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Abstract

Understanding protein structure is of crucial importance in science, medicine and biotechnology. For about two decades,
knowledge-based potentials based on pairwise distances – so-called ‘‘potentials of mean force’’ (PMFs) – have been center
stage in the prediction and design of protein structure and the simulation of protein folding. However, the validity, scope
and limitations of these potentials are still vigorously debated and disputed, and the optimal choice of the reference state –
a necessary component of these potentials – is an unsolved problem. PMFs are loosely justified by analogy to the reversible
work theorem in statistical physics, or by a statistical argument based on a likelihood function. Both justifications are
insightful but leave many questions unanswered. Here, we show for the first time that PMFs can be seen as approximations
to quantities that do have a rigorous probabilistic justification: they naturally arise when probability distributions over
different features of proteins need to be combined. We call these quantities ‘‘reference ratio distributions’’ deriving from the
application of the ‘‘reference ratio method.’’ This new view is not only of theoretical relevance but leads to many insights
that are of direct practical use: the reference state is uniquely defined and does not require external physical insights; the
approach can be generalized beyond pairwise distances to arbitrary features of protein structure; and it becomes clear for
which purposes the use of these quantities is justified. We illustrate these insights with two applications, involving the
radius of gyration and hydrogen bonding. In the latter case, we also show how the reference ratio method can be iteratively
applied to sculpt an energy funnel. Our results considerably increase the understanding and scope of energy functions
derived from known biomolecular structures.
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Introduction

Methods for protein structure prediction, simulation and design

rely on an energy function that represents the protein’s free energy

landscape; a protein’s native state typically corresponds to the state

with minimum free energy [1]. So-called knowledge based

potentials (KBP) are parametrized functions for free energy

calculations that are commonly used for modeling protein

structures [2,3]. These potentials are obtained from databases of

known protein structures and lie at the heart of some of the best

protein structure prediction methods. The use of KBPs originates

from the work of Tanaka and Scheraga [4] who were the first to

extract effective interactions from the frequency of contacts in

X-ray structures of native proteins. Miyazawa and Jernigan

formalized the theory for contact interactions by means of the

quasi-chemical approximation [5,6].

Many different approaches for developing KBPs exist, but the

most successful methods to date build upon a seminal paper by

Sippl – published two decades ago – which introduced KBPs

based on probability distributions of pairwise distances in proteins

and reference states [7]. These KBPs were called ‘‘potentials of

mean force’’, and seen as approximations of free energy functions.

Sippl’s work was inspired by the statistical physics of liquids, where

a ‘‘potential of mean force’’ has a very precise and undisputed

definition and meaning [8,9]. However, the validity of the

application to biological macromolecules is vigorously disputed

in the literature [2,10–17]. Nonetheless, PMFs are widely used

with considerable success; not only for protein structure prediction

[3,18,19], but also for quality assessment and identification of

errors [20–22], fold recognition and threading [23,24], molecular

dynamics [24], protein-ligand interactions [16,25], protein design

and engineering [26,27], and the prediction of binding affinity

[17,28]. In this article, the abbreviation ‘‘PMF’’ will refer to the

pairwise distance dependent KBPs following Sippl [7], and the

generalization that we introduce in this article; we will write

‘‘potentials of mean force’’ in full when we refer to the real,

physically valid potentials as used in liquid systems [9,13,29]. At

the end of the article, we will propose a new name for these

statistical quantities, to set them apart from true potentials of mean

force with a firm physical basis.
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Despite the progress in methodology and theory, and the

dramatic increase in the number of experimentally determined

protein structures, the accuracy of the energy functions still

remains the main obstacle to accurate protein structure prediction

[22,30,31]. Recently, several groups demonstrated that it is the

quality of the coarse grained energy functions [18], rather than

inadequate sampling, that impairs the successful prediction of the

native state [30,31]. The insights presented in this article point

towards a new, theoretically well-founded way to construct and

refine energy functions, and thus address a timely problem.

We start with an informal outline of the general ideas presented

in this article, and then analyze two notable attempts in the

literature to justify PMFs. We point out their shortcomings, and

subsequently present a rigorous probabilistic explanation of the

strengths and shortcomings of traditional pairwise distance PMFs.

This explanation sheds a surprising new light on the nature of the

reference state, and allows the generalization of PMFs beyond

pairwise distances in a statistically valid way. Finally, we

demonstrate our method in two applications involving protein

compactness and hydrogen bonding. In the latter case, we also

show that PMFs can be iteratively optimized, thereby effectively

sculpting an energy funnel [24,32–36].

Results and Discussion

Overview
In order to emphasize the practical implications of the

theoretical insights that we present here, we start with a very

concrete example that illustrates the essential concepts (see Fig. 1).

Currently, protein structure prediction methods often make use of

fragment libraries: collections of short fragments derived from

known protein structures in the Protein Data Bank (PDB). By

assembling a suitable set of fragments, one obtains conforma-

tions that are protein-like on a local length scale. That is, these

conformations typically lack non-local features that characterize

real proteins, such as a well-packed hydrophobic core or an

extensive hydrogen bond network. Such aspects of protein

structure are not, or only partly, captured by fragment libraries.

Formally, a fragment library specifies a probability distribution

Q(X ), where X is for example a vector of dihedral angles. In order to

obtain conformations that also possess the desired non-local features,

Q(X ) needs to be complemented with another probability

distribution P(Y ), with Y being for example a vector of pairwise

distances, the radius of gyration, the hydrogen bonding network, or

any combination of non-local features. Typically, Y is a determin-

istic function of X ; we use the notation Y (X ) when necessary.

For the sake of argument, we will focus on the radius of gyration

(rg) at this point; in this case Y (X ) becomes rg(X ). We assume that

a suitable P(rg) was derived from the set of known protein

structures; without loss of generality, we leave out the dependency

on the amino acid sequence for simplicity. The problem that we

address in this article can be illustrated with the following question:

how can we combine P(rg) and Q(X ) in a rigorous, meaningful

way? In other words, we want to use the fragment library to

sample conformations whose radii of gyration rg are distributed

according to P(rg). These conformations should display a realistic

local structure as well, reflecting the use of the fragment library.

Simply multiplying P(rg(X )) and Q(X ) does not lead to the

desired result, as X and Rg are not independent; the resulting

conformations will not be distributed according to P(rg).

The solution is given in Fig. 1; it involves the probability

distribution QR(rg), the probability distribution over the radius of

gyration for conformations sampled solely from the fragment

library. The subscript R stands for reference state as will be explained

below. The solution generates conformations whose radii of

gyration are distributed according to P(rg). The influence of Q(X )
is apparent in the fact that for conformations with a given rg, their

local structure X will be distributed according to Q(X Drg). The

Figure 1. Illustration of the central idea presented in this article. In this example, the goal is to sample conformations with a given
distribution P(rg) for the radius of gyration rg , and a plausible local structure. P(rg) could, for example, be derived from known structures in the
Protein Data Bank (PDB, left box). Q(X ) is a probability distribution over local structure X , typically embodied in fragment library (right box). In order
to combine Q(X ) and P(rg) in a meaningful way (see text), the two distributions are multiplied and divided by QR(rg) (formula at the bottom);
QR(rg) is the probability distribution over the radius of gyration for conformations sampled solely from the fragment library (that is, Q(X )). The
probability distribution P(X ) will generate conformations with plausible local structures (due to Q(X )), while their radii of gyration will be distributed
according to P(rg), as desired. This simple idea lies at the theoretical heart of the PMF expressions used in protein structure prediction.
doi:10.1371/journal.pone.0013714.g001
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latter distribution has a clear interpretation: it corresponds to

sampling an infinite amount of conformations from a fragment

library, and retaining only those with the desired rg. Note that

even if we chose the uniform distribution for Q(X ), the resulting

QR(rg) will not (necessarily) be uniform.

Intuitively, P(rg) provides correct information about the radius

of gyration, but no information about local structure; Q(X )
provides approximately correct information about the structure of

proteins on a local length scale, but is incorrect on a global scale

(leading to an incorrect probability distribution for the radius of

gyration); finally, the formula shown in Fig. 1 merges these two

complementary sources of information together. Another view-

point is that P(rg) and Q(rg) are used to correct the shortcomings

of Q(X ). This construction is statistically rigorous, provided that

P(rg) and Q(X ) are proper probability distributions.

After this illustrative example, we now review the use of PMFs

in protein structure prediction, and discuss how PMFs can be

understood and generalized in the theoretical framework that we

briefly outlined here.

Pairwise PMFs for protein structure prediction
Many textbooks present PMFs as a simple consequence of the

Boltzmann distribution, as applied to pairwise distances between

amino acids. This distribution, applied to a specific pair of amino

acids, is given by:

P rð Þ~ 1

Z
e
{

F rð Þ
kT

where r is the distance, k is Boltzmann’s constant, T is the

temperature and Z is the partition function, with Z~
Ð

e
{

F (r)
kT dr.

The quantity F (r) is the free energy assigned to the pairwise

system. Simple rearrangement results in the inverse Boltzmann

formula, which expresses the free energy F (r) as a function of P(r):

F rð Þ~{kT ln P rð Þ{kT ln Z

To construct a PMF, one then introduces a so-called reference state

with a corresponding distribution QR and partition function ZR,

and calculates the following free energy difference:

DF rð Þ~{kT ln
P rð Þ

QR rð Þ{kT ln
Z

ZR

ð1Þ

The reference state typically results from a hypothetical system

in which the specific interactions between the amino acids are

absent [7]. The second term involving Z and ZR can be ignored,

as it is a constant.

In practice, P(r) is estimated from the database of known

protein structures, while QR(r) typically results from calculations

or simulations. For example, P(r) could be the conditional

probability of finding the Cb atoms of a valine and a serine at a

given distance r from each other, giving rise to the free energy

difference DF . The total free energy difference of a protein,

DFTOT, is then claimed to be the sum of all the pairwise free

energies:

DFTOT~
X
ivj

DF (rij Dai,aj) ð2Þ

~{kT
X
ivj

ln
P rij Dai,aj

� �
QR rij Dai,aj

� � ð3Þ

where the sum runs over all amino acid pairs ai,aj (with ivj) and

rij is their corresponding distance. It should be noted that in many

studies QR does not depend on the amino acid sequence [11].

Intuitively, it is clear that a low free energy difference indicates

that the set of distances in a structure is more likely in proteins

than in the reference state. However, the physical meaning of

these PMFs have been widely disputed since their introduction

[2,12–15]. Indeed, why is it at all necessary to subtract a reference

state energy? What is the optimal reference state? Can PMFs be

generalized and justified beyond pairwise distances, and if so,

how? Before we discuss and clarify these issues, we discuss two

qualitative justifications that were previously reported in the

literature: the first based on a physical analogy, and the second

using a statistical argument.

PMFs from the reversible work theorem
The first, qualitative justification of PMFs is due to Sippl, and

based on an analogy with the statistical physics of liquids [37]. For

liquids [8,9,13,14,37], the potential of mean force is related to the

pair correlation function g(r), which is given by:

g(r)~
P(r)

QR(r)

where P(r) and QR(r) are the respective probabilities of finding two

particles at a distance r from each other in the liquid and in the

reference state. For liquids, the reference state is clearly defined; it

corresponds to the ideal gas, consisting of non-interacting particles.

The two-particle potential of mean force W (r) is related to g(r) by:

W (r)~{kT log g(r)~{kT log
P(r)

QR(r)
ð4Þ

According to the reversible work theorem, the two-particle potential of

mean force W (r) is the reversible work required to bring two

particles in the liquid from infinite separation to a distance r from

each other [8,9].

Sippl justified the use of PMFs – a few years after he introduced

them for use in protein structure prediction [7] – by appealing to

the analogy with the reversible work theorem for liquids [37]. For

liquids, g(r) can be experimentally measured using small angle X-

ray scattering; for proteins, P(r) is obtained from the set of known

protein structures, as explained in the previous section. The

analogy described above might provide some physical insight, but,

as Ben-Naim writes in a seminal publication [13]: ‘‘the quantities,

referred to as ‘statistical potentials,’ ‘structure based potentials,’ or

‘pair potentials of mean force’, as derived from the protein data

bank, are neither ‘potentials’ nor ‘potentials of mean force,’ in the

ordinary sense as used in the literature on liquids and solutions.’’

Another issue is that the analogy does not specify a suitable

reference state for proteins. This is also reflected in the literature

on statistical potentials; the construction of a suitable reference

state continues to be an active research topic [3,22,38–41]. In the

next section, we discuss a second, more recent justification that is

based on probabilistic reasoning.

PMFs from likelihoods
Baker and co-workers [18] justified PMFs from a Bayesian point

of view and used these insights in the construction of the coarse

Reference Ratio Distributions
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grained ROSETTA energy function; Samudrala and Moult used

similar reasoning for the RAPDF potential [42]. According to

Bayesian probability calculus, the conditional probability P(X DA)
of a structure X , given the amino acid sequence A, can be written

as:

P X DAð Þ~ P ADXð ÞP Xð Þ
P Að Þ !P ADXð ÞP Xð Þ

P(X DA) is proportional to the product of the likelihood P ADXð Þ
times the prior P Xð Þ. By assuming that the likelihood can be

approximated as a product of pairwise probabilities, and applying

Bayes’ theorem, the likelihood can be written as:

P ADXð Þ& P
ivj

P ai,aj Drij

� �
! P

ivj

P rij Dai,aj

� �
P(rij)

ð5Þ

where the product runs over all amino acid pairs ai,aj (with ivj),

and rij is the distance between amino acids i and j. Obviously, the

negative of the logarithm of expression (5) has the same functional

form as the classic pairwise distance PMFs, with the denominator

playing the role of the reference state in Eq. 1. The merit of this

explanation is the qualitative demonstration that the functional

form of a PMF can be obtained from probabilistic reasoning.

Although this view is insightful – it rightfully drew the attention to

the application of Bayesian methods to protein structure

prediction – there is a more quantitative explanation, which does

not rely on the incorrect assumption of pairwise decomposability

[12–14,43], and leads to a different, quantitative conclusion

regarding the nature of the reference state. This explanation is

given in the next section.

A general statistical justification for PMFs
Expressions that resemble PMFs naturally result from the

application of probability theory to solve a fundamental problem

that arises in protein structure prediction: how to improve an

imperfect probability distribution Q(X ) over a first variable X

using a probability distribution P(Y ) over a second variable Y (see

Fig. 2, Fig. 1 and Materials and Methods). We assume that Y is a

deterministic function of X ; we write Y (X ) when necessary. In

that case, X and Y are called fine and coarse grained variables,

respectively. When Y is a function of X , the probability

distribution Q(X ) automatically implies a probability distribufo-

tion Q(X ,Y (X )). This distribution has some unusual properties:

Q(X ,Y (X ))~Q(X ); and if Y ’=Y (X ), it follows that

Q(X ,Y ’)~0.

Typically, X represents local features of protein structure (such

as backbone dihedral angles), while Y represents nonlocal features

(such as hydrogen bonding, compactness or pairwise distances).

However, the same reasoning also applies to other cases; for

example, P(Y ) could represent information coming from

experimental data, and Q(X ) could be embodied in an empirical

force field as used in molecular mechanics [2,44] (see Fig. 2).

Typically, the distribution Q(X ) in itself is not sufficient for

protein structure prediction: it does not consider important

nonlocal features such as hydrogen bonding, compactness or

favorable amino acid interactions. As a result, Q(X ) is incorrect

with respect to Y , and needs to be supplemented with a

probability distribution P(Y ) that provides additional information.

By construction, P(Y ) is assumed to be correct (or at least useful).

The above situation arises naturally in protein structure

prediction. For example, P(Y ) could be a probability distribution

over the radius of gyration, hydrogen bond geometry or the set of

pairwise distances, and Q(X ) could be a fragment library [18] or a

Figure 2. General statistical justification of PMFs. The goal is to combine a distribution Q(X ) over a fine grained variable X (top right), with a
probability distribution P(Y ) over a coarse grained variable Y (X ) (top left). Q(X ) could be, for example, embodied in a fragment library (F ),
a probabilistic model of local structure (T ) or an energy function (E); Y could be, for example, the radius of gyration, the hydrogen bond network, or
the set of pairwise distances. P(Y ) usually reflects the distribution of Y in known protein structures (PDB), but could also stem from experimental
data (D). Sampling from Q(X ) results in a distribution QR(Y ) that differs from P(Y ). Multiplying P(Y ) and Q(X ) does not result in the desired
distribution for Y either (red box); the correct result requires dividing out the signal with respect to Y due to Q(X ) (green box). The reference
distribution QR(Y ) in the denominator corresponds to the contribution of the reference state in a PMF. If QR(Y ) is only approximately known, the
method can be applied iteratively (dashed arrow). In that case, one attempts to iteratively sculpt an energy funnel. The procedure is statistically
rigorous provided Q(X ) and P(Y ) are proper probability distributions; this is usually not the case for conventional pairwise distance PMFs.
doi:10.1371/journal.pone.0013714.g002
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probabilistic model of local structure [45]. In Fig. 1, we used the

example of a distribution over the radius of gyration for P(Y ) and

a fragment library for Q(X ). Obviously, sampling from a fragment

library and retaining structures with the desired nonlocal structure

(radius of gyration, hydrogen bonding, etc.) is in principle possible,

but in practice extremely inefficient.

How can Q(X ) be combined with P(Y ) in a meaningful way?

As mentioned previously, simply multiplying the two distributions

– resulting in P(Y (X ))Q(X ) – does not lead to the desired result as

the two variables are obviously not independent. The correct

solution follows from simple statistical considerations (see Mate-

rials and Methods), and is given by the following expression:

P(X )~
P Y (X )ð Þ

QR Y (X )ð ÞQ(X ) ð6Þ

We use the notation P(X ), as this distribution implies the desired

distribution P(Y ) for Y (X ). The distribution QR(Y ) in the

denominator is the probability distribution that is implied by Q(X )
over the coarse grained variable Y . Conceptually, dividing by

QR(Y ) takes care of the signal in Q(X ) with respect to the coarse

grained variable Y . The ratio in this expression corresponds to the

probabilistic formulation of a PMF, and QR(Y ) corresponds to the

reference state (see Materials and Methods).

In practice, Q(X ) is typically not evaluated directly, but brought

in through conformational Monte Carlo sampling (see Materials

and Methods); often sampling is based on a fragment library

[18,46], although other methods are possible, including sampling

from a probabilistic model [45,47,48] or a suitable energy function

[2,44]. The ratio P(Y )=QR(Y ), which corresponds to the

probabilistic formulation of a PMF, also naturally arises in the

Markov chain Monte Carlo (MCMC) procedure (see Materials

and Methods). An important insight is that, in this case, the

conformational sampling method uniquely defines the reference

state. Thus, in the case of a fragment library, the reference

distribution QR(Y ) is the probability distribution over Y that is

obtained by sampling conformations solely using the fragment

library.

As the method we have introduced here invariably relies on the

ratio of two probability distributions – one regarding protein

structure and the other regarding a well-defined reference state –

we refer to it as the reference ratio method. In the next section, we

show that the standard pairwise distance PMFs can be seen as an

approximation of the reference ratio method.

Pairwise distance PMFs explained
In this section, we apply the reference ratio method to the

standard, pairwise distance case. In the classic PMF approach, one

considers the vector of pairwise distances R between the amino

acids. In this case, it is usually assumed that we can write

P(RDA)! P
ivj

P(rij Dai,aj) ð7Þ

where the product runs over all amino acid pairs ai,aj (with ivj),

and rij is their matching distance. Clearly, the assumption that the

joint probability can be written as a product of pairwise

probabilities is not justified [12,13,43], but in practice this

assumption often provides useful results [22]. In order to obtain

protein-like conformations, P(RDA) needs to be combined with an

appropriate probability distribution Q(X DA) that addresses the

local features of the polypeptide chain. Applying Eq. 6 to this case

results in the following expression:

P(X DA)!
Pivj P(rij Dai,aj)

Pivj QR(rij Dai,aj)
Q(X DA)

where the denominator QR(:) is the probability distribution over

the pairwise distances as induced by the distribution Q(X DA). The

ratio in this expression corresponds to the probabilistic expression

of a PMF. The reference state is thus determined by Q(X DA): it

reflects the probability of generating a set of pairwise distances

using local structure information alone. Obviously, as Q(X DA) is

conditional upon the amino acid sequence A, the reference state

becomes sequence dependent as well.

We again emphasize that the assumption of pairwise decom-

posability in Eq. 7 is incorrect [12–14,43]. Therefore, the

application of the reference ratio method results in a useful

approximation, at best. As a result, the optimal definition of the

reference state also needs to compensate for the errors implied by

the invalid assumption. As is it well established that distance

dependent PMFs perform well with a suitable definition of the

reference state [3,22,38–40], and the incorrect pairwise decom-

posability assumption impairs a rigorous statistical analysis, we do

not discuss this type of PMFs further. Indeed, for pairwise distance

PMFs, the main challenge lies in developing better probabilistic

models of sets of pairwise distances [49].

The pairwise distance PMFs currently used in protein structure

prediction are thus not statistically rigorous, because they do not

make use of a proper joint probability distribution over the

pairwise distances, which are strongly intercorrelated due to the

connectivity of molecules. A rigorous application of the reference

ratio method would require the construction of a proper joint

probability distribution over pairwise distances. This is certainly

possible in principle, but currently, as far as we know, a

challenging open problem and beyond the scope of this article.

However, we have clarified that the idea of using a reference state

is correct and valid, and that this state has a very precise definition.

Therefore, in the next two sections, we show instead how

statistically valid quantities, similar to PMFs, can be obtained for

very different coarse grained variables.

A generalized PMF: radius of gyration
As a first application of the reference ratio method, we consider

the task of sampling protein conformations with a given probability

distribution P(rg) for the radius of gyration rg. For P(rg), we chose a

Gaussian distribution with mean m~22 Å and standard deviation

s~2 Å. This choice is completely arbitrary; it simply serves to

illustrate that the reference ratio method allows imposing an exact

probability distribution over a certain feature of interest. Applying

Eq. 6 results in:

P(X DA)~
P(rg(X ))

QR(rg(X )DA)
Q(X DA) ð8Þ

For Q(X DA), we used TorusDBN – a graphical model that allows

sampling of plausible backbone angles [45] – and sampled

conditional on the amino acid sequence A of ubiquitin (see

Materials and Methods). QR(rg DA) is the probability distribution of

the radius of gyration for structures sampled solely from TorusDBN,

which was determined using generalized multihistogram MCMC

sampling (see Materials and Methods).

In Fig. 3, we contrast sampling from Eq. 8 with sampling from

P(rg(X ))Q(X DA). In the latter case, the reference state is not

properly taken into account, which results in a significant shift

towards higher radii of gyration. In contrast, the distribution of rg

for the correct distribution P(X ), given by Eq. 8, is indistinguish-

Reference Ratio Distributions
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able from the target distribution. This qualitative result is

confirmed by the Kullback-Leibler divergence [50] – a natural

distance measure for probability distributions expressed in bits –

between the target distribution and the resulting marginal

distributions of rg. Adding QR(rg(X )DA) to the denominator

diminishes the distance from 0.08 to 0.001 bits. For this particular

PMF, the effect of using the correct reference state is significant,

but relatively modest; in the next section, we discuss an application

where its effect is much more pronounced.

Iterative optimization of PMFs: hydrogen bonding
Here, we demonstrate that PMFs can be optimized iteratively,

which is particularly useful if the reference probability distribution

QR(Y DA) is difficult to estimate. We illustrate the method with a

target distribution that models the hydrogen bonding network

using a multinomial distribution.

We describe the hydrogen bonding network (H ) with eight

integers (for details, see Materials and Methods). Three integers

(na,nb,nc) represent the number of residues that do not partake in

hydrogen bonds in a-helices, b-sheets and coils, respectively. The

five remaining integers (naa,nbb,ncc,nac,nbc) represent the number

of hydrogen bonds within a-helices, within b-strands, within coils,

between a-helices and coils, and between b-strands and coils,

respectively.

As target distribution P(H) over these eight integers, we chose a

multinomial distribution whose parameters were derived from the

native structure of protein G (see Materials and Methods). P(H)
provides information, regarding protein G, on the number of

hydrogen bonds and the secondary structure elements involved,

but does not specify where the hydrogen bonds or secondary

elements occur. As in the previous section, we use TorusDBN as

the sampling distribution Q(X DA); we sample backbone angles

conditional on the amino acid sequence A of protein G. Native

secondary structure information was not used in sampling from

TorusDBN.

The reference distribution QR(H DA), due to TorusDBN, is very

difficult to estimate correctly for several reasons: its shape is

unknown and presumably complex; its dimensionality is high; and

the data is very sparse with respect to b-sheet content. Therefore,

QR(H DA) can only be approximated, which results in a suboptimal

PMF. A key insight is that one can apply the method iteratively

until a satisfactory PMF is obtained (see Fig. 2, dashed line). In

each iteration, the (complex) reference distribution is approximat-

ed using a simple probability distribution; we illustrate the method

by using a multinomial distribution, whose parameters are

estimated by maximum likelihood estimation in each iteration,

using the conformations generated in the previous iteration. In the

first iteration, we simply set the reference distribution equal to the

uniform distribution.

Formally, the procedure works as follows. In iteration iz1, the

distribution Pi(H DA) is improved using the samples generated in

iteration i:

Piz1(X DA)~
P(H(X ))

PR,i(H(X )DA)
Pi(X DA) ð9Þ

where PR,i(H DA) is the reference distribution estimated from the

samples generated in the i-th iteration, P0(X )~Q(X DA) stems

from TorusDBN, and PR,0(H DA) is the uniform distribution. After

each iteration, the set of samples is enriched in hydrogen bonds,

and the reference distribution PR,i(H DA) can be progressively

estimated more precisely. Note that in the first iteration, we simply

use the product of the target and the sampling distribution; no

reference state is involved.

Fig. 4 shows the evolution of the fractions versus the iteration

number for the eight hydrogen bond categories; the structures with

minimum energy for all six iterations are shown in Fig. 5. In the

Figure 3. A PMF based on the radius of gyration. The goal is to adapt a distribution Q(X DA) – which allows sampling of local structures – such
that a given target distribution P(rg) is obtained. For A, we used the amino acid sequence of ubiquitin. Sampling from Q(X DA) alone results in a
distribution with an average rg of about 27 A (triangles). Sampling using the correct expression (open circles), given by Eq. 8, results in a distribution
that coincides with the target distribution (solid line). Not taking the reference state into account results in a significant shift towards higher rg (black
circles).
doi:10.1371/journal.pone.0013714.g003
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first iteration, the structure with minimum energy (highest

probability) consists of a single a-helix; b-sheets are entirely absent

(see Fig. 5, structure 1). Already in the second iteration, b-strands

start to pair, and in the third and higher iterations complete sheets

are readily formed. The iterative optimization of the PMF quickly

leads to a dramatic enrichment in b-sheet structures, as desired,

and the fractions of the eight categories become very close to the

native values (Fig. 4).

Conclusions
The strengths and weaknesses of PMFs can be rigorously

explained based on simple probabilistic considerations, which

leads to some surprising new insights of direct practical relevance.

First, we have made clear that PMFs naturally arise when two

probability distributions need to be combined in a meaningful

way. One of these distributions typically addresses local structure,

and its contribution often arises from conformational sampling.

Each conformational sampling method thus requires its own

reference state and corresponding reference distribution; this is

likely the main reason behind the large number of different

reference states reported in the literature [3,22,38–41]. If the

sampling method is conditional upon the amino acid sequence, the

reference state necessarily also depends on the amino acid

sequence.

Second, conventional applications of pairwise distance PMFs

usually lack two necessary features to make them fully rigorous: the

use of a proper probability distribution over pairwise distances in

proteins for P(Y DA), and the recognition that the reference state is

rigorously defined by the conformational sampling scheme used,

that is, Q(X DA). Usually, the reference state is derived from

external physical considerations [11,51].

Third, PMFs are not tied to pairwise distances, but generalize to

any coarse grained variable. Attempts to develop similar quantities

that, for example, consider solvent exposure [52,53], relative side

chain orientations [54], backbone dihedral angles [55,56] or

hydrogen bonds [37] are thus, in principle, entirely justified.

Hence, our probabilistic interpretation opens up a wide range of

possibilities for advanced, well-justified energy functions based on

sound probabilistic reasoning; the main challenge is to develop

proper probabilistic models of the features of interest and the

estimation of their parameters [49,57]. Strikingly, the example

applications involving radius of gyration and hydrogen bonding

that we presented in this article are statistically valid and rigorous,

in contrast to the traditional pairwise distance PMFs.

Finally, our results reveal a straightforward way to optimize

PMFs. Often, it is difficult to estimate the probability distribution

that describes the reference state. In that case, one can start with

an approximate PMF, and apply the method iteratively. In each

iteration, a new reference state is estimated, with a matching

probability distribution. In that way, one iteratively attempts to

sculpt an energy funnel [24,32–36]. We illustrated this approach

with a probabilistic model of the hydrogen bond network.

Although iterative application of the inverse Boltzmann formula

has been described before [24,35,58,59], its theoretical justifica-

tion, optimal definition of the reference state and scope remained

unclear.

As the traditional pairwise distance PMFs used in protein

structure prediction arise from the imperfect application of a

statistically valid and rigorous procedure with a much wider scope,

we consider it highly desirable that the name ‘‘potential of mean

force’’ should be reserved for true, physically valid quantities [13].

Because the statistical quantities we discussed invariably rely on

the use of a ratio of two probability distributions, one concerning

protein structure and the other concerning the (now well defined)

reference state, we suggest the name ‘‘reference ratio distribution’’

deriving from the application of the ‘‘reference ratio method’’.

Pairwise distance PMFs, as used in protein structure prediction,

are not physically justified potentials of mean force or free energies

Figure 4. Iterative estimation of a PMF. For each of the eight hydrogen bond categories (see text), the black bar to the right denotes the fraction
of occurrence f (n) in the native structure of protein G. The gray bars denote the fractions of the eight categories in samples from each iteration; the
first iteration is shown to the left in light gray. In the last iteration (iteration 6; dark gray bars, right) the values are very close to the native values for all
eight categories. Note that hydrogen bonds between b-strands are nearly absent in the first iteration (category nbb).
doi:10.1371/journal.pone.0013714.g004

Reference Ratio Distributions

PLoS ONE | www.plosone.org 7 November 2010 | Volume 5 | Issue 11 | e13714



[2,13] and the reference state does not depend on external

physical considerations; the same is of course true for our

generalization. However, these PMFs are approximations of

statistically valid and rigorous quantities, and these quantities

can be generalized beyond pairwise distances to other aspects of

protein structure. The fact that these quantities are not potentials

of mean force or free energies is of no consequence for their

statistical rigor or practical importance – both of which are

considerable. Our results thus vindicate, formalize and generalize

Sippl’s original and seminal idea [7]. After about twenty years of

controversy, PMFs – or rather the statistical quantities that we

have introduced in this article – are ready for new challenges.

Materials and Methods

Outline of the problem
We consider a joint probability distribution Q(X ,Y ) and a

probability distribution P(Y ) over two variables of interest, X and

Y , where Y is a deterministic function of X ; we write Y (X ) when

relevant. Note that because Y is a function of X , it follows that

Q(X )~Q(X ,Y (X )); and if Y ’=Y (X ), then Q(X ,Y ’)~0.

We assume that P(Y ) is a meaningful and informative

distribution for Y . Next, we note that Q(X ,Y ) implies a matching

marginal probability distribution QR(Y ) (where the subscript R

refers to the fact that QR(Y ) corresponds to the reference state, as

we will show below):

QR(Y )~

ð
Q(X ,Y )dX

We consider the case where QR(Y ) differs substantially from

P(Y ); hence, QR(Y ) can be considered as incorrect. On the other

hand, we also assume that the conditional distribution Q(X DY ) is

indeed meaningful and informative (see next section). This

distribution is given by:

Q(X DY )~

0 if Y=Y (X)

Q(X )Ð
Q(X ’)d(Y (X ’){Y )dX ’

if Y~Y (X)

8<
: ð10Þ

where d(:) is the delta function. The question is now how to

combine the two distributions P(Y ) and Q(X ) – each of which

provide useful information on X and Y – in a meaningful way.

Before we provide the solution, we illustrate how this problem

naturally arises in protein structure prediction.

Application to protein structure
In protein structure prediction, Q(X ,Y ) is often embodied in a

fragment library; in that case, X is a set of atomic coordinates

obtained from assembling a set of polypeptide fragments. Of

course, Q(X ,Y ) could also arise from a probabilistic model, a pool

of known protein structures, or any other conformational sampling

method. The variable Y could, for example, be the radius of

gyration, the hydrogen bond network or the set of pairwise

distances. If Y is a deterministic function of X , the two variables

are called coarse grained and fine grained variables, respectively. For

example, sampling a set of dihedral angles for the protein

backbone uniquely defines the hydrogen bond geometry between

any of the backbone atoms.

Above, we assumed that Q(X DY ) is a meaningful distribution.

This is often a reasonable assumption; fragment libraries, for

example, originate from real protein structures, and conditioning

on protein-like compactness or hydrogen bonding will thus result

in a meaningful distribution. Of course, sampling solely from

Q(X ,Y ) is not an efficient strategy to obtain hydrogen bonded or

compact conformations, as they will be exceedingly rare. We now

provide the solution of the problem outlined in the previous

section, and discuss its relevance to the construction of PMFs.

Figure 5. Highest probability structures for each iteration. The structures with highest probability out of 50,000 samples for all six iterations
(indicated by a number) are shown as cartoon representations. The N-terminus is shown in blue. The figure was made using PyMOL [64].
doi:10.1371/journal.pone.0013714.g005
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Solution for a proper joint distribution
A first step on the way to the solution is to note that the product

rule of probability theory allows us to write:

P(X ,Y )~P(Y )P(X DY )

As only P(Y ) is given, we need to make a reasonable choice for

P(X DY ). We assume, as discussed before, that Q(X DY ) is a

meaningful choice, which leads to:

P(X ,Y )~P(Y )Q(X DY )

In the next step, we apply the product formula of probability

theory to the second factor Q(X DY ), and obtain:

P(X ,Y )~P(Y )
Q(X ,Y )

QR(Y )
ð11Þ

The distribution P(X ,Y ) has the correct marginal distribution

P(Y ).

In the next two sections, we discuss how this straightforward

result can be used to great advantage for understanding and

generalizing PMFs. First, we show that the joint distribution

specified by Eq. 11 can be reduced to a surprisingly simple

functional form. Second, we discuss how this result can be used in

MCMC sampling. In both cases, expressions that correspond to a

PMF arise naturally.

PMFs from combining distributions
Using the product rule of probability theory, Eq. 11 can be

written as:

P(X ,Y )~P(Y )
Q(Y DX )Q(X )

QR(Y )

Because the coarse grained variable Y is a deterministic function

of the fine grained variable X , Q(Y DX ) is the delta function:

P(X ,Y )~P(Y )
d Y{Y (X )ð ÞQ(X )

QR(Y )
ð12Þ

Finally, we integrate out the, now redundant, coarse grained

variable Y from the expression:

P(X )~

ð
P(X ,Y )dY

~

ð
P(Y )

d Y{Y (X )ð ÞQ(X )

QR(Y )
dY

~
P(Y (X ))

QR(Y (X ))
Q(X )

and obtain our central result (Eq. 6). Sampling from P(X ) will

result in the desired marginal probability distribution P(Y ). The

influence of the fine grained distribution Q(X ,Y ) is apparent in

the fact that P(X DY ) is equal to Q(X DY ). The ratio in this

expression corresponds to the usual probabilistic formulation of a

PMF; the distribution QR(Y ) corresponds to the reference state. In

the next section, we show that PMFs also naturally arise when

P(Y ) and Q(X ,Y ) are used together in Metropolis-Hastings

sampling.

PMFs from Metropolis-Hastings sampling
Here, we show that Metropolis-Hastings sampling from the

distribution specified by Eq. 11, using Q(X ,Y ) as a proposal

distribution, naturally results in expressions that are equivalent to

PMFs. The derivation is also valid if the proposal distribution

depends on the previous state, provided Q(X ,Y ) satisfies the

detailed balance condition.

According to the standard Metropolis-Hastings method [60],

one can sample from a probability distribution P(X ,Y ) by

generating a Markov chain where each state X ’,Y ’ depends only

on the previous state X ,Y . The new state X ’,Y ’ is generated using

a proposal distribution p(Y ’,X ’DY ,X ), which includes

p(X ’,Y ’DX ,Y )~p(X ’,Y ’) as a special case. According to the

Metropolis-Hastings method, the proposal X ’,Y ’ is accepted with

a probability a:

a(X ’,Y ’DX ,Y )~ min (1,p),

p~
P(X ’,Y ’)
P(X ,Y )

|
p(X ,Y DX ’,Y ’)
p(X ’,Y ’DX ,Y )

ð13Þ

where Y ,X is the starting state, and Y ’,X ’ is the next proposed

state. We assume that the proposal distribution p(X ’,Y ’DX ,Y )
satisfies the detailed balance condition:

p(X ’,Y ’DX ,Y )p(X ,Y )~p(X ,Y DX ’,Y ’)p(X ’,Y ’)

As a result, we can always write Eq. 13 as:

P(X ’,Y ’)
P(X ,Y )

|
p(X ,Y )

p(X ’,Y ’)

The Metropolis-Hastings expression (Eq. 13), applied to the

distribution specified by Eq. 11 and using Q(X ’,Y ’) or

Q(X ’,Y ’DX ,Y ) as the proposal distribution, results in:

P(Y ’)QR(Y )Q(X ’,Y ’)
P(Y )QR(Y ’)Q(X ,Y )

|
Q(X ,Y )

Q(X ’,Y ’)

which reduces to:

P(Y ’)
P(Y )

|
QR(Y )

QR(Y ’)
ð14Þ

Hence, we see that the Metropolis-Hastings method requires the

evaluation of ratios of the form P(Y )=QR(Y ) when Q(X ’,Y ’) or

Q(X ’,Y ’DX ,Y ) is used as the proposal distribution; these ratios

correspond to the usual probabilistic formulation of a PMF.

Finally, when Y is a deterministic function of X , the proposal

distribution reduces to Q(X ’) or Q(X ’DX ), and Eq. 14 becomes:

P(Y (X ’))
P(Y (X ))

|
QR(Y (X ))

QR(Y (X ’))

Application to radius of gyration and hydrogen bonding
Conformational sampling from a suitable Q(X DA) was done

using TorusDBN [45] as implemented in Phaistos [61]; backbone

angles (w,y and v) were sampled conditional on the amino acid

sequence. We used standard fixed bond lengths and bond angles in
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constructing the backbone coordinates from the angles, and

represented all side chains (except glycine and alanine) with one

dummy atom with a fixed position [61].

For the radius of gyration application, we first determined

QR(rg DA) using the multi-canonical MCMC method to find the

sampling weights w(rg) that yield a flat histogram [62]. Sampling

from the resulting joint distribution (Eq. 8) was done using the

same method. In both cases, we used 50 million iterations; the rg

bin size was 0.08 Å. Sampling from TorusDBN was done

conditional on the amino acid sequence A of ubiquitin (76

residues, PDB code 1UBQ).

For the hydrogen bond application, sampling from the PMFs

was done in the 1=k-ensemble [63], using the Metropolis-Hastings

algorithm and the generalized multihistogram method for

updating the weights [62]. In each iteration i, 50,000 samples

(out of 50 million Metropolis-Hastings steps) were generated, and

the parameters of the multinomial distribution QR,i(H) were

subsequently obtained using maximum likelihood estimation.

Hydrogen bonds were defined as follows: the N,O distance is

below 3.5 Å, and the angles formed by O,H,N and C,O,H are

both greater than 1000. Each carbonyl group was assumed to be

involved in at most one hydrogen bond; in case of multiple

hydrogen bond partners, the one with the lowest H,O distance

was selected. Each residue was assigned to one of the eight possible

hydrogen bond categories (na,nb,nc,naa,nbb,ncc,nac,nbc) based on

the presence of hydrogen bonding at its carbonyl group and the

secondary structure assignments (for both bond partners) by

TorusDBN. The target distribution – the multinomial distribution

P(H) used in Eq. 9 – was obtained by maximum likelihood

estimation using the number of hydrogen bonds, for all eight

categories, in the native structure of protein G (56 residues, PDB

code 2GB1). Sampling from TorusDBN was done conditional on

the amino acid sequence of protein G; native secondary structure

information was not used.
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