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Abstract

Cancer sequencing studies have primarily identified cancer-driver genes by the accumulation of 

protein-altering mutations. An improved method would be annotation-independent, sensitive to 

unknown distributions of functions within proteins, and inclusive of non-coding drivers. We 

employed density-based clustering methods in 21 tumor types to detect variably-sized significantly 

mutated regions (SMRs). SMRs reveal recurrent alterations across a spectrum of coding and non-

coding elements, including transcription factor binding sites and untranslated regions mutated in 

up to ∼15% of specific tumor types. SMRs reveal spatial clustering of mutations at molecular 

domains and interfaces, often with associated changes in signaling. Mutation frequencies in SMRs 

demonstrate that distinct protein regions are differentially mutated among tumor types, as 

exemplified by a linker region of PIK3CA in which biophysical simulations suggest mutations 

affect regulatory interactions. The functional diversity of SMRs underscores both the varied 

mechanisms of oncogenic misregulation and the advantage of functionally-agnostic driver 

identification.
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Introduction

In cancer, driver mutations alter functional elements of diverse nature and size. For example, 

melanoma drivers include hyper-activating mutations at single amino acid residues (e.g. 

BRAF V600
1
), inactivating mutations along tumor suppressor exons (e.g. PTEN

1
), and 

regulatory mutations (e.g. TERT promoter
2
). Cancer genomics projects, such as the The 

Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), 

have substantially expanded our understanding of the landscape of somatic alterations by 

identifying frequently mutated protein coding genes
3–5

. However, these studies have focused 

little attention on systematically analyzing the positional distribution of coding mutations or 

characterizing non-coding alterations
6
.

Algorithms to identify cancer-driver genes often examine non-synonymous to synonymous 

mutation rates across the gene body or recurrently mutated amino acids called mutation 

hotspots
5
, as observed in BRAF

7
, IDH1

8
, and DNA polymerase ε (POLE)

9
. Yet, these 

analyses ignore recurrent alterations in the vast intermediate scale of functional coding 

elements, such as protein subunits or interfaces. Moreover, where mutation clustering within 

genes has been examined
10–12

, analyses have employed fixed base-pair windows or 

identified clusters of non-synonymous mutations, assuming driver mutations exclusively 

impact protein sequence and ignoring the importance of exon-embedded regulatory 

elements
13–18

.

A significant proportion of regulatory elements in the genome occurs proximal to, or even 

in, exons
15,19

, suggesting many may be captured by whole-exome sequencing (WES). 

Efforts to characterize non-coding regulatory variation in cancer genomes have primarily 

examined either (1) pan-cancer whole-genome sequencing (WGS) data, or (2) predefined 

regions –such as ETS binding sites, splicing signals, promoters, and untranslated regions 

(UTRs)– or mutation types
20–23

. These approaches either presume the relevant targets of 

disruption, or disregard the established heterogeneity among cancer types at the level of 

driver genes and pathways
5,24,25

 as well as in nucleotide-specific mutation probabilities
3,4. 

Yet, systematic analyses of metazoan regulatory activity have revealed substantial tissue and 

developmental stage specificity
26–28

, suggesting that mutations in cancer type-specific 

regulatory features may be significant non-coding drivers of cancer.

To address these diverse limitations, we employed density-based clustering techniques 

utilizing cancer-, mutation type-, and gene-specific mutation models to identify regions of 

recurrent mutations in 21 cancer types. This approach permitted the unbiased identification 

of variably-sized genomic regions recurrently altered by somatic mutations, which we term 

significantly mutated regions (SMRs). We identified SMRs in numerous well-established 

cancer-drivers as well as in novel genes and functional elements. Moreover, SMRs were 

associated with non-coding elements, protein structures, molecular interfaces, and 

transcriptional and signaling profiles, providing insight into the molecular consequences of 

accumulating somatic mutations in these regions. Overall, SMRs revealed a rich spectrum of 

coding and non-coding elements recurrently targeted by somatic alterations that complement 

gene- and pathway-centric analyses.
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Results

Multi-scale detection of significantly mutated regions

We examined ∼3 million previously identified
5
 somatic, single nucleotide variants (SNVs) 

from 4,735 tumors of 21 cancer types, recording
29

 their impact on protein-coding sequences, 

transcripts, and adjacent regulatory regions (Supplementary Fig. 1). Fully 79.0% 

(n=2,431,360) of these somatic mutations do not alter protein-coding sequences or their 

splicing and thus were not previously considered in the analysis of cancer-driver mutations
5 

(Fig. 1a).

To discover both coding and non-coding cancer-drivers, we applied an annotation-

independent, density-based clustering technique
30

 to identify 198,247 variably-sized clusters 

of somatic mutations within exon-proximal domains of the human genome (Fig. 1b; Online 

Methods). We included synonymous mutations because functionally important non-coding 

features can be embedded within coding regions
13–18

.

Mutation density scores within each identified cluster were derived as the Fisher's combined 

p-value of the individual binomial probabilities of observing k or more mutations for each 

mutation type within the region in each cancer type (Online Methods). We evaluated 

mutation density for each cluster using gene-specific and genome-wide models of mutation 

probability (Supplementary Fig. 2), which were well-correlated (Supplementary Fig. 3a), 

selecting the more conservative estimate for each cluster as the final density score (Online 

Methods). Gene-specific mutation probability models accounted for sequence composition 

(GC-content) as well as differences in local gene expression and replication timing, which 

have been shown to correlate with somatic mutation rate
4
. To avoid skewed mutation 

probability estimates due to selection pressure on exons, we applied a Bayesian framework 

to derive gene-specific mutation probabilities given intronic mutation probabilities in cancer 

WGS data
3,20

 while controlling for differences in sensitivity in WES and WGS (Online 

Methods).

Although many known cancer genes do not display signals of high mutation density, 

increasing density scores correlated with stronger enrichments (up to 120×) for somatic 

SNV-driven cancer genes (n=158) as determined by the Cancer Gene Census (CGC; 

Supplementary Fig. 3b-c)
31,32

. Moreover, ∼10% of genes associated with SMRs in the top 

density score quintile were not found previously in a gene-level analysis
5
 or in the CGC. 

Thus, high density scores are enriched for known cancer genes but also nominate novel 

drivers.

We applied Monte Carlo simulations to select density score thresholds that control the false 

discovery rate (FDR) to ≤ 5% (Supplementary Fig. 4, Supplementary Table 1). We identified 

872 Significantly Mutated Regions (SMRs; Fig. 1c) that were altered in ≥2% of patients in 

20 cancer types for further characterization (Fig. 1d). SMRs span 735 genomic regions, 

which are assigned unique SMR codes (e.g. TP53.1). Note that some SMRs (n=120) appear 

in more than one cancer type.
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We classified SMRs into high-, medium-, and low-confidence sets on the basis of their 

density scores and contribution from mutator samples (Supplementary Table 2, Online 

Methods). We observed correspondingly high (63.3×, P = 2.5 × 10–46), medium (6.2×, P = 

2.6 × 10–10), and low (5.0×, P = 5.0 × 10–4) enrichments for somatic SNV-driven cancer 

genes in these sets. To control for unaccounted processes that could result in clusters of 

mutations with no selective advantage in cancer, we leveraged single-nucleotide and tri-

nucleotide density scores from intronic mutation clusters under the assumption that these are 

non-functional (Online Methods). This procedure identified 205 ‘robust’ SMRs that passed a 

false discovery threshold (FDR ≤ 5%) in these secondary tests, or were found in multiple 

cancer types. Fully 95.0% of high-confidence SMRs in cancer types where these tests could 

be applied satisfied these stringent alternate criteria (Supplementary Fig. 5). Over 87% of 

SMRs were contained within mappable (100 bp) regions of the genome, and an analysis of 

6,179 recently-published breakpoints
33

 yielded a single SMR (in PTEN) within 50 bp of a 

resolved breakpoint, suggesting that the observed mutation density in SMRs is not 

attributable to mapping artifacts.

SMRs display a wide range of sizes (Fig. 1e, median = 17 bp, range 1-2,041 bp), are robust 

to distinct mutation background models (Fig. 1f, Online Methods), are not driven by 

unaccounted mutation contexts (Supplementary Fig. 6), and are enriched in protein-coding, 

5′ UTR and splice-site mutations (Fig. 1g, P < 0.01). Importantly, SMRs are not driven by 

samples that contribute large numbers of mutations per region (Fig. 1h). This is in contrast to 

recently proposed regions of recurrent alteration
20

 where as few as five were driven 

exclusively by distinct samples (P = 6.0 × 10–45, Wilcoxon rank sum test). Thus, we have 

identified a diverse set of variably-sized SMRs targeted by recurrent somatic alterations and 

sought to characterize their relevance to functional elements and cancer genes.

SMRs enrich known and implicate novel cancer genes

SMRs are predicted to have diverse impacts on 610 genes and are 8.35×-fold enriched in 

known somatic cancer genes (Lawrence et al.
5
 or CGC, P = 8.1 × 10–49, hypergeometric 

test), affecting a total of 91 known drivers, including canonical oncogenes (e.g. BRAF, 

KRAS, NRAS, PIK3CA, and CTNNB1) and tumor suppressors (e.g. PTEN, TP53, and 

APC). SMR-associated genes also include 17 CGC genes previously undetected in a gene-

level analysis
5
, such as established oncogenes like BCL2 and PIM1 and the cancer-

associated non-coding gene, MALAT1. Most coding SMRs are driven by non-synonymous 

mutations (Supplementary Fig. 7), demonstrating that SMRs capture positive selection 

primarily acting on protein alterations. In total, SMRs implicate 26 known cancer genes to 

an additional 31 gene-to-cancer-type associations not uncovered by a gene-level analysis
5 

(Supplementary Table 3). We note, however, that most known cancer genes do not harbor 

regions of dense mutation recurrence within these data (see Supplementary Discussion, 

Supplementary Fig. 8), suggesting that SMR identification complements gene-level 

approaches.

We discovered SMRs in multiple novel cancer-driver genes, including the breast cancer-

associated antigen and putative transcription factor ANKRD30A
34

, in which ∼21% of 

melanomas harbor mutations within one or more of three SMRs. Mutations in these SMRs 
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were validated in WGS data from 6 of 17 cutaneous melanomas
3,20

. Within the entire gene-

body, 27 of 118 WES and 10 of 17 WGS datasets from melanoma patients harbor somatic 

protein-altering mutations in ANKRD30A. Overall, of the 185 high-confidence SMRs, 16 

were associated with novel cancer-driver genes (Supplementary Table 4). As expected on the 

basis of methodological differences, these putative novel cancer-drivers are primarily 

(∼81%) driven by non-coding alterations, as discussed in the next section.

SMRs implicate diverse non-coding regulatory features

A significant proportion (31.2%; P < 2.2 × 10–16, proportions test) of SMRs are not 

predicted to affect protein sequences, highlighting the potential to discover pathological non-

coding variation in WES data. In total, 130 SMRs lay within open chromatin
28

 and are 

enriched in promoter (Q = 4.0 × 10–9, 4.9×) and 5′ UTR features (Q = 4.4 × 10–10, 6.0×; 

Supplementary Table 5). Three promoter SMRs (n=26) coincide with regions deemed 

significantly mutated in a pan-cancer analysis of WGS data
20

. Across all cancer types, small 

(≤25 bp) non-coding SMRs were enriched in binding sequences for ETS oncogene family 

(Q = 2.6 × 10–6, 7.4×) and winged-helix repressor (Q = 2.0 × 10–4, 3.2×) TFs (Fig. 2a, 

Supplementary Table 6). We also detected cancer-specific TF motif enrichments within 

SMRs from diffuse large B-cell lymphoma, melanoma, and rhabdosarcoma (Fig. 2b, 

Supplementary Table 7).

We discovered (4 and 5 bp) SMRs within open chromatin sites of the KIAA0907 and 

YAE1D1 promoters that were altered in 10.2% and 9.3% of WES melanomas (Fig. 2c,d), 

respectively. Somatic mutations in these SMRs were confirmed in WGS data of melanomas 

(n=1 for KIAA0907 and n=2 for YAE1D1 of n=17, respectively)
3,20

. Yet, these regions did 

not reach significance in a pan-cancer analysis
20

, highlighting cancer-specificity in non-

coding alterations. In both SMRs, mutations alter core-recognition sequences within in vivo 
ETS factor binding sites (ENCODE), with varying effects on ETS primary sequence 

preferences. KIAA0907 encodes a putative RNA-binding protein. However, intronic 

sequences in this gene harbor SNORA42, an H/ACA class snoRNA with increased 

expression in lung and colorectal cancer
35,36

, suggesting promoter SMR alterations may 

enhance transcription at this locus. However, we observed no detectable changes in mutant 

KIAA0907 reporter gene expression (Fig. 2e). Whereas YAE1D1 promoter mutations reduce 

reporter gene expression (Fig. 2e), RNA-level overexpression of YAE1D1 has previously 

been observed in lower crypt-like colorectal cancer
37

, and a small cohort of melanoma 

samples showed increased YAE1D1 protein levels compared to untransformed 

melanocytes
38

.

In addition to SMRs that impact promoter regions, we observed 32 SMRs in 5′ and 3′ UTRs, 

including putative miRNA target sites
39

 Most strikingly, we discovered a 3 bp SMR in the 5′ 

UTR of TBC1D12 that is mutated in ∼15% of bladder cancers (Fig. 2f). Recurrent 

mutations were positioned near the start codon (Kozak region positions –1 and –3), 

suggesting a role in translational control. Mutations in this SMR were validated in whole-

genome sequences of 7 cancer types, including 2 of 20 bladder cancers, 2 of 40 lung 

adenomas, and 3 of 172 breast cancers
3,20

. Bladder tumors with mutations in this SMR 

display altered RPS6KA1 (p90RSK) phosphorylation (P = 0.0005, t-test, Benjamini-
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Hochberg), a signal of increased cell-cycle proliferation
40

, and α-Tubulin (P = 4.3 × 10–5, t-
test, Benjamini-Hochberg) levels, as determined by reverse-phase protein array (RPPA) 

assays
41

 (Fig. 2g, Online Methods). These results establish the utility of WES data for 

identifying recurrently mutated non-coding regions and our SMR identification method in 

pinpointing potentially functional non-coding alterations in cancer.

SMRs permit high-resolution analysis of coding alterations

As expected, most exome-derived SMRs lay within protein-coding regions. The 

identification of SMRs across multiple cancer types permitted a systematic analysis of 

differential mutation frequencies with sub-genic and cancer type resolution. Although many 

protein domains show high burdens of somatic mutation in multiple cancers, protein 

domains can show remarkable cancer type-specific burdens of mutation as exemplified by 

VHL in kidney clear-cell carcinoma and SET in diffuse large B-cell lymphoma (Fig. 3a).

Among genes (n=94) with multiple SMRs, we detected 48 SMRs that are differentially 

mutated between cancer types (Supplementary Table 8). A striking example of this 

differential targeting occurs within the catalytic subunit of the phosphoinositide 3-kinase, 

PIK3CA (p110α), a key oncogene implicated in a range of human cancers
42,43

. We detected 

six SMRs in PIK3CA across eight cancer types (Fig. 3b), with multiple cancer types 

displaying SMRs in the helical (PIK3CA.5) and kinase (PIK3CA.6) domains. In contrast, 

we observed cancer-specific SMRs (PIK3CA.2, PIK3CA.3) affecting an α-helical region 

between the adaptor binding domain (ABD) and linker domains of PIK3CA. Up to 14% of 

uterine corpus endometrial carcinomas harbor alterations in these intron-separated SMRs 

although these regions are not highly recurrently altered in other cancers. For example, we 

observed significant (Q = 1.2 × 10–16, proportions test) differences in PIK3CA.2 alteration 

frequencies in endometrial and breast cancers (Fig. 3b) and further validated these 

differences (P = 0.02, proportions test) in whole-genome sequences
3,20

. These findings 

indicate that previously described differences
44

 in total PIK3CA mutation frequencies 

between endometrial and breast cancers could in part be localized to this region.

Although the oncogenic effects of recurrent mutations in the ABD (PIK3CA.1), C2 

(PIK3CA.4), helical (PIK3CA.5) and kinase (PIK3CA.6) domains of PIK3CA have been 

previously described, mutations in this ABD–RBD linker region are poorly understood
45–48

. 

Interestingly, missense mutations within this region are directionally orientated to one side 

of the α-helix (P = 0.0145, Rayleigh test), suggesting alterations to a molecular interface 

(Fig. 3c). Large-scale molecular dynamics simulations of PIK3CA–PIK3R1 indicate that 

PIK3CA.2 (K111E) and PIK3CA.3 (G118D) mutations can alter intermolecular salt bridge 

patterns at R79, which may result in a 1.8 kcal/mol loss of binding interactions compared to 

wildtype PIK3CA (Fig. 3d, Supplementary Fig. 9; Online Methods). Taken together, these 

results suggest a previously unrecognized mechanism of oncogenic alteration in PIK3CA.

To systematically characterize the location of alterations with respect to three-dimensional 

protein structures, we leveraged structural information from 428 SMR-associated and known 

cancer genes. We detected n=46 proteins with three-dimensional clustering of missense 

mutations (Supplementary Table 9), as exemplified by PIM1, an SMR-associated serine/

threonine kinase proto-oncogene (Fig. 3e; Online Methods). This approach also identified 
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three-dimensional clustering between BRAFV600 and BRAFP-loop SMRs (Fig. 3f), regions 

where mutations have been shown to function through distinct mechanisms
49

. Moreover, we 

found that BRAFV600 mutations are more frequent in melanoma and colorectal cancers, 

whereas BRAFP-loop mutations are more common in multiple myeloma and lung adenomas 

(P < 0.01, proportions test). In total, seven of 16 proteins with multiple SMRs displayed 

significant SMR three-dimensional clustering (Supplementary Table 10), which is consistent 

with frequent spatial coherence in pathogenic alterations.

We next sought to identify SMRs that might affect the molecular interfaces of protein-

protein and DNA-protein interactions, a recognized yet understudied mechanism of cancer-

driver mutations
50–52

. We examined intermolecular distances between SMR residues and 

interacting proteins or DNA and identified 17 SMRs that likely alter molecular interfaces 

(Table 1; Online Methods). These include 15 molecular interfaces of protein-protein and 

DNA-protein interactions with established cancer associations, such as the substrate-binding 

cleft of SPOP
53

 and DNA-binding interfaces on RUNX1 (Fig. 3g). We detected reciprocal 

SMRs at all electrostatic interfaces of the SMAD2–SMAD4 heterotrimer in colorectal 

cancer (Fig. 3h), as have been recently described
54

, and reciprocal SMRs at the regulatory 

PIK3CA–PIK3R1 interface in endometrial cancer (Fig. 3b). Together, these results highlight 

the robustness of SMRs in detecting validated driver alterations in molecular interfaces 

(Supplementary Fig. 10). In addition, SMRs pinpoint recurrent alterations at the interface 

between histone H3.1 (Fig. 3i) and TRIM33, an E3 ubiquitin ligase, and at the DNA-protein 

interface of histone H2B (Supplementary Fig. 11). These findings underscore and extend 

recent associations between altered epigenetic regulation and histone alterations in 

tumorigenesis
55

.

Molecular signatures highlight impact of SMR alterations

We sought to determine the potential functional impact of SMR alterations by their 

association with molecular signatures. We leveraged RNA-seq, reverse-phase protein array 

(RPPA), and clinical data to ask whether: (1) SMRs alterations associate with distinct 

molecular signatures or survival outcomes, (2) SMR alterations correlate with similar 

molecular profiles in distinct cancers, (3) same-gene SMR alterations associate with similar 

or different molecular signatures.

We found that mutations in SMRs were associated with diverse changes in RNA expression, 

signaling pathways, and patient survival (Fig. 4a, Supplementary Tables 11–14; Online 

Methods)
56

. These analyses revealed previously unappreciated connections between 

recurrent somatic mutations and molecular signatures, which highlight recurrent GSK3 

pathway alterations in endometrial cancer and mTOR, EIF4 and EGF pathway alterations in 

glioblastoma (Supplementary Table 15). For example, synonymous point mutations in a 

bladder cancer SMR in sorting nexin 19 (SNX19) were associated with significant increases 

in protein expression levels of RAB25 (P = 2.5 × 10–27, t-test; Fig. 4b; Supplementary Table 

12), a RAS family GTPase that promotes ovarian and breast cancer progression (
57,58

. These 

increases are consistent with RNA expression differences of RAB25 (P = 0.02; Wilcoxon 

rank sum test; Fig. 4c). Intriguingly, both SNX19 and RAB25 are implicated in intracellular 

trafficking, but the mechanism by which synonymous mutations in SNX19 correlate with 
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RAB25 expression remains to be determined. In both SNX19 and NDUFA13, SMRs with 

clusters of synonymous mutation overlap open chromatin sites
28

 , suggesting potential 

regulatory impacts.

We identified concordant changes in gene expression between SMR pairs, revealing 

potential functional relationships among 23 SMRs from 17 genes (Fig. 4d). These included 

multiple well-established mechanistic relationships, many of which were supported by 

RPPA measurements
41

, such as between PIK3CA and AKT1. Furthermore, this analysis 

revealed that mutations in the same SMR in different cancers can elicit similar molecular 

profiles in distinct cancers. For instance, we found that SMR alterations in the oncogenic 

transcription factor NFE2L2
59

 were associated with large, concordant transcriptomic 

changes in four distinct cancer types (bladder, endometrial, lung squamous cell carcinoma, 

and head and neck cancer; Fig. 4e). The four genes with the highest increases in gene 

expression among endometrial cancer samples with alterations in NFE2L2.1 were the aldo-

keto reductases AKR1C1-4 (Fig. 4e), which contribute to altered androgen metabolism and 

have been implicated in multiple cancer types
60–62

. Across all four cancer types, 

transcriptomic changes associated with NFE2L2 SMR alterations were highly enriched for 

oxidoreductases acting on the CH-OH group of donors, NAD or NADP as acceptors 

(4.9-39.0×, P ≤ 0.001, Benjamini-Hochberg, Fig. 4f). Mutations in KEAP1, a NFE2L2 

binding partner, recapitulated the expression changes observed in patients with mutations in 

NFE2L2 SMRs (Fig. 4g; Supplementary Fig. 12; P < 0.01, Benjamini-Hochberg).

The identified SMRs also permitted interrogation of mutations in different regions of a given 

gene with respect to associated molecular signatures. For example in breast cancer, 

alterations in distinct SMRs within TP53 were associated with highly similar changes in 

protein-levels. Yet, we observed SMR-specific differences in ASNS levels and MAPK, 

MEK1 phosphorylation among TP53 SMR-altered samples (Fig. 4h, Q < 0.01). These 

results establish differences in the molecular signatures associated with same-gene SMR 

alterations and are consistent with pleiotropy in established oncogenes and tumor 

suppressors
63,64

.

The structure of cancer mutations remains largely unseen

SMR analysis leverages structure in the distribution of somatic driver mutations to identify 

cancer-associated regions. We sought an alternative metric to assess the structure in the 

distribution of somatic coding mutations analyzed here by measuring the Gini coefficient of 

amino acid substitutions per residue in each cancer (Fig. 5a). Gini coefficients of dispersion 

were well-correlated with sample numbers (Spearman's ρ = 0.74). Subsampling 

demonstrates that even with sample numbers >850, a large proportion of the structure of 

protein-altering mutations in breast cancer remains unseen (Fig. 5b). These findings 

highlight the value of increasing cancer sample sizes in assessing the landscape of driver 

mutations.

Discussion

With few exceptions, studies of disease-associated variation have focused on identifying 

predefined functional units with recurrent alterations. This approach not only assumes 
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accurate annotations but ignores the largely uncharacterized spectrum of functional elements 

that may be the targets of pathologic variants. Our approach avoids these limitations and 

complements existing gene-level and pathway-based strategies for discovering cancer-

drivers by identifying variably-sized SMRs across 20 cancer types (Supplementary Table 

16). SMR-associated genes include known cancer genes, such as PIM1 and MIR142 that 

were missed by gene-level analyses, as well as multiple novel genes with potential roles in 

cancer development.

Cancer SMRs target a diverse spectrum of functional elements in the genome, including 

single amino acids, complete coding exons and protein domains, miRNAs, 5′ UTRs, splice 

sites, and TF binding sites among others. This functional diversity underscores both the 

varied mechanisms of oncogenic misregulation and the advantage of functionally-agnostic 

detection approaches. Notably, several of the most frequently altered SMRs lay within non-

coding regions. Strikingly, 17 out of 39 promoter and 5′ UTR melanoma SMRs overlap the 

core recognition sequences of in vivo ETS-family binding sites (Odds Ratio = 15.2, P = 1.5 

× 10–11, Fisher's exact test). In addition, ∼15% of bladder cancer patients harbor 5′ UTR 

alterations in TBC1D12. Together, these results extend the support for non-coding drivers in 

cancer
20,23,65

 and establish the potential for discovering non-coding variation in WES.

The identification of SMRs provides a sub-genic, cancer-specific analysis of somatic 

mutations and associated molecular signatures. Cancer type differences in SMR mutation 

frequencies within BRAF, EGFR, and a mechanistically uncharacterized α-helix in PIK3CA 

demonstrate substructure in the distribution of somatic mutations between cancers, a 

property that may arise from pleiotropic functions. The close geometric proximity and 

directional uniformity of mutations in this helix suggest that PIK3CA.2 and PIK3CA.3 

mutations function through similar mechanisms. Moreover, biophysical simulations indicate 

that mutations in both SMRs result in an elevated basal signaling activity of catalytic 

PIK3CA by way of weakened interactions with the regulatory PIK3R1 protein. These 

findings are concordant with recent biochemical evidence
48

. Consistent with pleiotropic 

dependencies, alterations to SMRs within a single gene can be associated with distinct 

molecular signatures, as exemplified by TP53 SMRs in breast cancers. Together, these 

results provide robust support for sub-genic functional targeting in distinct cancers and 

genes, and future efforts to examine SMR mutations in conjunction with clinical data in 

significantly larger patient cohorts may permit assessment of the prognostic value of SMRs.

SMR detection would benefit from further improvements of somatic mutation models. Here, 

we have applied cancer-specific models that take into account variation in somatic mutation 

rates throughout the genome. We controlled for mutational effects stemming from 

differences in replication timing and gene expression
4,66

. In addition, our models capture 

nucleotide-specific mutation probabilities
3
, account for strand-specificity

67
, leverage WGS 

mutation frequencies to limit effects from purifying selection on exons, and control mutation 

processes that may result in mutation clustering and tri-nucleotide mutation biases
3
. 

However, tumor-specific DNA repair defects
3,66,68,69

 and cell-type specific chromatin 

context
70

 also contribute to somatic mutation rates. Mutation models that account for cell-

type specific expression and chromatin context at refined scales may require sequencing 

cohorts of matched normal tissue and increased sample sizes.

Araya et al. Page 9

Nat Genet. Author manuscript; available in PMC 2016 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although the sequencing of additional cancer genomes will further identification of novel 

cancer-driver genes
5
, characterizing the biochemical and cellular consequences of individual 

mutations is critical. We demonstrate that identifying the spatial distribution of mutation 

recurrence in the genome, when combined with additional genomic, biophysical, structural, 

or phenotypic information, often enhances mechanistic insights. Applying recently-

developed high-throughput approaches
71–73

 to directly interrogate variation within SMRs 

may allow further understanding of the molecular mechanisms driving cancer and facilitate 

diagnostics and therapeutics development.

URLs

Data from Lawrence et al.
5
 was obtained from the TumorPortal through: http://

cancergenome.broadinstitute.org/data/per_ttype_mafs/PanCan.maf; TCGA Data Portal, 

https://tcga-data.nci.nih.gov/tcga; UCSC cancer browser, http://genome-cancer.ucsc.edu.

Methods

Methods and any associated references are available in the online version of the paper.

Online Methods

Scientific computing was performed within Python
74,75

 and R environments. Data structure 

and genomic interval operations were performed with PANDAS
76

 and Pybedtools
77

, 

respectively. Statistical computing was performed with SciPy and NumPy
78

, and machine 

learning methods were implemented with SciKit Learn
79

. Structural and sequence alignment 

analyses were performed with BioPython
80

, PyMOL (Schrödinger) modules, and custom 

scripts. Reverse-Phase Protein Array (RPPA), RNA-seq, and survival analyses were 

performed in R and open-source packages (as described below).

Uniform Variant Annotation

3,185,590 uniformly-processed
5
, whole-exome sequencing (WES) somatic variant calls 

from 21 cancer types were downloaded from indicated URL. We applied snpEff
29

 to 

uniformly annotate n=3,078,482 (96.6%) single-nucleotide variant (SNV) calls from 4,735 

tumors recording (GRCh37.66) mutation impact in protein-coding regions, transcribed 

regions (coding plus non-coding exons, introns, 5′ UTR, and 3′ UTR), and gene-associated 

regions (transcribed 5 kb upstream and 5 kb downstream) and standardize gene-name 

assignments. These procedures standardized gene-name assignments at multiple scales and 

removed gene assignments to “?” (n=64), “---” (n=130,728) in the original file. In addition, 

this procedure reduced variant calls unassigned to any genes (“Unknown”, n=1,239,475) to 

n=899,731 intergenic calls (>5 kb from annotated exons). This procedure was also applied to 

annotate n=11,461,951 whole-genome sequencing (WGS) somatic SNV calls from 23 

cancer types
3,20

.

Mutation Probability Models

For each tumor type and gene, we calculated multiple distinct mutation probabilities. First, 

we calculated the frequency of transitions and transversions within the mappable, exonic 
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regions of each gene to derive ‘Exonic’ mutation probabilities for each gene in the hg19 

human genome assembly using WES data. Specifically, these probabilities indicate the 

fraction of mappable (100 bp), exonic reference bases (e.g. adenines) in each gene that were 

somatically mutated to a specific base (e.g. cytosine) per sample, in the cohort of tumor-

specific WES data.

Because expression levels and replication timing have been shown to be major co-variates of 

somatic mutation probability in the genome, we sought to refine our mutation probability 

models for each gene using this information. For each gene, and in each tumor type, we 

identified the set of genes most similar in the expression, replication time, and GC-content 

(gene-level features). We used previously compiled
4
 expression and replication timing data 

and derived feature-specific weights defined as the rank correlation between gene features 

and the observed exonic mutation probabilities in each tumor type. We then converted gene 

features into their percentile ranks. Genes were sorted sequentially based on the gene feature 

weights and the neighborhood of the 500 closest genes were selected for each query gene. 

We then measured the sum of correlation-weighted, absolute feature distances between gene 

pairs within the 500 gene rank neighborhood. For each gene, we selected the ≤200 most 

similar genes with a normalized distance score ≤ 1. Lastly, we averaged the ‘Exonic’ 

mutation probability per transition/transversion to derive a set of ‘Matched’ mutation 

probabilities.

To avoid skewed mutation probabilities due to increased selection pressure on exons, we 

utilized a pan-cancer whole-genome sequencing (WGS)
3,20

 data in conjunction with cancer-

specific WES data. We employed a Bayesian framework to derive posterior mutation 

probabilities for each transition and transversion per gene in each of the analyzed cancer 

types. Specifically, we modeled the likelihood of observing a mutation as a binomial 

distribution. We placed a prior Beta distribution on the mutation probability for each 

mutation type. The prior distribution was parameterized with parameters α = μ * ν and β = 

(1 – μ) * ν, where μ is the per base mutation probability in the WES data and ν is the number 

of exome sequencing samples in each cancer type. This parameterization enables the 

variance of the prior distribution to scale inversely with the sample size. We utilized the set 

of genes (≤200) that are matched to the analyzed gene as described above. We used all 

observed intronic WGS mutations in this cancer-specific matched set to calculate the 

posterior mutation probability for the analyzed gene. In this framework, the posterior 

distribution is also another Beta distribution. We then assigned the expected value of the 

posterior probability distribution as the estimate of the mutation probability for each 

transition/transversion (n=12). Finally, we calibrated the posterior mutation probabilities by 

the cancer-specific transition/transversion rates such that the median ‘Bayesian’ mutation 

probability is equal to the mean cancer-specific ‘Exonic’ mutation rate.

We computed a ‘Global’ mutation probability per tumor type as the average probability of 

transitions and transversions across all genes as observed in ‘Exonic’ mutation probabilities 

in each tumor type. The distributions of WES-derived (‘Exonic’, ‘Matched’, and ‘Global’) 

as well as WGS-derived (‘Bayesian’) mutation probabilities varied strongly between cancer 

types (Supplementary Fig. 2a) and among genes within individual cancer types, highlighting 

the importance of such cancer- and gene-specific treatment of background mutation 
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probabilities
3,4. Complementary mutation probabilities are well-correlated (Supplementary 

Fig. 2b). The ‘Bayesian’ and ‘Matched’ mutation probabilities are well-correlated among 

genes (Supplementary Fig. 2c), though ‘Bayesian’ mutation probabilities are better-

correlated (Supplementary Fig. 2d) with the observed WGS intronic mutation densities. 

These ‘Bayesian’ (WGS-based) and ‘Matched’ (WES-based) mutation probabilities were 

used for the comparison presented in Fig. 1f.

Lastly, to account for tri-nucleotide biases
3,4 in diverse mutation processes and cancer types, 

we computed ‘Trinucleotide’ mutation probability models for each tumor type. Specifically, 

‘Trinucleotide’ mutation probabilities were calculated as the fraction of mappable (100 bp), 

exonic reference bases (e.g. adenines, A) within specific tri-nucleotide contexts (e.g. CAG) 

that were somatically mutated to a specific base (e.g. cytosine, CAG>CCG) per sample, in 

the cohort of tumor-specific WES data.

Mutation Domain Definition

We extended Ensembl (75) exonic regions by 0 bp and 1,000 bp and merged regions to 

define n=305,145 ‘concise’ (C) and n=191,669 ‘expanded’ (E) genomic domains in which 

mutation clusters were evaluated (see below). We identified the n=279,979 ‘concise’ and 

n=175,228 ‘expanded’ domains in which over ≥90% of positions are fully mappable with 

single-end 100 bp reads (ENCODE, UCSC Genome Browser). For each set of domains, we 

computed the number of possible genomic ranges (start, stop), which for the ‘expanded’ set 

amounts to 1,005,774,400,023 ranges (1012.0025). In addition, we removed ‘blacklisted’ 

regions of the human genome previously defined by the ENCODE project
81

.

Mutator Sample Identification

Samples harboring aberrantly high burdens of mutations in each tumor type were detected 

using median absolute deviation (MAD) outlier detection on the distribution of mutations 

(logn) per sample. As a threshold for consistency, mutator (outlier) samples were selected as 

those exceeding two standard deviations (s.d.).

Mutation Cluster Identification

We deployed density-based spatial clustering of applications with noise (DBSCAN) to 

detect clusters of ≥2 SNVs within exonic domains (above), evaluating density-reachability 

within ε base-pairs in each cancer type. The reachability parameter, ε, was dynamically 

defined with ε=dp/ds where dp and ds refer to the number of mutated positions (base-pairs) 

and the base-pair size of the domain d, thresholded to 10 ≤ ε ≤ 500 bp. In contrast to sliding 

window approaches or k-means spatial clustering, DBSCAN is not confined to evaluating 

predefined cluster sizes or numbers and tolerates noise in spatial density, whereby distal 

mutations are not assigned to clusters. Detected mutation clusters were refined where 

subclusters of ≥2 SNVs with significantly higher (P < 0.05, binomial test) mutation densities 

(mutated tumor samples per kb) existed.

Mutation Cluster Scoring

The significance of the observed mutation densities in each cluster was determined as 

Fisher's combined binomial probability of sampling the observed (k) or more mutations for 
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each mutation type within the region. For each region, we computed the above density 

scores with the previously described ‘Exonic’, ‘Matched’, ‘Bayesian’, and ‘Global’ somatic 

mutation probabilities. As the primary density score (PDensity), we selected the most 

conservative of the ‘Bayesian’ and ‘Global’ density scores, max(PBayesian, PGlobal). Finally, 

we computed a tri-nucleotide mutation density (PTrinucleotide) score for each region using the 

‘Trinucleotide’ somatic mutation probabilities.

Mutation Cluster Thresholding

We applied the procedures above to detect and evaluate mutation clusters in two sets of 

‘concise’ (C) and ‘expanded’ (E) query domains (described in Mutation Domain Definition). 

117,148/198,718 of the mutation clusters identified in E fall within the C query domains, 

respectively, indicating a 1.7× increase in clusters within the 1,000 bp-expanded domains.

Empirical false discovery rates (FDRs) were calculated from ten simulations performed by 

randomizing mutations within C domains in each tumor type, simulating a total of 

30,784,820 mutations across cancer types. In each simulation, the positions of the observed 

mutations in each domain and tumor type, were randomized while maintaining reference 

base identity to retain the observed ‘Global’ mutation probabilities per transition and 

transversion (n=12). In each iteration, mutation cluster detection, refinement, and scoring 

procedures were repeated as above. For each simulation, we computed the density score 

(PDensity) threshold that guarantees a FDR ≤ 5%, whereby false and true discoveries are 

computed as the number clusters from simulated (randomized) and observed domain 

mutations, respectively. We excluded clusters with outlier density scores from the false 

discovery set if the clusters were associated with Cancer Gene Census (CGC) genes 

(n=522)
31,32

, as these regions would not represent false discoveries. For each tumor type, the 

expectation value (i.e. average) of FDR ≤ 5% simulation thresholds was defined as the final 

tumor-specific FDR threshold. To control FDRs to ≤5% in the E domains, where mutations 

cannot be randomized owing to the decreased certainty of WES coverage, we adjusted FDRs 

from C domains by the 1.7× increase in E/C clusters in each tumor type. ‘Expanded’ (E) 

domain 5% FDR thresholds per tumor type are provided in Supplementary Table 1.

To assess the robustness of the FDR cutoffs, we expanded the number of simulations to 90× 

and confirmed a 99.2% overlap (Jaccard index) in the 5% FDR-thresholded clusters 

(Supplementary Fig. 4e-g).

We reiterated mutation cluster FDR estimation and filtering using an alternate, conservative 

density score, PAlternate = max(PMatched, PGlobal), resulting in 714 regions. Fully 93.2% of 

these regions were identified as SMRs on the basis of the primary density scores (PDensity).

Mutation Cluster Filtering

As a final step in calling significantly mutated regions (SMRs), we selected clusters with 

density scores (PDensity) at the 5% FDR threshold and that were mutated in ≥2% of samples 

in each cancer type. Lastly, clusters associated with pseudogenes, olfactory receptors, and 

other repetitive gene-classes, were removed. This procedure resulted in 872 significantly 

mutated regions (SMRs), from 735 unique genomic regions, in 20 distinct cancer types.
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Mutation Cluster Annotation

SMRs were annotated on the basis of mutation impacts on coding, transcribed, and gene-

associated regions (see Uniform Variant Annotation). For SMRs associated with multiple 

genes (i.e. overlapping annotations), we preferentially assigned SMRs to (1) previously 

known cancer-driver genes (as defined by Lawrence et al. or the CGC), or (2) the gene 

impacted by the most severe type of mutation. Where mutation impact was insufficient to 

resolve multiple gene assignments, we selected the gene impacted by the largest number of 

mutations within the SMR. On this basis, we assign each SMR to a single gene, recording 

the types of mutation impacts on the gene, and the class of region affected. Region classes 

include: exon (coding region and non-coding gene), intron, splice, upstream, 5′ UTR, 3′ 

UTR, downstream, and other (intergenic). Mutation impacts (from snpEff) include in order 

of severity: rare amino acid, splice-site acceptor, splice-site donor, start lost, stop lost, stop 

gained, non-synonymous coding, splice-site branch U12, non-synonymous start, non-

synonymous stop, splice-site region, splice-site branch, start gained, synonymous coding, 

synonymous start, synonymous stop,non-coding gene (“exon”), 3′ UTR, 5′ UTR, miRNA, 

intron, upstream, downstream, and intergenic.

Mutation Cluster Classification

SMRs were classified into ‘high-’, ‘medium-’, and ‘low-confidence’ sets as follows. First, 

SMRs in which alterations fall below the 2% mutation frequency threshold following 

mutator sample (as defined above) removal were labeled as mutator-driven SMRs. Among 

SMRs robust to mutator removal, those with FDR-corrected density scores significant at 

adjusted P < 0.05 following Bonferroni correction (PDensity ≤ 5.2 × 10–17) were classified as 

high-confidence. Mutator-driven SMRs were classified as low-confidence. SMRs that did 

not meet the high-confidence or low-confidence criteria were deemed medium-confidence.

To control for unaccounted mutation processes that could result in clusters of mutations with 

no selective advantage in cancer, we introduced the assumption that intronic mutations are 

primarily composed of passenger mutations and treated intronic clusters as false discoveries. 

For each cancer type, the distribution of density scores from intronic mutation clusters was 

modeled with Gaussian Kernel-Density Estimation (KDE) to derive p-value and q-value 

(FDR) estimates that limit the false discovery rate to ≤5%. This approach is limited to the 

ten cancer types with sufficient intronic mutation clusters to permit KD-estimates of their 

distribution of mutation density scores (Supplementary Fig. 5). A threshold of n ≥ 100 

intronic mutation clusters was determined on the basis of the stability of FDR thresholds as 

determined by subsampling intronic mutation clusters in melanoma (data not shown). We 

applied this approach to control false discovery rates on two metrics: First, to account for 

unaccounted mutation clustering, we apply this approach on our expression-, replication 

timing-, and sequence (GC%) composition-controlled single-nucleotide probabilities 

(PDensity). Second, to account for biases in tri-nucleotide mutation frequencies in each 

cancer type, we apply this approach on tri-nucleotide density scores (PTrinucleotide). SMRs 

discovered in multiple cancer types and non-mutator-driven SMRs compliant with intron-

based FDR ≤ 5% thresholds (PDensity, PTrinucleotide both) were classified as ‘robust’.
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Mutation Cluster Labeling

SMRs with higher than expected APOBEC mutation signatures
69

 were labeled 

(Supplementary Fig. 6d, see Mutation Trinucleotide Analysis below). Finally, we annotated 

SMRs with respect to their 35 bp uniqueness and alignability with 50, 75, and 100 bp single-

end reads. SMRs coordinates and corresponding annotations are provided in Supplementary 

Table 2.

Mutation Trinucleotide Analysis

We evaluated the frequency of trinucleotide sequence contexts as a subset of these (TCW) 

have been previously shown to differ significantly in mutation frequencies from other single-

nucleotide contexts owing to APOBEC mutational processes
69

. Although APOBEC 

mutation signatures are identifiable in the data, our SMRs are depleted for such signatures 

(Supplementary Fig. 6a), suggesting the background models conservatively control for this 

mutation signature. Moreover, we extended these analyses to examine two important 

metrics:

i. unaccounted trinucleotide biases measured as the deviation in the observed 

trinucleotide mutation frequencies on the basis of single-nucleotide frequencies, 

and

ii. fold change in frequencies of trinucleotide contexts in the SMR mutations 

compared to the input mutations

We observed a low correlation between the unaccounted-for trinucleotide biases and the fold 

change in trinucleotide contexts in diverse cancer types (Supplementary Fig. 6b), further 

supporting the conclusion that SMRs are not driven by unaccounted-for trinucleotide 

mutation signatures. These analyses are restricted to cancer types (n=6) that have ≥250 SMR 

mutation sites to prevent noise from cancer types with low numbers of SMR mutations. 

These cancer types encompass 79% of SMRs. Across cancer types, unaccounted-for 

trinucleotide frequencies account for only ∼7.9% of SMR sequences. For completeness, we 

have calculated within each SMR the fraction of mutations that are consistent with 

APOBEC signatures (Supplementary Fig. 6c). As shown in Supplementary Fig. 6d, only 4% 

of SMRs show higher than expected APOBEC mutation signatures following Holmes-

Bonferroni corrected. Raw (uncorrected) p-values would indicate that 12% of SMRs have 

higher than expected APOBEC mutation signatures.

For additional methods describing (1) Transcription Factor Motif Enrichments, (2) Protein 
Structure Mapping, (3) Mutation Spatial Clustering, (4) Mutation Dihedral Angles, (5) 

Molecular Dynamics of PIK3CA/PIK3R1 Binding, (6) RNA-seq Analysis, (7) Reverse-
Phase Protein Array (RPPA) Analysis, (8) Functional Enrichment Analysis, (9) Survival 
Analysis, (10) miRNA Target Site Analysis, and (11) Luciferase Assays, please see 

Supplementary Note.

Code Availability

The Python and R scripts to process the data and conduct the analyses described herein are 

available from the authors by request.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank the TCGA, ICGC, and TCPA for making these large-scale cancer datasets available to the scientific 
community. C.L.A. was supported by NIH grants 3U54DK10255602 and 1P50HG00773501. C.C. was supported 
by the Child Health Research Institute, the Lucile Packard Foundation for Children's Health and Stanford CTSA 
grant number UL1TR000093. J.A.R. was supported the Damon Runyon Cancer Research Foundation and NIH 
award 1U01HG007919-01. G.K. acknowledges support from the Lawrence Scholars Program, the NIH Simbios 
Program (U54 GM072970), and the Center for Molecular Analysis and Design at Stanford University. Biophysical 
simulations were supported by the Blue Waters project via National Science Foundation awards OCI-0725070 and 
ACI-1238993 and the state of Illinois. Further support was provided by the National Center for Multiscale 
Modeling of Biological Systems (P41GM103712-S1) through Anton-1 resources provided by the Pittsburgh 
Supercomputing Center under grant number PSCA13072P. This work was supported by the Rita Allen Foundation 
and NIH grant P50HG007735. We thank H. Tang for discussions regarding statistical analyses. We thank M. M. 
Winslow, D. M. Fowler, S. Fields, and D. E. Webster for critical reading and suggestions to the manuscript.

References

1. Hodis E, et al. A landscape of driver mutations in melanoma. Cell. 2012; 150:251–263. [PubMed: 
22817889] 

2. Huang FW, et al. Highly recurrent TERT promoter mutations in human melanoma. Science. 2013; 
339:957–959. [PubMed: 23348506] 

3. Alexandrov LB, et al. Signatures of mutational processes in human cancer. Nature. 2013; 500:415–
421. [PubMed: 23945592] 

4. Lawrence MS, et al. Mutational heterogeneity in cancer and the search for new cancer-associated 
genes. Nature. 2013; 499:214–218. [PubMed: 23770567] 

5. Lawrence MS, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. 
Nature. 2014; 505:495–501. [PubMed: 24390350] 

6. Ding L, Wendl MC, McMichael JF, Raphael BJ. Expanding the computational toolbox for mining 
cancer genomes. Nat Rev Genet. 2014; 15:556–570. [PubMed: 25001846] 

7. Davies H, et al. Mutations of the BRAF gene in human cancer. Nature. 2002; 417:949–954. 
[PubMed: 12068308] 

8. Parsons DW, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 
2008; 321:1807–1812. [PubMed: 18772396] 

9. Kane DP, Shcherbakova PV. A common cancer-associated DNA polymerase ε mutation causes an 
exceptionally strong mutator phenotype, indicating fidelity defects distinct from loss of 
proofreading. Cancer Res. 2014; 74:1895–1901. [PubMed: 24525744] 

10. Dees ND, et al. MuSiC: identifying mutational significance in cancer genomes. Genome Res. 
2012; 22:1589–1598. [PubMed: 22759861] 

11. Tamborero D, Gonzalez-Perez A, Lopez-Bigas N. OncodriveCLUST: exploiting the positional 
clustering of somatic mutations to identify cancer genes. Bioinformatics. 2013; 29:2238–2244. 
[PubMed: 23884480] 

12. Porta-Pardo E, Godzik A. e-Driver: a novel method to identify protein regions driving cancer 
Bioinformatics. 2014; 30:3109–3114. [PubMed: 25064568] 

13. Schnall-Levin M, Zhao Y, Perrimon N, Berger B. Conserved microRNA targeting in Drosophila is 
as widespread in coding regions as in 3′UTRs. Proc Natl Acad Sci USA. 2010; 107:15751–15756. 
[PubMed: 20729470] 

14. Cenik C, et al. Genome analysis reveals interplay between 5′UTR introns and nuclear mRNA 
export for secretory and mitochondrial genes. PLoS Genet. 2011; 7:e1001366. [PubMed: 
21533221] 

15. Stergachis AB, et al. Exonic transcription factor binding directs codon choice and affects protein 
evolution. Science. 2013; 342:1367–1372. [PubMed: 24337295] 

Araya et al. Page 16

Nat Genet. Author manuscript; available in PMC 2016 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16. Wolfe AL, et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. 
Nature. 2014; 513:65–70. [PubMed: 25079319] 

17. Xiong HY, et al. RNA splicing. The human splicing code reveals new insights into the genetic 
determinants of disease Science. 2015; 347:1254806. [PubMed: 25525159] 

18. Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet. 
2014; 15:829–845. [PubMed: 25365966] 

19. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human 
genome. Nature. 2012; 489:57–74. [PubMed: 22955616] 

20. Weinhold N, Jacobsen A, Schultz N, Sander C, Lee W. Genome-wide analysis of noncoding 
regulatory mutations in cancer. Nat Genet. 2014; 46:1160–1165. [PubMed: 25261935] 

21. Fredriksson NJ, Ny L, Nilsson JA, Larsson E. Systematic analysis of noncoding somatic mutations 
and gene expression alterations across 14 tumor types. Nat Genet. 2014; 46:1258–1263. [PubMed: 
25383969] 

22. Supek F, Miñana B, Valcárcel J, Gabaldón T, Lehner B. Synonymous mutations frequently act as 
driver mutations in human cancers. Cell. 2014; 156:1324–1335. [PubMed: 24630730] 

23. Melton C, Reuter JA, Spacek DV, Snyder M. Recurrent somatic mutations in regulatory regions of 
human cancer genomes. Nat Genet. 2015; 47:710–716. [PubMed: 26053494] 

24. Hofree M, Shen JP, Carter H, Gross A, Ideker T. Network-based stratification of tumor mutations. 
Nat Methods. 2013; 10:1108–1115. [PubMed: 24037242] 

25. Leiserson MDM, et al. Pan-cancer network analysis identifies combinations of rare somatic 
mutations across pathways and protein complexes. Nat Genet. 2015; 47:106–114. [PubMed: 
25501392] 

26. Araya CL, et al. Regulatory analysis of the C. elegans genome with spatiotemporal resolution 
Nature. 2014; 512:400–405.

27. Stergachis AB, et al. Conservation of trans-acting circuitry during mammalian regulatory 
evolution. Nature. 2014; 515:365–370. [PubMed: 25409825] 

28. Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human epigenomes. 
Nature. 2015; 518:317–330. [PubMed: 25693563] 

29. Cingolani P, et al. A program for annotating and predicting the effects of single nucleotide 
polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; 
iso-3. Fly. 2012; 6:80–92. [PubMed: 22728672] 

30. Martin E, Kriegel HP, Jörg S, Xiaowei X. A density-based algorithm for discovering clusters in 
large spatial databases with noise. KDD. 1996 doi:10.1.1.71.1980. 

31. Futreal AP, et al. A census of human cancer genes. Nat Rev Cancer. 2004; 4:177–183. [PubMed: 
14993899] 

32. Santarius T, Shipley J, Brewer D, Stratton MR, Cooper CS. A census of amplified and 
overexpressed human cancer genes. Nat Rev Cancer. 2010; 10:59–64. [PubMed: 20029424] 

33. Malhotra A, et al. Breakpoint profiling of 64 cancer genomes reveals numerous complex 
rearrangements spawned by homology-independent mechanisms. Genome Res. 2013; 23:762–776. 
[PubMed: 23410887] 

34. Jäger D, et al. Identification of a tissue-specific putative transcription factor in breast tissue by 
serological screening of a breast cancer library. Cancer Res. 2001; 61:2055–2061. [PubMed: 
11280766] 

35. Mei YP, et al. Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene. 
2012; 31:2794–2804. [PubMed: 21986946] 

36. Okugawa Y, et al. Clinical significance of SNORA42 as an oncogene and a prognostic biomarker 
in colorectal cancer. Gut. 2015 gutjnl–2015–309359. 

37. Budinska E, et al. Gene expression patterns unveil a new level of molecular heterogeneity in 
colorectal cancer. J Pathol. 2013; 231:63–76. [PubMed: 23836465] 

38. Uhlén M, et al. Proteomics. Tissue-based map of the human proteome Science. 2015; 
347:1260419.

39. Vejnar CE, Zdobnov EM. MiRmap: comprehensive prediction of microRNA target repression 
strength. Nucleic Acids Res. 2012; 40:11673–11683. [PubMed: 23034802] 

Araya et al. Page 17

Nat Genet. Author manuscript; available in PMC 2016 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



40. Lara R, Seckl MJ, Pardo OE. The p90 RSK family members: common functions and isoform 
specificity. Cancer Res. 2013; 73:5301–5308. [PubMed: 23970478] 

41. Li J, et al. TCPA: a resource for cancer functional proteomics data. Nat Methods. 2013; 10:1046–
1047. [PubMed: 24037243] 

42. Samuels Y, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 
2004; 304:554. [PubMed: 15016963] 

43. Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of 
activation and therapeutic targeting. Nat Rev Cancer. 2014; 15:7–24. [PubMed: 25533673] 

44. Cancer Genome Atlas Research Network. Integrated genomic characterization of endometrial 
carcinoma. Nature. 2013; 497:67–73. [PubMed: 23636398] 

45. Miled N, et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase 
catalytic subunit. Science. 2007; 317:239–242. [PubMed: 17626883] 

46. Huang CH, et al. The structure of a human p110alpha/p85alpha complex elucidates the effects of 
oncogenic PI3Kalpha mutations. Science. 2007; 318:1744–1748. [PubMed: 18079394] 

47. Gkeka P, et al. Investigating the Structure and Dynamics of the PIK3CA Wild-Type and H1047R 
Oncogenic Mutant. PLoS Comput Biol. 2014; 10:e1003895. [PubMed: 25340423] 

48. Burke JE, Perisic O, Masson GR, Vadas O, Williams RL. Oncogenic mutations mimic and enhance 
dynamic events in the natural activation of phosphoinositide 3-kinase p110α (PIK3CA). Proc Natl 
Acad Sci USA. 2012; 109:15259–15264. [PubMed: 22949682] 

49. Haling JR, et al. Structure of the BRAF-MEK complex reveals a kinase activity independent role 
for BRAF in MAPK signaling. Cancer Cell. 2014; 26:402–413. [PubMed: 25155755] 

50. Kar G, Gursoy A, Keskin O. Human cancer protein-protein interaction network: a structural 
perspective. PLoS Comput Biol. 2009; 5:e1000601. [PubMed: 20011507] 

51. Ghersi D, Singh M. Interaction-based discovery of functionally important genes in cancers. 
Nucleic Acids Res. 2014; 42:e18. [PubMed: 24362839] 

52. Cheng F, et al. Studying tumorigenesis through network evolution and somatic mutational 
perturbations in the cancer interactome. Mol Biol Evol. 2014; 31:2156–2169. [PubMed: 
24881052] 

53. Barbieri CE, et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in 
prostate cancer. Nat Genet. 2012; 44:685–689. [PubMed: 22610119] 

54. Fleming NI, et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 
2013; 73:725–735. [PubMed: 23139211] 

55. Yuen BTK, Knoepfler PS. Histone H3.3 mutations: a variant path to cancer. Cancer Cell. 2013; 
24:567–574. [PubMed: 24229707] 

56. Hornbeck PV, et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and 
function of experimentally determined post-translational modifications in man and mouse. Nucleic 
Acids Res. 2012; 40:D261–70. [PubMed: 22135298] 

57. Cheng KW, et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast 
cancers. Nat Med. 2004; 10:1251–1256. [PubMed: 15502842] 

58. Zhang J, et al. Overexpression of Rab25 contributes to metastasis of bladder cancer through 
induction of epithelial-mesenchymal transition and activation of Akt/GSK-3β/Snail signaling. 
Carcinogenesis. 2013; 34:2401–2408. [PubMed: 23722651] 

59. DeNicola GM, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and 
tumorigenesis. Nature. 2011; 475:106–109. [PubMed: 21734707] 

60. Ji Q, et al. Selective loss of AKR1C1 and AKR1C2 in breast cancer and their potential effect on 
progesterone signaling. Cancer Res. 2004; 64:7610–7617. [PubMed: 15492289] 

61. Stanbrough M, et al. Increased expression of genes converting adrenal androgens to testosterone in 
androgen-independent prostate cancer. Cancer Res. 2006; 66:2815–2825. [PubMed: 16510604] 

62. Riᜎner TL, Šmuc T, Rupreht R, Šinkovec J, Penning TM. AKR1C1 and AKR1C3 may determine 
progesterone and estrogen ratios in endometrial cancer. Mol Cell Endocrinol. 2006; 248:126–135. 
[PubMed: 16338060] 

Araya et al. Page 18

Nat Genet. Author manuscript; available in PMC 2016 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



63. Zhao L, Vogt PK. Helical domain and kinase domain mutations in p110α of phosphatidylinositol 
3-kinase induce gain of function by different mechanisms. Proceedings of the National Academy 
of Sciences. 2008; 105:2652–2657.

64. Wu X, et al. Activation of diverse signalling pathways by oncogenic PIK3CA mutations. Nat 
Commun. 2014; 5:4961. [PubMed: 25247763] 

65. Puente XS, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature. 2015; 
526:519–524. [PubMed: 26200345] 

66. Supek F, Lehner B. Differential DNA mismatch repair underlies mutation rate variation across the 
human genome. Nature. 2015; 521:81–84. [PubMed: 25707793] 

67. Reijns MAM, et al. Lagging-strand replication shapes the mutational landscape of the genome. 
Nature. 2015; 518:502–506. [PubMed: 25624100] 

68. Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012; 481:287–294. 
[PubMed: 22258607] 

69. Roberts SA, et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human 
cancers. Nat Genet. 2013; 45:970–976. [PubMed: 23852170] 

70. Polak P, et al. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. 
Nature. 2015; 518:360–364. [PubMed: 25693567] 

71. Araya CL, et al. A fundamental protein property, thermodynamic stability, revealed solely from 
large-scale measurements of protein function. Proceedings of the National Academy of Sciences. 
2012; 109:16858–16863.

72. Buenrostro JD, et al. Quantitative analysis of RNA-protein interactions on a massively parallel 
array reveals biophysical and evolutionary landscapes. Nat Biotechnol. 2014; 32:562–568. 
[PubMed: 24727714] 

73. Guenther UP, et al. Hidden specificity in an apparently nonspecific RNA-binding protein. Nature. 
2013; 502:385–388. [PubMed: 24056935] 

74. Oliphant TE. Python for Scientific Computing. Computing in Science Engineering. 2007; 9:10–20.

75. Millman KJ, Aivazis M. Python for Scientists and Engineers. Computing in Science Engineering. 
2011; 13:9–12.

76. McKinney, W. Data Structures for Statistical Computing in Python. In: van der Walt, S.; Millman, 
J., editors. Proceedings of the 9th Python in Science Conference. 2010. p. 51-56.

77. Dale RK, Pedersen BS, Quinlan AR. Pybedtools: a flexible Python library for manipulating 
genomic datasets and annotations. Bioinformatics. 2011; 27:3423–3424. [PubMed: 21949271] 

78. Van der Walt S, Colbert SC, Varoquaux G. The NumPy Array: A Structure for Efficient Numerical 
Computation. Computing in Science Engineering. 2011; 13:22–30.

79. Pedregosa F, et al. Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2011; 12:2825–
2830.

80. Cock PJA, et al. Biopython: freely available Python tools for computational molecular biology and 
bioinformatics. Bioinformatics. 2009; 25:1422–1423. [PubMed: 19304878] 

81. Boyle AP, et al. Comparative analysis of regulatory information and circuits across distant species. 
Nature. 2014; 512:453–456. [PubMed: 25164757] 

Araya et al. Page 19

Nat Genet. Author manuscript; available in PMC 2016 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Identification of significantly mutated regions (SMRs) in 20 cancer types across a broad 

spectrum of functional elements. (a) Pan-cancer distribution of mutation types in 

n=3,078,482 somatic single-nucleotide variant (SNV) calls. (b) Exons and exon-proximal 

domains (±1,000 bp) were scanned for clusters of somatic mutations (orange, DBSCAN). 

Distance parameter ε is dynamically defined as the average distance of mutated positions 

(dp) in the domain size (ds). Clusters (green) are divided if sub-clusters with higher mutation 

densities (P < 0.05, binomial test) are found in a second-pass analysis with ε defined as the 

average distance of mutated positions (cp) within the cluster of size cs (see Online Methods 

for density scoring and FDR calculation). (c) Per-cancer mutation frequency and density 

scores of discovered SMRs (color-coded by type and labelled by associated gene). The 

distribution of density scores in evaluated regions and SMR region types are shown in insets 

(middle) and (bottom), respectively. Dashed lines indicate the minimum, median, and 

maximum density score FDR (5%) thresholds. “Exon*” label refers to coding exons and 

non-coding genes. (d) Number of SMRs with FDR ≤ 5% and mutation frequency ≥2% per 

cancer type. Gray bars indicate SMRs with FDR ≤ 5% but mutation frequency <2%. (e) 

SMR size distribution. (f) Concordance between SMRs discovered by employing 

background models derived from whole-genome (WGS-based) or whole-exome (WES-

based) sequencing. (g) Categories with significant fold change in mutation type 

representation between SMR-associated and input mutations are denoted (*; P < 0.01). (h) 

Distribution of the number of mutations per sample in SMRs (blue) and 58 (green) 

recurrently-altered non-coding regions
20

.
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Figure 2. 
Non-coding SMRs recurrently alter promoters and 5′ UTRs. (a) Transcription factors (TFs) 

with enriched (Q < 0.01) motifs in small SMRs (≤25bp) across all cancer types are shown. 

18 of the 23 TFs are known cancer-associated TFs (*) or associated with cell-cycle control 

or developmental roles (†). (b) Cancer-specific motif enrichment analysis. (c) Gene 

structure, ENCODE ChIP-seq and DNaseI signals, vertebrate conservation (phastCons 

100way), Factorbook TF binding sites and motif occurrences, and somatic mutation 

frequencies at melanoma SMRs in KIAA0907 and (d) YAE1D1 promoter regions are shown 

at multiple scales (±1,000, ±75, and ±7 bp). Mutation frequency within each SMR (red) and 

at each position (purple bars) are shown. Motifs of ETS-family binding sites that overlap the 

SMRs are highlighted. (e) Luciferase reporter signal from wildtype (WT) and mutant (MT) 

promoters in three experiments performed in melanoma (A375) and HEK 293T cells with 

independent plasmid DNA preps (#1-2). For each experiment, three replicates were 

performed. Luciferase/renilla signals are shown, and are normalized by the mean WT signal 

per experiment. Two asterisks denotes P < 0.05 in two-sided t-tests; one asterisk denotes P < 

0.1. Error bars indicate s.d. (f) Gene-structure, ENCODE CTCF and DNaseI signals, 

vertebrate conservation (phastCons 100way) at the 5′ UTR TBC1D12 bladder cancer SMR 

are shown at multiple scales. Start codon position is highlighted in green and Kozak 

sequence is underlined. (g) Relative protein and post-translational modification signals of 

wildtype (n=78) and mutant (TBC1D12.1 SMR-altered, n=14) bladder tumors. Central band, 

box boundaries, and whiskers correspond to the median, the interquartile range, and the 

highest/lowest points within 1.5× the interquartile range, respectively.
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Figure 3. 
Structural mapping of SMRs onto proteins and complexes reveals differentially-altered 

regions among cancers and molecular interfaces targeted by recurrent alterations. (a) Non-

synonymous mutation frequency per PFAM protein domain, per cancer, per residue. Number 

of genes per domain is shown (left). (b) Mutation frequency matrix of PIK3CA SMRs 

across cancer types, and comparison of per residue mutation frequency of PIK3CA 

domains
46

 in endometrial (UCEC; orange) and breast cancer (BRCA; blue) samples. Gray 

bars indicate SMRs within PIK3CA. (c) Co-crystal structure of the PIK3CA (p110α; blue) 

and PIK3R1 (p85α; gray) interaction (PDB: 2RDO, 2IUG, 3HIZ). Residues within 

endometrial cancer SMRs on PIK3CA (orange) and PIK3R1 (red) are rendered as solvent-

accessible surfaces. Insets display mutated residues within the PIK3CA.2, PIK3CA.3 SMR 

α-helix (yellow, top) and their corresponding side-chain dihedral angles (bottom). (d) 

Molecular dynamics simulations suggest PIK3CA–PIK3R1 binding is bimodal (bottom). 

Mutations within the PIK3CA.2, PIK3CA.3 SMR α-helix interfere with R79 binding 

contacts at the PIK3R1 interface, as shown in the wildtype and K111E mutant. Molecular 

structures of spatially-clustered (e) mutations (diffuse large B-cell lymphoma) and (f) SMRs 

(multiple myeloma), (g) a DNA (green) interface SMR, (h) reciprocal protein interface 

SMRs, and (i) a histone H3.1 SMR in the TRIM33 interface. Structural alignments and 

molecular visualizations prepared with PyMOL (Schrödinger). The relative proportions of 

BRAF.1 and BRAF.2 missense mutations per cancer type are shown in (f). PDB codes for 

(e-i) are 3CXW, 1UWH, 1H9D, 1U7V, and 3U5N, respectively.
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Figure 4. 
SMRs are associated with distinct molecular signatures. (a) Matched RNA-seq data for nine 

cancers revealed that mutations in 30 distinct SMRs associated with ≥10 differentially 

expressed genes (FDR < 5%). (b) Normalized reverse phase protein array (RPPA) and (c) 

RNA-seq signals for RAB25 are plotted. Red lines indicate signals for samples with mutated 

SNX19 SMR. (d) Similarity between differentially expressed gene sets associated with 

mutations in each SMR pair. (e) Overlap between differentially expressed genes associated 

with altered NFE2L2.2 in bladder cancer (BLCA) and head and neck carcinoma (HNSC) is 

shown (top). Differentially expressed genes are sorted by p-value and similarity is quantified 

by Fisher's exact test odds ratio. The distribution of odds ratios of similarity is summarized 

for three comparisons (middle). Samples with NFE2L2.2 mutations exhibit highly increased 

expression of aldo-keto reductase enzymes (bottom). (f) The relative enrichment for 

oxidoreductase activity (GO:0016616) for specific cancer types (Supplementary Table 13). 

(g) Structure of SMR NFE2L2.2 (orange) in the KEAP1-binding domain (PDB: 3WN7). A 

sector of recurrent alterations on KEAP1 (teal) did not pass our 2% frequency cutoff. (h) 

Breast cancer patients were grouped by mutations in six SMRs in PIK3CA, AKT1, and 

TP53. Normalized RPPA-based expression was obtained from The Cancer Proteome Atlas 

(TCPA)
41

. The median RPPA signal for 36 markers and q-value (Kruskal-Wallis test) of 

differential expression between SMRs of TP53 or of PIK3CA are plotted (red highlights 

markers with significant intragenic differences, Q < 0.05).
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Figure 5. 
Structure in the distribution of cancer mutations remains largely uncharacterized. Gini 

coefficients of dispersion were calculated as the fraction of non-synonymous mutations 

contained per residue, across ∼19,000 proteins. (a) Lorenz curves (top-left), Gini-

coefficients (top-right), and their correlation with tumor sample numbers (bottom) are 

shown. (b) Gini coefficients of non-synonymous mutation frequency in breast cancer as a 

function of (bootstrapped) sample size. Line of exponential fit is shown in dark blue. For 

comparisons between cancer types (a), the Gini coefficients were computed exclusively on 

the 100 most mutated residues per cancer.
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