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Abstract
A long tradition of analysing ordinal response data deals with parametric models, 
which started with the seminal approach of cumulative models. When data are 
collected by means of Likert scale survey questions in which several scored items 
measure one or more latent traits, one of the sore topics is how to deal with the 
ordered categories. A stacked ensemble (or hybrid) model is introduced in the pro-
posal to tackle the limitations of summing up the items. In particular, multiple items 
responses are synthesised into a single meta-item, defined via a joint data reduc-
tion approach; the meta-item is then modelled according to regression approaches 
for ordered polytomous variables accounting for potential scaling effects. Finally, a 
recursive partitioning method yielding trees provides automatic variable selection. 
The performance of the method is evaluated empirically by using a survey on Dis-
tance Learning perception.
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1  Introduction

Ratings are widely collected and analysed types of data in many scientific fields, 
such as social and behavioural sciences, public health and medical studies. Exam-
ples of these ordinal responses include variables measuring performance (poor, 
average, excellent), attitude (disagree, neutral, agree), evaluation (not satisfied, 
neutral, very satisfied), and perception (lowest, average, highest), among oth-
ers. More than three response alternatives are also generally considered fostering 
the debate on the optimal number of categories (see, e.g., the seminal papers by 
Cox III 1980; Preston and Colman 2000).

A vast literature is devoted to the analysis of ordinal responses (see, e.g., 
McCullagh 1980; Ananth and Kleinbaum 1997; Tutz 2020a, 2012); a comprehen-
sive review is in Agresti (2010). Sometimes multiple items concerning ratings are 
provided to measure one or more underlying latent constructs (i.e., psychometric 
scales), leading to more accurate research findings. The analysis is based on the Item 
Response Theory (IRT) that seeks to model how constructs manifest themselves in 
terms of observable item responses. Confirmatory factor analysis, and the more gen-
eral family of structural equation models, provide a powerful method for examining 
hypothesized relations among a set of measured ordinal variables. The most com-
mon method fits the model to polychoric correlations using either weighted least 
squares (Jöreskog 1994; Muthén 1984) or robust weighted least squares (Muthén 
et al 2009). The taxonomy of polytomous item response models for ordinal data pro-
posed by Tutz (2020b) is based on exploiting how ordinal models can be devised by 
using (conditional or unconditional) dichotomisations of response categories.

Alternative approaches assume metric methods coming up the data as on 
interval scale or summing up the scores of the considered items (see Liddell and 
Kruschke 2018, for a critical review).

In our contribution, an item reduction analysis is conducted that defines a sin-
gle meta-item taking into account both: (i) the items association structure; (ii) the 
heterogeneity characterising the respondents. The item reduction analysis consists 
of a suitable joint dimension reduction and clustering procedure: the meta-item cor-
responds to the obtained cluster membership. When the items belong to a unidimen-
sional scale, that is, they measure one common latent trait, the obtained meta-item 
is, de facto, an ‘ordinal response’. Therefore, the meta-item is to be analysed within 
the framework of cumulative models or other common mixture models introduced 
for ordinal outcomes. In particular, we consider a regression model for ordered poly-
tomous variables accounting for potential scaling effects to investigate the respond-
ents’ perceptions. A recursive partitioning method yielding two trees is used to 
select the main variables. The method yields separate trees for the two influential 
location and scale terms following the strategy in Hothorn et al (2006): the size of 
each tree is controlled for, according to the significance of the splits. In particular, 
at each split, tests for cumulative regression models are used: by cutting the trees 
at non-significant splits, the procedure implicitly selects variables. Alternative clas-
sical ordered response models are also examined for completeness. The proposed 
approach stacks data reduction and modelling, and it is referred to as hybrid.
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The performance of the method is evaluated empirically with data collected in 
a 2020 survey aimed to study the impact of Distance Learning (DL) on students’ 
perception during the Covid-19 pandemic. To investigate the faceted DL impact on 
students, we examine three different scales proposed and validated in the literature 
and submitted in the survey: the scale proposed by Amir et al (2020) to study the 
perspective of DL higher education students, the ‘student stress scale’, proposed and 
validated by Zurlo et al (2020), and the ‘fear of Covid-19’ scale, proposed by Mah-
mud et  al (2021), that investigates the future career anxiety. In administering the 
survey, no approval of an ethics committee was needed as it was not a clinical trial, 
and, therefore, the health of the respondents was not subject to any risk. It is worth 
noting that no well-known and established theory relates the three scales. Nor is 
the analysis of the relationship among the different scales the goal of this research. 
Instead, the central research hypothesis is that DL, measured through a set of items, 
depends on a series of variables, some of which are attributable to items of psycho-
metric scales, while others correspond to socio-demographic features. Therefore, the 
first objective is to obtain an optimal synthesis of the DL that also considers the 
heterogeneity. The meta-item, obtained via the joint data reduction, is a synthesis of 
the DL perception scale, and it is regressed on a selection of the items from the other 
scales, and on some demographics.

The remainder of the paper is organised as follows: Sect.  2 dips into the main 
content of the motivating example; Sect. 3 briefly reports the joint data reduction 
approaches, whereas Sect. 4 describes how the meta-item is obtained; in Sect. 5 one 
of the most used approaches to model the obtained ordinal response is reviewed. 
Some details on the selection of the variables and an alternative competitor to model 
the dispersion effect are also briefly outlined. Section 6 illustrates the main results 
and final remarks conclude the paper.

2 � Motivating example

The Covid-19 pandemic had a major impact on all human activities and education 
makes no exception. Distance Learning (DL) became the only way to consistently 
provide an education to students of any age and level. The sudden switch from class-
room learning to DL surely had an impact on the students learning experience. The 
technical setbacks, such as poor internet connection or lack of tools (computers, 
tablets), are relatively easy to identify, and their effects on the learning process are 
rather obvious. It is more difficult to study the effects of DL transition on students 
from a social and psychological perspective. In fact, it is fair to consider the level 
of adaptation of the students to the DL process as related to the stress for the fear 
of contagion, the social limitations, and the anxiety for the future career. In order 
to investigate the faceted DL impact on students, a survey was conducted in 2020 
by the Department of Political Sciences, University of Naples Federico II. It refers 
to 1589 students from 60 Italian Universities, with the University of Naples and 
University of Bologna being the most represented, with a 25.9% and 18.5% share, 
respectively. Some results concerning the survey are reported in Iannario et  al 
(2021), Bacci et al (2022), Iodice D’Enza et al (2021), and Iannario et al (2022).
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The survey is structured in four item-blocks: the first block contains 19 items on 
students demographics and their proximity to Covid-19 cases; the second block is 
of 12 items that measure the DL perception of the students; the third and fourth 
blocks, respectively with 7 and 5 items, aim at measuring students’ stress and anxi-
ety induced by Covid-19. The aim to study the survey results via a stacked ensem-
ble model motivates our approach. In particular, the idea to synthesise the DL scale 
and to analyse the drivers of other scales and students demographics prompted the 
assessment.

Items in the DL scale are reported in Table 1; the scale, as previously mentioned, 
consists of twelve items on a 4-point Likert scale ranging from 0 (Strongly disagree) 
to 3 (Strongly agree).

3 � From sequential to joint data reduction

To synthesize the students perspective on DL we apply on the DL-related items a 
joint data reduction approach. Data Reduction (DR, see e.g., Farcomeni and Greco 
2016; Markos et al. 2019) is a general definition that encompasses well-established 
unsupervised learning methods, such as dimension reduction and clustering. In par-
ticular, assuming the data structure at hand to be a table with variables on columns 
and observations on rows, dimension reduction is referred to as column-wise DR: 
the starting variables are (linearly) combined, and a reduced set of components that 
preserve most of the original information is obtained. Similarly, clustering methods 
define a reduced set of prototype objects (centroids), each representative of a group 
of homogeneous observations; clustering methods can, therefore, be referred to as 
row-wise DR in that the observations are represented by a reduced set of prototypes.

It is common practice to apply column and row-wise DR one after the other. 
Such a two-step approach is referred to as tandem analysis, and its application often 

Table 1   The distance learning scale

Code Masurement items

Q1 Clarification sessions are more suitable delivered in distance learning
Q2 Assessment is more suitable delivered in distance learning
Q3 I did not experience any problems during distance learning
Q4 I did not experience stress during distance learning
Q5 I had more time to prepare learning materials before group discussion with distance learning
Q6 I had more time to review all of the learning materials after class with distance learning
Q7 Distance learning gives similar learning satisfaction than classroom learning
Q8 Distance learning could be implemented in the next semester
Q9 Distance learning gives motivation for self-directed learning and eager to prepare learning 

materials before group discussion 
Q10 Communication with lecturers and fellow students is easier with distance learning
Q11 I like distance learning more than classroom learning
Q12 I study more efficiently with distance learning
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produces satisfactory results: the dimension reduction removes redundancies and 
noise from the original data and eases the clustering step.

Consider � to be a n × p data matrix where n is the number of observations and p 
is the number of continuous variables. Without loss of generality, assume that � is 
column-wise centered and that the variables are equally scaled. The first step of the 
tandem approach consists of a principal component analysis (PCA, Jolliffe 1986). 
The PCA solution is obtained by optimising the objective function

where ‖⋅‖ denotes the Frobenius norm, � = n1∕2�̂Σ̂ and � = p1∕2�̂ are the d-dimen-
sional row principal coordinates (observations scores) and column standard coor-
dinates (variables scores), respectively. Furthermore, �̂, �̂ and Σ̂ contain the first d 
left and right singular vectors, and the d largest singular values resulting from the 
singular value decomposition

As stated by the Eckart and Young theorem (Eckart and Young 1936), ��′ repre-
sents the best rank d approximation of � , in the least squares sense.

In the second step of the tandem analysis, a K-means clustering (MacQueen 
1967) procedure is applied on � , the observations scores matrix, so that the follow-
ing objective function is optimised

where �K is the indicator coding of the cluster membership, and

is the cluster centroid matrix. It is clear that the identification of the cluster alloca-
tion in step two depends on the low-dimensional scores obtained in step one. On the 
other hand, the low-dimensional scores are computed irrespective of the underly-
ing cluster structure. As long as most of the variables at hand discriminate among 
the clusters, the tandem analysis works well; if, instead, there is a subset containing 
variables that are pairwise correlated on the whole dataset, the dimension reduc-
tion step will not preserve the cluster structure, and the tandem analysis fails. This 
tandem analysis limitation is known in the literature as the cluster masking problem, 
and illustrative examples can be found (see, e.g., Vichi and Kiers 2001).

To overcome the limitations of the tandem analysis, joint DR (JDR) methods seek 
for a solution that is optimal for both the dimension reduction and the clustering 
steps: to this end, JDR methods consist of an iterative procedure that alternatively 
optimise one step given the other. Different JDR methods have been proposed for 
continuous (De Soete and Carroll 1994; Vichi and Kiers 2001), categorical (Hwang 
et al 2006) and mixed-type variables (see, van de Velden et al 2019, for a review). 
The focus is on reduced K-means (RKM, De Soete and Carroll 1994), and on its cat-
egorical analogue cluster correspondence analysis (CCA, van de Velden et al 2017).

(1)min�PCA(�,�) =
‖‖� − ��

�‖‖
2
,

(2)n−1∕2�p−1∕2 = �Σ��.

(3)min�KM

(
�K

)
= ‖‖� − �K�

‖‖
2
,

� =
(
�
�
K
�K

)−1
�
�
K
�
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A classic example of JDR method for continuous variables is RKM. The RKM 
aims to solve the simultaneous dimension reduction and cluster analysis problem 
so that both cluster allocation and dimension reduction maximise the between 
variance of the clusters in the reduced space. The RKM objective function is

An iterative alternating least squares procedure is used to obtain both the cluster 
allocation of the observations and the variable weights.

4 � Ordinal response via JDR for survey data

In survey data, the item responses are coded as categorical variables, therefore 
RKM is not suitable. The categorical counterpart of RKM is CCA, which is the 
method of choice for the JDR of the DL scale at hand. In particular, each DL 
item is coded as an indicator matrix �j of size n × pj : each row corresponds to a 
respondent, and the columns represent the pj levels of agreement for the jth item. 
Note that this is the same coding used for the cluster membership variable, which 
has K levels, and the corresponding indicator is the n × K matrix �K . Observed 
responses are coded by ones and all other elements are zero. Data from multiple 
items are collected in the block matrix � =

[
�1,… ,�p

]
 . The application of CCA 

on the DL-related item leads to the definition of a cluster membership variable, 
and the CCA objective is

where � = �n − �n�
�

n
∕n is a centring operator, �⋆ =

1√
np
�

1∕2
z � , �z = diag

(
���

)
 , � 

is the item weights matrix.
Comparing Formula (4) and Formula (5), we see that CCA can be defined as an 

RKM of a centred and standardised indicator matrix. The standardisation operator 
for categorical variables is the squared root of the margins. Typically, in CCA, the 
loadings are standardised accordingly. The observations scores are obtained indi-
rectly, according to the obtained variable quantifications, formally

Since it is not possible to minimise the loss function with respect to �⋆ and �K 
simultaneously, an alternated least squares iterative procedure is used. Given a user-
defined K, the cluster allocation �K is randomly initialised, then the procedure iter-
ates over the following two steps

•	 for fixed �K , find �⋆ that minimises the objective in (5)
•	 for fixed �⋆ , update �K via a K-means on the observations scores �.

(4)min�RKM

(
�,�K

)
= ‖‖� − �K��

�‖‖
2
.

(5)min𝜙CCA

(
�
⋆,�K

)
=
‖‖‖�

−1∕2
z

�� − �K��
⋆�‖‖‖

2

s.t. �
⋆�
�
⋆ = �d,

(6)� =

√
n

p
���

−1∕2
z

�
⋆.
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Convergence is guaranteed as the objective function value does not increase from one 
iteration to the next one. As in K-means, however, multiple random starts are needed to 
limit the risk of local minima.

The meta-item corresponds to the cluster membership, with levels ordered accord-
ing to the cluster characterisation. To measure the cluster characterisation due to the jth 
item, we consider the K × pj standardised residual matrix

�K = diag(��
K
�K) is the cluster-sizes vector, �j = diag(��

j
�j) and �K = diag(�K) . 

The kth row of Rj indicates the deviation of the observed within cluster item fre-
quency distribution from the distribution in the case of independence. In other 
words, if the frequency distribution of the item j is the same within each cluster, the 
item j and the cluster membership variable are independent, and the corresponding 
Rj is filled with 0’s. On the contrary, if the lth level of item j is particularly frequent 
(or, infrequent) then rkl is high (in absolute value), and the item level in question 
highly characterise the kth cluster.

5 � Models for ordinal response

The obtained meta-item is a synthesis of the DL perception, and it is referred to as Y, 
an ordinal variable with K levels. One of the candidate models to analyse Y is the ordi-
nal regression model. The different ways to compare the categories of Y correspond 
to cumulative models, adjacent categories and sequential models. The taxonomy given 
in Tutz (2020a) consists of conditional and non-conditional models, depending on the 
binary models contained in the ordinal structure. The cumulative is the only non-condi-
tional model that does not use conditioning in its binary building blocks. However, the 
model parametrisation focuses on location only, ignoring potential heterogeneity in the 
population. Therefore, we consider the proposal by McCullagh (1980), that takes into 
account the possible presence of heterogeneity: it has been demonstrated that mislead-
ing effects can occur if one ignores the presence of a scaling component. Note that, 
in our approach, the heterogeneity may be partially disclosed by the JDR step. The 
location-scale model—also known as the heterogeneous choice or heteroscedastic logit 
model—has been implemented and extended by several authors (e.g., Cox 1995; Tutz 
and Berger 2017, 2021; Ishwaran and Gatsonis 2000; Hedeker et al 2008, 2009, 2012, 
among others). The way to introduce variance heterogeneity is to model it explicitly as 
a function of the variables. The general idea of the location-scale model is that a latent 
continuous variable Y⋆ underlies the ordinal response Y, and the model has the form

where � is the s-dimensional vector of coefficients, �i is the row vector of the matrix 
X which includes s variables for the ith subject, and �i is the error term. In the model, 
�i is the standard deviation of the noise variable �i whose distribution function is 
F(.). Hence F−1(.) defines the link function. The most common choices for F−1(.) 

Rj = �
−1∕2

K

(
�
�
K
�j − �k�

�
j

)
�

−1∕2
zj

(7)Y⋆

i
= �i� + 𝜎i�i,
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are the logit and probit links (based on logistic and standard normal distributions, 
respectively), but minimum and maximum extreme value distributions may also be 
used. The latter are based on the Gumbel distribution which is positively skewed, for 
the distribution of the maxima, and the complementary loglog model which is the 
mirror distribution for the minima. Peyhardi et al (2016) gave a careful investigation 
of the relationship among ordinal models with different link functions and derived 
invariance properties for the models. We assume, for the sake of simplicity, the logit 
link only.

The effects of the variables on the variances are modelled as follows:

where Ti is the additional vector of s variables that impact on the scale and � the cor-
responding coefficients vector.

Since Y is a categorised version of Y⋆ , it results that

where −∞ = 𝜏0 < 𝜏1 < … < 𝜏K = +∞ are the thresholds of Y⋆ . Simple derivation 
yields that the response probabilities are given by

that, with the logistic distribution, becomes

According to the model, two terms specify the impact of variables: the location term 
�j − Xi� , and the variance or scaling term exp(Ti�) , which derives from Eq. (8).

If Xi and Ti are different, the interpretation of the X-variables is the same 
as in the cumulative models yielding the proportional odds assumption, which 
implies that the effect of a change in the variables does not depend on the 
response category, i.e. the � are constant with respect to j (Agresti 2010).

Inference for these models is based on the likelihood function, whose expres-
sion can be found in McCullagh (1980). The likelihood function is maximised 
via iterative least squares estimation methods (see Tutz 2012, for details). The 
global validation of the fitted model is performed according to both likelihood-
based methods and descriptive measures (see, e.g.,Veall and Zimmermann 
1996). The selection of the best model is obtained by comparing Likelihood-
ratio tests (LR-test) for nested models and information criteria for non-nested 
ones. Among information criteria, the Bayesian Information Criterion (BIC) 
(Schwarz 1978) provides the most parsimonious solution.

(8)�i = exp
(
�i�

)

𝜏j−1 < Y⋆
i
≤ 𝜏j ⟺ Yi = j; j = 1, 2,… ,K,

Pr
(
Yi ≤ j ∣ Xi,Ti

)
= F

(
�j − Xi�

exp(Ti�)

)

log

(
Pr

(
Yi ≤ j ∣ Xi,Ti

)

Pr
(
Yi > j ∣ Xi,Ti

)

)
=

𝜏j − Xi�

exp(Ti�)
.
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5.1 � Tree‑structured location‑scale models

The selection variables method has been pursued by means of a tree-structured 
approach, as proposed by Tutz and Berger (2021); the approach in question is differ-
ent from the model-based recursive partitioning implemented by Zeileis et al (2008).

In particular, two separated trees are trained for the location and scale terms. Fol-
lowing the strategy proposed by Hothorn et al (2006), tests for cumulative regres-
sion models are used to select the single splits, and, consequently, the location and 
scale trees. While a detailed description of the strategy is beyond the scope of the 
paper, here follows an intuition. Let Ts(cs) be the likelihood-ratio (LR) test statistics 
for variable s and the split point cs ; the maximal value statistic is found such that 
Ts = maxcsTs(cs) , considering all the possible splits for the variable s. The distribu-
tion of Ts is obtained via random permutations of variable s, and the p-value elicited 
by the distribution of Ts provides a measure for the relevance of variable s (algo-
rithm details are in Tutz and Berger 2021); the proposed procedure, which is applied 
for each component (location and scale) is iterative, and it runs through the follow-
ing steps:

•	 step 0: initialise via the model fit with category-specific intercepts only, and 
obtain the preliminary threshold estimates;

•	 step 1: consider the s variables and fit all the possible models with an extra split;
•	 step 2: select the best model as the one with the lowest p-value associated to the 

LR test-statistic;
•	 step 3: for each variable/split/component combination, do a permutation test 

using the maximal value statistic with a significance level �∕2s . If the observed 
value is significant, repeat from steps 1 to 3;

•	 step 4: fit the obtained final model.

5.2 � Models with category‑specific effects

An alternative way to model heterogeneity is to let variables modify the thresholds 
via the location-shift models (Tutz and Berger 2017). In particular, the variance in 
the underlying continuous response does not vary across groups of individuals, yet 
the intercepts (thresholds) vary across the individuals. The location-shift approach 
is nested in the basic cumulative models when the proportional odds assumption is 
neglected and more flexibility is needed. That is, the linear predictor

in the basic models is replaced by the predictor

in which the effects of the sth variable, �sj , depends on j and therefore may vary 
across categories. Of course, it is possible that only some of the variables have cate-
gory-specific effects, whilst the remaining variables have the so-called global effects, 
that do not vary across categories. Extensions of the cumulative logit model with 

�j − Xi�

�j − Xi� j
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category-specific effects have been considered in the literature. The resulting non-
proportional odds model and partial proportional odds model have been investigated 
extensively (see, for example Brant 1990; Peterson and Harrell Jr 1990; Bender and 
Grouven 1998; Cox 1995; Kim 2003; Liu et al 2009, among others).

The nested shift version of heterogeneity models uses the predictor

where � indicates a response style, that is, a tendency to middle/extreme catego-
ries, and it explicitly models how variables change the subjects’ response behav-
iour: large � and therefore more concentration in middle categories means smaller 
variation of responses, and small � , with more concentration in extreme categories, 
means higher dispersion.

As it is often the case, the increased flexibility improves the fit, at the expense 
of interpretation. In fact, the location-shift model, with category specific effects, 
comes with a much sparser parametrisation. For K = 3 , the model with category-
specific effects and the shift-version model are even equivalent. All in all, the main 
difference with the location-scale model is that the latter has a multiplicative struc-
ture (motivated by variance heterogeneity in the underlying continuous response) 
that yields to the dispersion effect; the location-shift model, instead, has an additive 
structure (motivated by the shifting of thresholds) that models the tendency to mid-
dle or extreme categories.

6 � DL perception analysis

The JDR step of the proposed hybrid approach is the CCA of DL perception-
related items. The CCA hyper-parameter K is set to four, as high as the num-
ber of levels of each considered item. It is worth to remind that the items are 
statements indicating a positive perception of the DL experience. The variables 
(items) factorial map is depicted in Fig. 1; note that two dimensions are consid-
ered, even though the items come from a unidimensional scale: this is done for 
illustrative purposes, to provide a graphical representation to support the inter-
pretation of the clustering solution. In fact, as in correspondence analysis (CA, 
see e.g., Greenacre 2007), variables levels are close to one another on the map 
if they have been selected by (almost) the same respondents: therefore, it is eas-
ily seen that similar levels of agreement/disagreement are grouped on the map. 
Furthermore, Fig.  1 shows the so-called arch or Guttman effect: the horizontal 
axis on the map separates disagreement from the agreement. The vertical axis 
separates the middle categories from the extreme ones. The arch effect occurs 
when a single numeric latent variable is dominant (see, e.g., Lebart and Saporta 
2014): it underlies the variable levels and, as a consequence, the respondents. 
Therefore, the cluster solution is expected to identify groups of respondents with 
a similar attitude towards DL. This is confirmed by the cluster characterisation 
plot depicted in Fig. 2. Each barplot in the figure refers to a different cluster: the 
bars indicate the deviations from independence as described in Sect. 4. Since the 

�j − Xi(� + K∕2 − j + 1)�,
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obtained clusters consist of respondents that share similar levels of agreement/
disagreement, it is fairly natural to sort out the clusters according to the predomi-
nant level of agreement and define the cluster allocation as the ordinal variable Y, 
with levels coded as 0, 1, 2, 3.

To identify the main drivers of DL perception, we apply the location-scale 
recursive partitioning; Fig.  3 shows that most of the drivers are stress-related. 
Specifically, study (stress due to studying experience during the pandemic), 
isolation (stress due to the condition of social isolation), and age are the three 
variables which affect the location component. The most negative DL perception 
is found in the node where study = 5 : these respondents felt really stressed out 
by the studying experience during the pandemic. The respondents that felt less 
stressed about the studying experience, perceived high stress of isolation (isola-
tion = 5 ). However, students below 21 years of age had less severe stress of isola-
tion ( 𝛽Age≤21 = 0.243 ), compared to students above 21 ( 𝛽Age>21 = 0.912 ). Among 
students who comparatively perceive less stress of isolation, we found master stu-
dents with ‘anxiety for employment because the salary would probably not be as 
excellent as they wish for the devastating effect of Covid-19’ (the measurement 
item derives by the anxiety scale in Mahmud et al 2021). The scale term-related 
tree in Fig. 4, indicates the variable infection (stress induced by the fear of con-
tagion) as the main driver. In other words, students that indicated values higher 
than 3 the variable infection are more heterogeneous than students who perceived 
a lower risk of infection.
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Fig. 1   Variables map: the levels of agreement are, for all items, grouped together, and the different 
groups of levels are ordered from the top left side of the map (strongly disagree) till the top right side of 
the map (strongly agree): the variables pattern follows the arch effect, typical of CA solutions
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To further evaluate these issues we fitted the location-scale model described 
in Sect. 5. We selected the logit link function for simplicity as reported in Sect. 5 
and after the inspection of the BIC index in Table 2.

The fitted model is
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Fig. 2   Item scores for groups characterisation: deviations from independence condition

Table 2   Log-likelihood and 
BIC indexes for the different 
link functions (the smallest BIC 
value is in boldface)

Link logLik BIC

Logit −1735.70 3495.401

Probit −1735.91 3495.831
Log-log −1756.41 3536.814
cLog-log −1772.19 3568.391
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with i = 1,… , n . The estimated thresholds are

Finally,

where SS stems for ‘somewhat stressful’, MS represents ‘moderately stressful’, VS 
‘very stressful’ and ES ‘extremely stressful’. Note that the master variable has been 
dropped in the estimated location-scale model because the parameter related to that 
variable results to be no different from zero.

DL positive perception increases with age, stress for infection and anxiety, and 
globally reduces for high levels of perceived stress both for studying experience and 
isolation. Results related to 𝜎̂i , leading to different scales of the latent variable, high-
light that heterogeneity increases for reduced levels of contagion-related stress.

The location-scale model is compared with the nested cumulative one with pro-
portional assumption. The absence of heterogeneity effects (which implies � = 0 ) 
has been formally tested via the LR-test. The value of the test statistics and the 

Y⋆
i
= − 0.591

(0.113)
studyi − 0.231

(0.005)
isolationi+

+ 0.171
(0.046)

infectioni + 0.055
(0.035)

anxietyi+

+ 0.135
(0.040)

agei + 𝜎̂i𝜖i,

𝜏1 = − 2.508(0.531)

𝜏2 = − 1.018(0.365)

𝜏3 =0.432(0.330).

log(𝜎̂i) = − 0.526
(0.2166)

infectionSSi − 0.398
(0.196)

infectionMSi

− 0.539
(0.194)

infectionVSi − 0.235
(0.196)

infectionESi ,

Fig. 3   Tree for location term of DL data. The parameter estimates 𝛽
s
 are given in the terminal nodes
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corresponding p-value of the test are 25.560 and < 0.001 , respectively, so that the 
null hypothesis of scale parameter equals to zero is rejected.

A further examination which confirms the validity of the proportional assumption 
has been made with the LR-test between cumulative models with (cumulative PA) 
and without (cumulative NPA) proportional assumption. The test statistic is 43.588 
and the p-value of the test is < 0.001 (BIC index of the model with non-proportional 
assumption is 3586.048 whereas 3555.927 is the BIC index for the model with par-
allel assumption) confirming the validity of the proportional assumption.

For the sake of completeness, the location-shift model is also computed on the 
same data with the selected by tree variables. The BIC index is 3638.99; in this case, 
several estimated parameters are not statistically significant with the only excep-
tion of study. A further examination of the only study variable on both parameters 
of the predictor highlights the role of the only ‘intense stress’ category. A visuali-
zation of the parameter estimates is reported in the star plot (Fig. 5); it shows the 
tuples (exp(𝜹̂), exp(𝜷)) for the linear effects of the location-shift model. The first 
value, exp(𝜹̂) , represents the heterogeneity effect on the odds, for values larger than 
one there is a tendency to middle categories, for values smaller than one there is a 
stronger tendency to extreme categories than in the simple proportional odds model. 
Thus, students reporting intense study stress concentrate in the central categories 
their DL perception (BIC index of this estimated model is 3620.887).

Summary results concerning BIC indexes of the alternative models reported in 
Sect. 5.2 and based on the same set of variables (selected by tree) are in Table 3.

7 � Concluding remarks

The study proposes a hybrid method to analyse complex survey structures. The well-
established synthesis by aggregation of the items from a same psychometric scale is 
a viable option, yet it inherently assigns the same importance to each item. The pro-
posed hybrid approach defines data-driven weights for the item levels: the weight-
ing system takes into account both the association structure of the items and the 

Fig. 4   Tree for variance term 
of DL data. The parameter 
estimates 𝜼̂

s
 are given in the 

terminal nodes
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heterogeneity of the respondents. Furthermore, it is common practice, e.g., in path 
models (Jöreskog 1969), to study the effects dependency among subsets (blocks) of 
the considered items. In the same spirit, yet with an alternative approach, we syn-
thesize the DL related subset of items, define a synthetic ordinal response, and then 
regress it on the other items according to appropriate models for ordinal data.

Among the latter, we moved in the context of cumulative data models, which rep-
resent the natural candidates when a latent trait is taken into account. In this area 
category-specific effects, which were treated extensively in the literature, can often 
be replaced by much simpler models that contain an heterogeneity term yielding 
much simpler and easy to interpret models. The latter typically provide better fit to 
the data and additional information on the effects of explanatory variables. If they 
are ignored, estimates may be biased.

In summary, once the synthetic ordinal response is obtained, a location-scale 
model taking account possible heterogeneity is applied, and a recursive partitioning-
based variable selection method is used to identify the variables that affect the ordi-
nal response and, indirectly, the items subset of interest (in this case, the DL-related 
items). The code and the pre-processed data are available on GitHub1.

Alternative models for ordinal data taking into account the proportional 
assumption and an additive structure motivated by the shifting of thresholds are 

Fig. 5   Effect stars for location-
shift model with the only study 
variable

Table 3   Log-likelihood and 
BIC indexes for the alternative 
models (the smallest BIC value 
is in boldface)

Models logLik BIC

Cumulative NPA −1726.686 3586.048
Cumulative PA −1748.48 3555.927

Location-shift −1734.73 3638.990

1  https://​github.​com/​alfon​soIod​iceDE/​hybrid_​analy​sis_​compl​ex_​categ​orical.

https://github.com/alfonsoIodiceDE/hybrid_analysis_complex_categorical
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also tested and compared in terms of global fitting showing worse off results with 
respect to the selected location-scale model. The latter is also implemented for 
the accuracy/completeness of the information on the ordinal variable obtained by 
discretising the continuous variable elicited summing up the twelve ratings of the 
DL scale. The discretisation with four equidistant thresholds, as reported in Ram-
say (1973), yielded an ordinal variable on which the set of variables selected in 
the trees are regressed; a BIC index of 4094.075 highlighted worse fitting results 
than the proposed approach.

Empirical results underline some findings of the literature; the significant effect 
of stress and risk perception was consistent with previous studies addressing the psy-
chological consequences of the Covid-19 pandemic on students’ lives and responses 
to distance learning (Aristovnik et  al 2020; Bork-Hüffer et  al 2021; Capone et  al 
2020; Unger and Meiran 2020). Specifically, students with stress due to social isola-
tion and with stress due to academic life in remote are less satisfied and perceive a 
low feeling with respect to DL. On the opposite, having a high perceived risk for 
Covid-19 contagion increases the DL feeling and reduce the heterogeneity in the 
clusters of respondents (see also Bacci et al (2022)). Furthermore, previous studies 
point out differences in learning style according to student age (Chyung 2007; Dibi-
ase and Kidwai 2010; Raidal and Volet 2009; Vermunt and Vermetten 2004). The 
literature indicates that older students spend more time on course related learning, 
spend more time using asynchronous learning tools, and report that they have very 
positive learning experiences in online courses as detected in our findings.

Limitation of the analysis concerns the sample design of the survey collected by 
means of a chain sampling, leading to an ‘observational study’.

Future work will refer to methodological and applied perspectives. From a meth-
odological perspective, conditional models may be also analysed, albeit preliminary 
results by Iannario et  al (2022) where mixture models with uncertainty (see Tutz 
2020a) have been tested on the same DL data produced poor fitting results. Fur-
thermore, we constrained ourselves to define a meta-item with the same number of 
levels as any other item in the survey. This is a sound choice given the survey at 
hand as the items all have the same four element scale. It is worth to note that the 
hybrid method can be rendered more flexible by allowing the meta-item to have a 
data driven number of levels: in doing so, however, one has to pick a suitable metric 
to evaluate the JDR clustering solutions and select the optimal number of clusters. 
From an application perspective, the complex survey can be further enhanced by 
considering a multilevel structure dictated by respondents demographics; further-
more, a similar survey can be administered to investigate students perception of 
blended learning, a combination of distance learning and classroom learning.
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