indirectly in
order to establish if more remotely related SNPs are still
useful candidates for further studies. According to our
criteria, HELB T980I passed three criteria i.e. significant
results in SIFT, PolyPhen-2 and high MAF in Singapor-
ean Chinese (Additional file 1: Table S2) while CTDP1
T221M passed two criteria (borderline) i.e. the SNP is in
a domain region and has significant FoldX stability
change (Additional file 1: Table S2). HELB T980I lies

close to the phosphorylation sites in the phosphorylation
regulated subcellular localization (PSLD) domain at the
C-terminus of the protein. The PSLD domain has been
suggested to play a significant role in regulating the sub-
cellular localization of HELB [47]. The same study also
suggested a possible role of HELB in DNA repair.
Another study gives further evidence that HELB is re-
cruited by Replication Protein A to mitigate replication
stress [48]. So, we hypothesized that the SNP could im-
pair HELB’s DNA replication stress mitigating effect of
gemcitabine-induced DNA damage which could lead to
reduced recovery from gemcitabine-induced replication
stress, and hence to a better anti-cancer activity of gem-
citabine. CTDP1 dephosphorylates a phosphorylated C-
terminal domain of POLR2A to facilitate Pol II recycling
for transcription [49]. There is evidence suggesting that
CTDP1 may play a role in DNA damage response as
well [50]. However, from our clinical results, we could
not see any correlation between these two SNPs and the
patient outcome. Therefore, it can be suggested that

a

b c

d

Fig. 6 Result of detailed SNP analysis of POLR2A N764K. a Domain architecture of POLR2A. b Multiple alignment of POLR2A. Orthologs of POLR2A
were retrieved using Orthologue search on ANNOTATOR [25]. MAFFT with L-INS-i was used to create the multiple alignment. c Homology model of
POLR2A was created by MODELLER with loop refinement using a crystal structure of yeast RNA polymerase II (PDB:1I3Q chain A) as a template. This
template was retrieved using BLAST against PDB on ANNOTATOR [e-value = 0.0]. d Screen shot of the FoldX result showing wild type and after
mutation. The SNP was predicted to destabilize protein structure (average ddG run over 5 times = 1.13 kcal/mol, SD = 0.09)
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when we choose SNPs in the final step, we should ex-
pect a high chance for correlation with drug response
only for those that are affecting the pharmacologic path-
way directly.

Conclusions
Overall, our bioinformatics approach can be used to se-
lect a small number of potential causative SNPs that can
be rationalized with molecular mechanisms of their ef-
fects. Our workflow can also be applied to any pathway
of interest that could affect other phenotypes. Nowadays,
using GWAS to find SNPs associated with common dis-
eases or adverse drug reactions are the norm but even
though thousands of case samples have been used, one
review found that about 30% of the results lead to a null
finding [51]. Furthermore, significant GWAS hits are
often not easily explainable to have functional effects e.g.
when they are intronic or synonymous SNPs. Although
our study may be limited in sample size, we managed to
find that three out of six final candidate SNPs are associ-
ated with patient outcome. However, more association
studies and possibly molecular and cellular studies are
needed to further establish the value of these three SNPs
as biomarkers of patient outcome. While we have to ac-
knowledge that this approach of selective filters does not
guarantee to find all SNPs involved in a studied pheno-
type, the main benefit is that one can reduce the space

of possible candidates to a small experimentally tractable
number with higher chance of being relevant. We do be-
lieve that other candidate SNPs that passed three out of
five criteria would also be potential candidates to be
tested further. We hope our approach and findings will
pave the way to more meaningful biomarkers and per-
sonalized treatment options in the future.

Additional file

Additional file 1: Table S1. Pyrosequencing primers of the six final
candidate SNPs. Table S2. Detailed result of the 77 nsSNPs (in separated
Excel file). Table S3. Genotyping result of the six final candidate SNPs for
90 NSCLC patient samples. (37 zip)
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