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Human diseases are abnormal medical conditions in which multiple biological components are complicatedly involved.
Nevertheless, most contributions of research have been made with a single type of genetic data such as Single Nucleotide
Polymorphism (SNP) or Copy Number Variation (CNV). Furthermore, epigenetic modifications and transcriptional regulations
have to be considered to fully exploit the knowledge of the complex human diseases as well as the genomic variants. We call
the collection of the multiple heterogeneous data “multiblock data.” In this paper, we propose a novel Multiblock Discriminant
Analysis (MultiDA) method that provides a new integrative genomic model for the multiblock analysis and an efficient algorithm
for discriminant analysis.The integrative genomicmodel is built by exploiting the representative genomic data including SNP, CNV,
DNAmethylation, and gene expression.The efficient algorithm for the discriminant analysis identifies discriminative factors of the
multiblock data. The discriminant analysis is essential to discover biomarkers in computational biology. The performance of the
proposed MultiDA was assessed by intensive simulation experiments, where the outstanding performance comparing the related
methods was reported. As a target application, we applied MultiDA to human brain data of psychiatric disorders. The findings and
gene regulatory network derived from the experiment are discussed.

1. Introduction

Human diseases involve complex processes that include
interactive actions of biological multiple layers such as
genetic, epigenetic, and transcriptional regulation. Conduct-
ing research based on a single type of biological data produces
insufficient results to fully exploit the knowledge of the
complex human diseases. The prior research shows that it
is essential for the study to be based on a comprehensive
consideration of the multiple biological data to grasp an
in-depth understanding of the complex mechanisms of the
human diseases and the identification of disease markers.
The recent advances of high-throughput technologies such
as DNA microarray and sequencing technologies efficiently
profile various types of genomic data. The genomic data
include Single Nucleotide Polymorphism (SNP), Copy Num-
ber Variation (CNV), DNA methylation (DM), and gene
expression (GE). Integrative genomic analysis of the hetero-
geneous genomic data plays an important role in profiling

a global view of a biological system as well as identifying
significant markers of the human diseases.

However, most research has focused solely on investiga-
tions of a single type of the genomic data. Genome-Wide
Association Studies (GWAS) examine genetic loci which are
associated with a trait (e.g., major diseases) using the SNP
data [1, 2]. GWAS normally compare the SNP arrays of
two groups, disease (case) and normal (control) samples. If
a genetic variation on a locus with the disease samples is
statistically significant to the controls, the SNP is considered
associated with the disease, whereas expression Quantitative
Trait Loci (eQTL) studies have been actively done to identify
genetic loci that regulate gene expression [3]. Combining the
gene microarray data with GWAS not only enables the cap-
ture of gene regulatory interactions but also provides insight
into the genetic mechanism that regulates gene expression
variations. However, both GWAS and eQTLmapping studies
still remain as a “missing heritability” problem [4].
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In addition to SNP, Copy Number Variation (CNV) and
DNA methylation (DM) have also been highlighted as key
factors that affect the gene expression regulation. CNV is a
structural alternation of DNA in which specific regions of the
genome are deleted or duplicated on chromosomes. Although
CNV is frequently observed even in healthy individuals, it is
hypothesized that the variants may cause diseases by directly
affecting gene dosage and gene expression [5, 6]. Specifi-
cally, whole-genome association studies of the relationship
between CNV and diseases reported that gene expression
levels in CNV regions are strongly related to the deletion
or duplication of the regions [6]. Typically, the deletion of
either particular regions within a gene or regulatory regions
of a gene may result in a lower gene expression than what is
normally expressed. DM is an epigenetic modification that
occurred by the addition of methyl group to the cytosine or
adenine of DNA. DM inhibits transcription of the genes with
high levels of 5-methylcytosine in their promoter region or
recruits proteins such as histone deacetylases that canmodify
histones [7, 8].The functionality ofDMconsequently changes
the gene expression levels even on the same DNA bases.

Thus, recent research has actively extended GWAS and
eQTL mapping studies to the integrative association stud-
ies with multiple types of genomic data. Most integrative
genomic research focuses on identifying genetic, epigenetic,
or posttranscriptional factors that control gene expression
regulation (or microRNA) by considering the complex inter-
actions of SNP, CNV, and DM [9–11]. Specifically, the Cancer
Genomic Atlas [9] conducted large-scale multidimensional
analysis with SNP, CNV, DM, and GE to provide compre-
hensive genomic characterizations for brain cancer. In Aure
et al.’s work [10], the combination effects of CNV and DM
were examined to identify the association with alterations of
miRNAexpression in breast tumors.Wagner et al. [11] studied
the relationship between SNP,DM, andGE viamultiple eQTL
analysis.

Most of the integration approaches have used step-
by-step processes. Ordinarily, approaches filter candidate
markers by using statistical techniques at the first step and
find the final markers that satisfy certain criteria at the
remaining stages [12–15]. This type of integration method
oftenmakes increased “type II errors” at each step, that is, fails
to find informative markers by incorrectly identifying them
as insignificant. Moreover, they do not consider interaction
effects of the multiblock data. Mechanism was not consid-
ered.

Hence, research has recently started to shift toward
approaches using systematical models in order to integrate
and analyze the heterogeneous data comprehensively rather
than through simple step-wise processes [16–18]. Multiblock
methods of Partial Least Squares (PLS) and Generalized
Canonical Correlation Analysis (GCCA) are representative
methods. A derivative of a sparse version of PLS was
proposed by penalizing both features and sample dimen-
sions to identify “regulatory modules” [16]. Such PLS-based
methods, which maximize the covariance between latent
variables, often fail to detect significant factors when their
intensities are weak. Furthermore, the method lacks the
consideration of the discriminant analysis of the disease.

A sparse multiblock analysis method derived from Gener-
alized Canonical Correlation (SGCCA) was developed to
identify multiblock association models while considering the
relationship between the different data block such as cis-
regulated mutations [17]. This work builds a hybrid model
by combining both GWAS and eQTL models rather than a
multiblock integration model. The data integration approach
was suggested by utilizing multiple feature selectionmethods
such as Principal Component Analysis (PCA), PLS, and
LASSO [18]. They extracted the important factors using the
dimensional reduction and feature selection methods and
applied them onCox survival models. However, combination
effects of the multiblock data were ignored in this approach.

To tackle these limitations, we propose a novelMultiblock
Discriminant Analysis (MultiDA) method for the integrative
genomic study. The proposed method MultiDA makes the
following main contributions.

(i) A new integrative genomic model for the discrimi-
nant analysis is introduced by exploiting class infor-
mation.

(ii) A sophisticated optimal solution is developed to solve
the discriminant analysis problem in the integrative
genomic model.

First, we built a novel integrative genomic model for the dis-
criminant analysis. The class data is considered as one
block, and the total squared correlation including the class
block is maximized. The introduction of the class block to
the multiblock model enables us to perform discriminant
analysis in the integrative genomic model. Secondly, we
propose a sophisticated method to solve the discriminant
analysis problem in the new integrative genomic model. The
discriminant analysis is essential in identifying biomarkers
of human diseases in computational biology. Regardless, it
has been overlooked in the multiblock analysis. The efficient
algorithm for the discriminant analysis and assessment of its
performance are explored in this paper.

2. Methods

2.1. Notation. We suppose that there are 𝐽 multiblock data.
Themultiblock data are measured on𝑁 numbers of the same
set of observations. A block consists of a group of features
that share common properties or represent one aspect of the
sample. The multiblock data is denoted by X = {X

1
, . . . ,X

𝐽
}.

The 𝑗th block data X
𝑗
is 𝑃
𝑗
-dimensional zero mean column

vectors X
𝑗
∈ R𝑁×𝑃𝑗 . A matrix C = {𝑐

𝑗𝑘
| 𝑐
𝑗𝑘
∈ {0, 1}, 1 ≤

𝑗, 𝑘 ≤ 𝐽} is a binary matrix that determines the linkage
between the multiblock, where 𝑐

𝑗𝑘
= 1 if the block 𝑗 and

the block 𝑘 are connected or 0 if otherwise. In the proposed
integrative genomic model, SNP, CNV, DM, GE, and class
label (case or control) of the samples are considered as the
multiblock components. For simplicity, X

1
, X
2
, X
3
, X
4
, and

X
5
represent SNP, CNV, DM, GE, and class label, respectively.

Through this paper, we use 𝑖 for the index of the sample
and {𝑗, 𝑘} for the multiblock. (𝚤) is used to denote a column
vector of a matrix or an element of a vector. For instance,
X
𝑖(𝚤)

and 𝑎
𝑖(𝚤)

represent the 𝚤th column vector of the matrix
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Figure 1:The conceptual graphic representation of the integrative genomicmodel. A rectangle represents a manipulated variable, and a circle
represents a latent variable. The graphic representation illustrates the structure model that shows the relationship between SNP, CNV, DNA
methylation, gene expression, and disease phenotype.

X
𝑖
and the 𝚤th element of the vector a

𝑖
, respectively. Figure 1

illustrates the conceptual overview of the multi-block data
and framework.

2.2. Multiblock Discriminant Analysis. Multiblock Discrimi-
nant Analysis (MultiDA) builds a sparse associationmodel by
not only maximizing the total squared correlations between
the multiblocks but also taking into account the discrimina-
tive factors in themodel.MultiDA considers a linear subspace
which is a construction of low-dimensional basis of the data.
The linear subspaces of the multiblock, which maximize the
total squared correlations, identify the significant factors of
the association model with sparsity regularization.The linear
subspace (or latent variable) k

𝑗
of the 𝑗th block is represented

by

k
𝑗
= X
𝑗
𝛼
𝑗
, (1)

where 𝛼
𝑗
is a loading vector. Then, we introduce sparse

regularization (elastic net penalization) on the loading vector
to reduce the chance of including insignificant variables and
to improve their interpretation.The sparse regularization has
its advantage especially when the number of features is much
larger than the sample number (𝑁 ≪ 𝑃

𝑗
).Therefore, the basic

objective function can be represented as

argmax
𝛼𝑗

𝐽
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𝑗
X
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= 1,

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗

󵄨󵄨󵄨󵄨󵄨
≤ 𝑡
1
,

󵄩󵄩󵄩󵄩󵄩
𝛼
𝑗
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2

≤ 𝑡
2
, 𝑗 = 1, . . . , 𝐽,

(2)

where | ⋅ | and ‖ ⋅ ‖2 represent ℓ
1
-norm and ℓ

2
-norm of

the vectors, respectively, and 𝑡
1
and 𝑡

2
are the shrinkage

parameters that determine the sparsity. Note that the basic
objective function is equivalent to the Sparse Generalized
Canonical Correlation Analysis (SGCCA) [17]. Since the
integrative genomic model aims to represent gene expression
regulated by the combinations of SNP, CNV, and DM, the
matrix C can be defined as

C =

[
[
[
[
[
[
[
[

[

0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

1 1 1 0 1

0 0 0 1 0

]
]
]
]
]
]
]
]

]

. (3)

We further consolidate the model by (1) introducing a
weight matrix of the correlation for the balance of the model
and (2) providing discriminant analysis in the integrative
genomicmodel.We also provide the sophisticated solution of
the model while SGCCA heuristically estimates the optimal
solution by following Wold’s algorithm in the previous work
[17].

2.2.1. Weight Matrix for the Balance of the Model. The weight
matrix of the correlation between the multiblocks, d = {𝑑

𝑗𝑘
|

𝑑
𝑗𝑘
∈ R, 1 ≤ 𝑗, 𝑘 ≤ 𝐽}, is introduced in the model.

In the original multiblock model, the correlation between
gene expression and class label block tends to be overlooked.
Instead, the sum of the squared pairwise correlations of X

1
,

X
2
, X
3
, and X

4
contributes large portions. The correlation
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weight matrix D gives an equal balance of the total squared
correlations. In this paper, the weight matrix is defined as

D =

[
[
[
[
[
[
[
[

[

0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

1 1 1 0 3

0 0 0 3 0

]
]
]
]
]
]
]
]

]

, (4)

where the correlation between gene expression and class label
blocks is three times more weighted than others. Then, the
matrixD simply replaces the matrix C.

2.2.2. Discriminant Analysis. In the proposed integrative
genomic model, we need to find discriminative genes that
characterize diseases. However, the integrative genomic
model is comprised of combinations ofmultiple linear regres-
sion models. Thus, discriminant analysis such as Logistic
Regression (LR) and Linear Discriminant Analysis (LDA)
cannot be embedded into the integrative genomic model.
To solve this problem, we adapted the Discriminative Least
Squares Regression (DLSR) method proposed by Xiang et al.
[19]. DLSR was developed based on the linear regression
model, and it is proved that DLSR provides equal or superior
performance compared to other discriminant methods. The
basic concept of DLSR is to enlarge the distance between
classes by introducing slack variables. Whereas they consid-
ered a multi-class problem and developed its sparse version
with ℓ

2,1
-norm regularization in their work, we reformulated

its sparse method with elastic net penalization to suit our
own needs. In DLSR, the slack variable is introduced into the
ordinary linear regression problem:

Xa = y + b ⊙m, (5)

where y is a dependent variable (𝑦
𝑖
= {−1, 1}, y ∈ R𝑁), X is

a multivariate independent variable (X ∈ R𝑁×𝑝), and a is a
coefficient vector (a ∈ R𝑝). b is a direction of the class, where
its element 𝑏

𝑖
= −1 if 𝑦

𝑖
= −1 or 1 if otherwise (b ∈ R𝑝). The

Hadamard product operator ⊙ of the direction vector b and
the slack variable vector m determines the distance between
classes (m ∈ R𝑝).The optimal solution will be covered in the
next section.

2.2.3. The Objective Function of MultiDA. We finally obtain
the objective function of MultiDA:

argmax
𝛼𝑗

𝐽

∑

𝑗=1

𝐽

∑

𝑘=1,𝑗 ̸=𝑘

𝑑
𝑗𝑘

𝛼
⊤

𝑗
𝜒
⊤

𝑗
𝜒
𝑘
𝛼
𝑘
𝛼
⊤

𝑗
𝜒
⊤

𝑗
𝜒
𝑘
𝛼
𝑘

𝛼
⊤

𝑗
𝜒
⊤

𝑗
𝜒
𝑗
𝛼
𝑗
𝛼
⊤

𝑘
𝜒
⊤

𝑘
𝜒
𝑘
𝛼
𝑘

s.t. 𝛼⊤
𝑗
𝜒
⊤

𝑗
𝜒
𝑗
𝛼
𝑗
= 1,

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗

󵄨󵄨󵄨󵄨󵄨
≤ 𝑡
1
,
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𝛼
𝑗

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑡
2
, 𝑗 = 1, . . . , 𝐽,

(6)

where 𝜒
𝑗
is defined as

𝜒
𝑗
=
{

{

{

X
𝑗
+ b ⊙m if 𝑗 = 5

X
𝑗

if otherwise.
(7)

This setting enables one to perform discriminant analysis
between gene expression and disease blocks.

2.3. Optimization. The optimal solution of (6) can be
obtained by the Lagrangian function:

L = −

𝐽

∑

𝑗

𝐽

∑

𝑘=1,𝑗 ̸=𝑘

𝑑
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+

𝐽

∑

𝑗

𝑧
𝑗
(𝛼
⊤

𝑗
𝜒
⊤

𝑗
𝜒
𝑗
𝛼
𝑗
− 1) +

𝐽

∑

𝑗

𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗

󵄨󵄨󵄨󵄨󵄨

+

𝐽

∑

𝑗

(1 − 𝜆
𝑗
)

2

󵄩󵄩󵄩󵄩󵄩
𝛼
𝑗

󵄩󵄩󵄩󵄩󵄩

2

,

(8)

where 𝑧
𝑗

and 𝜆
𝑗

are the Lagrangian multipliers. The
Lagrangian function (8) is convex, although not differen-
tiable. Therefore, the local optimum of (8) provides a global
solution. The partial derivatives of the Lagrangian function
with respect to 𝛼

𝑗
and 𝜆

𝑗
are derived from

𝜕L

𝜕𝛼
𝑗

= −

𝐽

∑

𝑘

𝑑
𝑗𝑘
(𝛼
⊤

𝑗
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s
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𝑗
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(9)

𝜕L

𝜕𝜆
𝑗

= 𝛼
⊤

𝑗
𝜒
⊤

𝑗
𝜒
𝑗
𝛼
𝑗
− 1 = 0, (10)

where s
𝑗
is the vector of a

𝑗
’s sign. Although the stationary

equations have no closed form solutions, the optimal solution
can be estimated by an iterative algorithm.

We can make (9) simple with the inner component:

𝜐
𝑗
=

𝐽

∑

𝑘,𝑘 ̸=𝑗

𝑑
𝑗𝑘
(𝛼
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𝑘
. (11)

Then, by introducing the inner component 𝜐
𝑗
into (9), the

solution of 𝛼
𝑗
can be written as

𝛼
𝑗
= [𝑧
𝑗
(𝜒
⊤

𝑗
𝜒
𝑗
+
1 − 𝜆
𝑗

𝑧
𝑗
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−1

(𝜒
⊤

𝑗
𝜐
𝑗
− 𝜆
𝑗
s
𝑗
) . (12)

In (11), (𝛼⊤
𝑗
𝜒
⊤

𝑗
𝜒
𝑘
𝛼
𝑘
) is a squared correlation between the

latent variables of the 𝑖th and 𝑗th block, which is a scalar.
Therefore, the inner component is computed by 𝛼

𝑗
of the

previous iteration, and then new 𝛼
𝑗
is updated in iterations.

Equation (12) is the normal equation of the regression of
𝜐
𝑗
on 𝜒
𝑗
with ridge and shrinkage parameter [20]. The final
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solution can be obtained by using the Univariate Soft-Thresh-
olding (UST) method [21]:

𝛼
𝑗(𝚤)
= sign (𝜒⊤

𝑗(𝚤)
𝜐
𝑗
) (
󵄨󵄨󵄨󵄨󵄨󵄨
𝜒
⊤

𝑗(𝚤)
𝜐
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
− 𝜆
𝑗
)
+

, (13)

where sign(𝑥) returns a sign of 𝑥, that is, 1 if 𝑥 ≥ 0 or −1
if otherwise. (𝑥)

+
returns only positive values of 𝑥 (i.e., 𝑥

if 𝑥 ≥ 0 or 0 if otherwise). 𝜆
𝑗
can be obtained by 𝐾-fold

cross-validation that minimizes mean squared errors. The
parameter 𝑧

𝑗
can be ignored because the solution of 𝛼

𝑗
is

normalized by (10):

𝛼
𝑗
=
√𝑁𝛼
𝑗

󵄩󵄩󵄩󵄩󵄩
𝜒
𝑗
𝛼
𝑗

󵄩󵄩󵄩󵄩󵄩

. (14)

For the discriminant analysis between gene expression
and disease data blocks, the optimum of the slack variable
m and the loading vector 𝛼

4
can be estimated by solving the

following optimization problem:

argmax
𝛼4 ,m

1

2
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2
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where s is the sign of𝛼
4
and 𝛾 = 𝜐

5
+b⊙m.Thus, the equation

of 𝛼
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Finally, the optimal solution of 𝛼
4
for the discriminative

analysis is

𝛼
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= sign (𝜒⊤
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𝛾) (
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𝜆
4
is also determined by 𝐾-fold cross-validation that min-

imizes mean squared errors like other 𝜆
𝑗
’s. The optimal

solutions ofm are simply derived from [19]

m = max (b ⊙ (𝜒
4
𝛼
4
− 𝜐
5
) , 0) . (19)

The brief algorithm is described in Algorithm 1. In the algo-
rithm, 𝑟 represents a rank of the subspace, which determines
the dimension of the subspace. For instance, 𝛼𝑟

𝑗
is 𝑟th rank

of 𝛼
𝑗
. MultiDA optimizes the first rank subspace and iterates

the optimization until the multiblock has no information. In
lines 10–14 of Algorithm 1, Wold’s procedure guarantees the
convergence [22].

(1) For all block, normalize loading vectors
𝛼
0

𝑗
= √𝑁𝛼

0

𝑗
/|𝜒
𝑗
𝛼
𝑗
|

(2) 𝑟 = 1
(3) repeat
(4) for 𝑗 := 1 to 𝐽 do
(5) for 𝑘 := 1 to 𝐽 do
(6) if block 𝑘 is binary class data then
(7) estimatem and 𝛼

𝑗
by (18) and (19)

(8) update 𝜒
𝑘
= X
𝑘
+ b ⊙m

(9) end if
(10) if 𝑘 < 𝑗 then
(11) 𝜐

𝑗
= ∑
𝐽

𝑘=1,𝑘 ̸=𝑗
𝑑
𝑗𝑘
(𝛼
𝑟

𝑗

⊤
𝜒
𝑟

𝑗

⊤
𝜒
𝑟

𝑘
𝛼
𝑟+1

𝑘
)𝜒
𝑟

𝑘
𝛼
𝑟+1

𝑘

(12) else if 𝑘 > 𝑗 then
(13) 𝜐

𝑗
= ∑
𝐽

𝑘=1,𝑘 ̸=𝑗
𝑑
𝑗𝑘
(𝛼
𝑟

𝑗

⊤
𝜒
𝑟

𝑗
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𝑘
𝛼
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𝑘
)𝜒
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𝑟
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(14) end if
(15) Compute 𝛼𝑟+1

𝑗
by UST

𝛼
𝑗

𝑟+1

(𝚤)
= sign(𝜒

𝑗

⊤

(𝚤)
𝜐
𝑗
)(|𝜒
𝑗
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𝜐
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| − 𝜆
𝑗
)
+

(16) Normalize 𝛼𝑟+1
𝑗

𝛼
𝑟+1

𝑗
= √𝑛𝛼

𝑟+1

𝑗
/|𝜒
𝑗
𝛼
𝑟+1

𝑗
|

(17) 𝑟 = 𝑟 + 1

(18) end for
(19) end for
(20) until ∑𝐽

𝑗=1
𝛼
𝑟

𝑗
converges

Algorithm 1: Discriminant multiblock analysis.

3. Experiment Results

The goal of the assessment is to identify significant factors
of the integrative genomic model with the multiblock data,
specifically the discriminative factors of human disease. The
discriminant factors include disease-specific locations or
regions of SNP, CNV, DNAmethylation, and gene expression
against normal patients.

3.1. Simulation Study. We assessed the performance of the
proposed method MultiDA through simulated data. Simula-
tion data of various complexities were considered. Genera-
tion’s schemes of the simulation data for the assessment were
extended from the previous related works [16, 23].

Four generation functions of different complexity are
defined as shown in Table 1. Type

1
(𝜇) generates 𝑝-dimen-

sional normally distributed random variables of a givenmean
(𝜇) and a variance (I

𝑝×𝑝
), where I

𝑝×𝑝
is an 𝑝 × 𝑝 identity

matrix. Type
2
(𝜇, 𝛿) generates more complicated data than

Type
1
(𝜇). In Type

2
(𝜇, 𝛿), a random model with a threshold

(𝛿) is implemented with the function 1
𝛿
. Given a uniform

distributed randomvalue (𝑢), 1
𝛿
= 1 if𝑢 ≤ 𝛿 or 0 if otherwise.

Type
3
(𝜇, 𝜌) considers multicollinearity data in which more

than two variables are highly correlated. The matrix data are
generated by multivariate normal distribution N(𝜇,Σ

𝑝×𝑝
).

The covariance structure Σ
𝑝×𝑝

is built by the first order of
autoregressive process. Type

4
(𝜇, 𝜎) generates 𝑝-dimensional

normally distributed randomvariables from a givenmean (𝜇)
and a variance (𝜎).
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Table 1: Generation functions.

Function Model
Type
1
(𝜇) x = 𝜇 + 𝜖, 𝜖 ∼N(0, I)

Type
2
(𝜇, 𝛿) x = 𝜇 + 1

𝛿
+ 𝜖, 𝜖 ∼N(0, I)

Type
3
(𝜇, 𝜌) x ∼N(𝜇,Σ

𝑝×𝑝
)

Type
4
(𝜇, 𝜎) x ∼N(𝜇, 𝜎I

𝑝×𝑝
)

Table 2: Scheme of the simulation data.

Simulation data Generation model type Column index

X
1

x
𝑖
= Type

1
(2.4) 1 ≤ 𝚤 ≤ 5

x
𝑖
= Type

1
(−2.6) 6 ≤ 𝚤 ≤ 10

x
𝑖
= Type

2
(1, 0.6) 11 ≤ 𝚤 ≤ 40

x
𝑖
= Type

3
(0, 0.8) 41 ≤ 𝚤 ≤ 100

X
2

x
𝑖
= Type

1
(3) 1 ≤ 𝚤 ≤ 5

x
𝑖
= Type

1
(4) 6 ≤ 𝚤 ≤ 10

x
𝑖
= Type

3
(0, 0.9) 11 ≤ 𝚤 ≤ 60

x
𝑖
= Type

4
(2, 2) 61 ≤ 𝚤 ≤ 200

X
3

x
𝑖
= Type

1
(5) 1 ≤ 𝚤 ≤ 5

x
𝑖
= Type

1
(−3) 6 ≤ 𝚤 ≤ 10

x
𝑖
= Type

4
(0, 1) 11 ≤ 𝚤 ≤ 210

x
𝑖
= Type

3
(0, 0.9) 211 ≤ 𝚤 ≤ 300

The first three multiblocks (X
𝑗
∈ R𝑁×𝑃𝑗 , 1 ≤ 𝑗 ≤ 3)

were simulated by compounding the generation functions as
defined in Table 2, where 𝑃

1
= 100, 𝑃

2
= 200, 𝑃

3
= 300,

and𝑁 = 500. For instance, the first five columns of X
1
were

generated by Type
1
(2.4) and the following five columns were

by Type
1
(−2.6). The next 30 columns were generated by the

generationmodel with a threshold Type
2
(1, 0.6).The remain-

ing columns of X
1
were generated by the multicollinearity

random variables Type
3
(0, 0.8). Then, we considered the

multiblock linear model, X
4
= ∑
3

𝑗=1
X
𝑗
B
𝑗
+ Ξ, where B

𝑗
is a

𝑃
𝑗
×𝑃
4
loadingmatrix andΞ is a𝑃

𝑗
×𝑃
4
dimensional normally

distributed noise matrix (𝑃
4
= 50). We assumed that only

the first ten variables of each block are significant to explain
X
4
. The fifth block X

5
is class label block. Given a coefficient

vector B
4
∈ R𝑃4×1 (all zeros but the first ten), the probability

of disease 𝜋 was computed by using

𝜋 =
exp (X

4
B
4
)

1 + exp (X
4
B
4
)
. (20)

Then, the binary class label block was generated using the
Bernoulli distribution with the probability 𝜋.

The simulation study was examined with 50 replications
to assess the reproducibility. We compared the performance
of MultiDA with the related methods, Sparse Canonical
Correlation Analysis (SCCA) [24] and Sparse Generalized
Canonical Correlation Analysis (SGCCA) [17]. SCCA is a
two-block method that maximizes the correlation between
independentX and response variableY. In SCCA, the three
blocks of data were combined into a single block (X =

{X
1
,X
2
,X
3
}), and the block GE was considered as response

(Y = X
4
). The class label block was not considered in SCCA.

The multiblock method SGCCA was tuned to be compatible

with the proposed integrative genomic model. Note that the
same matrixCwas used in SGCCA, but SGCCA did not take
the discriminant analysis into account.

We examined the performance by howwell they correctly
identify significant factors of the integrative association
model. Given a ground truth, we computed a confusion ma-
trix and measured True Positive Rate (TPR), Positive Pre-
dictive Value (PPV), and Accuracy (ACCU). In the sparse
setting, the true negatives are relatively much larger than
false positives. Therefore, True Negative Rates (TNR) and
Negative Predictive Values (NPV) were not included in
this paper. The results of the simulation experiment are
illustrated in Figure 2.The proposedmethodMultiDA (0.93±
0.03) and the multiblock method SGCCA (0.93 ± 0.03)
outperformed SCCA (0.83 ± 0.24) in terms of TPR. It
supports that the multiblock methods reduce false negatives
that incorrectly identify the significant as the insignificant.
MultiDA appeared as the best performance in PPV and
ACCU.MultiDA produced 0.58±0.07 and 0.95±0.01 for PPV
and ACCU, respectively. Higher PPV values represent lower
false positives that incorrectly identify the insignificant as the
significant.ThePPV andACCUof SCCAwere 0.48±0.15 and
0.89 ± 0.14 and were 0.54 ± 0.08 and 0.94 ± 0.01 for SGCCA,
respectively.

3.2. Human Brain Data of Schizophrenia. Human brain data
were obtained from three major psychiatric disorders such
as schizophrenia (SZ), bipolar disorder (BP), and major
depression (DP) as well as from control group. Specifically,
39 samples of SZ, 35 samples of BP, 12 samples of DP,
and 43 samples of control were provided from the Stanley
Medical Research Institute. SNP, CNV, DNA methylation,
and gene expression data were acquired from the human
prefrontal cortex of the 129 samples in the preparation of this
experiment. For each individual, 10,760 SNPs after removing
highly correlated ones, 1,028 CNVs, 20,769 DNA methyla-
tions, and 19,767 gene expressions were examined. Due to
the recent research that reported that genetic effects may be
largely shared in major psychiatric disorders such as autism
spectrum disorder, attention deficit-hyperactivity disorder,
bipolar disorder, major depressive disorder, and schizophre-
nia, we considered those psychiatric diseases together and
performed MultiDA to identify discriminate factors against
the control [25, 26].

Themultiblock data was analyzed byMultiDA. As a result
of the analysis, 78 SNPs, 30 CNVs, 47DNAmethylations, and
35 genes were detected, where the high correlation between
the connections was found. The potential gene markers of
the psychiatric disorders were inferred from the result of
the proposed method. The genes physically located near the
selected SNPs and the genes corresponding to the result of
CNV and the DNA methylation were chosen. Significantly
observed genes among the results of MultiDA are listed in
Table 3, where the data source of the gene and literature
regarding the psychiatric disorders are described.

The gene regulatory network of the genes from the result
was searched by STRING database [27]. Among a number
of the retrieved interactions, we take note of one gene
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Table 3: The gene results fromMultiDA with psychiatric disorders.

Gene Chromosome Location Source ID MAF Reference
HTR7 10 10q21-q24 GE 7934970 [28]
APOE 19 19q13.2 DM cg14123992 [29]
TRPM1 15 15q13.3 DM cg18085517
EPHB1 3 3q21-q23 CNV CNP12652
NPY 7 7p15.1 CNV CNP2267 [30]
QKI 6 6q26 SNP rs1336225 0.18
SLC15A1 13 13q32.3 SNP rs9517421 0.17 [31]
NPAS3 14 14q13.1 SNP rs1124910 0.25 [32]
C15orf53 15 15q14 SNP rs1433876 0.29 [33]
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Figure 2: Performance comparison in simulation study: (a) True Positive Rate; (b) Positive Predictive Value; (c) Accuracy.
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Figure 3: The gene regulatory network searched with the gene results by STRING database. The legend shows the data source of the gene.

regulatory network illustrated in Figure 3. The interaction
network consists ofHTR7,ADCY8,HTR1F,NPY,CA2,RYR2,
QDPR, AKR1D1, and CES1 gene. HTR7 is inferred from the
gene expression set, HTR1F and CA2 are from the DNA
methylation expression, NPY and CES1 are from the CNV,
and the others are from the SNP data.The negative coefficient
of HTR1F in the model may support the widely accepted
notion that DNA methylation suppresses gene regulation
impeding the binding of transcriptional proteins to the gene
[34]. In particular, the HTR7 gene (5-hydroxytryptamine
receptor 7) is a major neurotransmitter in the central nervous
system, and a number of literatures related to bipolar and
schizophrenia disorder are reported [28]. Interestingly, the
HTR7 gene was found in the gene expression data block in
this study, while the other previous researches reported the
gene with GWAS on the SNP data block. The gene may have
strong incorporated interactions with other heterogeneous
data, which is consequently considered to be significant in the
integrative model. It supports the strength of the integrative
approach. Moreover, we found that HTR7 and NPY are
in the same pathway, which is neuroactive ligand-receptor
interaction, where the NPY gene is also a neurotransmitter
in the brain and is known to play an important role in
the emotional process [30]. A large number of psychiatric
disorder susceptible genes were associated with this pathway
[25].ADCY8, which interacts with bothHTR7 andNPY, may
be potentially a susceptibility gene that causes the psychiatric
disorders. In previous research [35], they found that ADCY8

is a susceptibility gene for avoidance behavior on mouse and
also found that it indirectly induces the susceptibility on
human mood disorders. Our result supports their claim.

4. Conclusion

In this paper, we developed the novel Multiblock Discrim-
inant Analysis method in order to dissect the mechanism
of complex human disease using multiple genetic data. The
genomic association study with single type data may fall
short of identifying the mechanisms of the diseases. On the
other hand, MultiDA enables comprehensive analysis using
multiple genetic data. Moreover, MultiDA provides analysis
for the special setting of binary class data, where it greatly
detects discriminative factors in the integrative genomic
model. The simulation experiments support the outstanding
performance of the proposed methods. As a target applica-
tion, psychiatric disorder disease data, including SNP, CNV,
DNA methylation, and gene expression, were analyzed in
the integrative genomic model. Among the large number of
variables of each block, candidate biomarkers were proposed
as significant components of the diseasemechanism.Thepro-
posed methods capture the global profile of the mechanism
that conventional single or two block methods fail to detect.
This promising tool for the integrative genomic study can
provide flexible extensibility for new types of data in the era,
superseding new high-throughput technologies.
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