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Glucose-regulated and drug-perturbed
phosphoproteome reveals molecular mechanisms
controlling insulin secretion
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Insulin-secreting beta cells play an essential role in maintaining physiological blood glucose

levels, and their dysfunction leads to the development of diabetes. To elucidate the signalling

events regulating insulin secretion, we applied a recently developed phosphoproteomics

workflow. We quantified the time-resolved phosphoproteome of murine pancreatic cells

following their exposure to glucose and in combination with small molecule compounds that

promote insulin secretion. The quantitative phosphoproteome of 30,000 sites clustered into

three main groups in concordance with the modulation of the three key kinases: PKA, PKC

and CK2A. A high-resolution time course revealed key novel regulatory sites, revealing the

importance of methyltransferase DNMT3A phosphorylation in the glucose response.

Remarkably a significant proportion of these novel regulatory sites is significantly down-

regulated in diabetic islets. Control of insulin secretion is embedded in an unexpectedly broad

and complex range of cellular functions, which are perturbed by drugs in multiple ways.
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D
iabetes is a complex and heterogeneous condition
accompanied by a deterioration of glycaemic control.
Chronic hyperglycaemia can lead to a myriad of

complications, including coronary artery disease and myocardial
infarction, stroke, limb amputation, blindness and kidney failure1.

Beta cell dysfunctional patterns such as delayed insulin
secretory rate to a stimulus or loss of pulsatile secretion of
insulin represent the major contributor to the initiation and
genetic susceptibility to diabetes2–4. Therefore identifying new
molecular mechanisms contributing to insulin secretion could
improve the understanding, treatment and prevention of diabetes.

Growing evidence suggests that protein post-translational
modifications, especially phosphorylation, play a crucial role in
controlling glucose-mediated insulin secretion5,6. In the beta cells
of healthy islet, glucose induces insulin secretion rapidly, within a
few minutes and maintained for about an hour. This process
therefore likely relies heavily on the modulation of protein
activities through signal transduction pathways, rather than
controlling gene expression. Additionally, by applying mass
spectrometry (MS)-based proteomics, here we demonstrate that
key kinases are significantly downregulated in NOD (non-obese
diabetic mice) diabetic islets, further supporting the importance
of phosphorylation-based signalling networks in the glucose-
stimulated insulin secretion (GSIS).

However, few studies have investigated changes to the global
phosphoproteome occurring after glucose stimulation in beta
cells, and their depth (number of quantified sites), was insufficient
to capture many of the important regulatory sites7,8.

Our group recently described a MS-based phosphoproteomics
workflow, termed ‘EasyPhos’, which now enables streamlined and
very large-scale phosphoproteome analysis from limited starting
material over multiple experimental conditions9. Here we apply
EasyPhos to comprehensively quantify the response of the
phosphoproteome of murine insulin-secreting beta cells exposed
to glucose, and in combination with seven different compounds
known to act on different pathways affecting insulin secretion. An
in-depth proteomic characterization of our chosen cell line model
against pancreatic islets validates the experimental system. We
subsequently combined our deep compound-dependent phos-
phoproteomes with time-resolved phosphoproteomic profiling of
beta cells stimulated with glucose, revealing phosphorylation sites
implicated in insulin secretion control and gene expression
regulation. Remarkably a significant proportion of these novel
regulatory sites are significantly downregulated in diabetic islets.
We discover an unexpected connection to epigenetic control
through the DNA methyltransferase DNMT3A which we
functionally follow up by interaction proteomics.

Results
MS-based proteomics characterization of NOD diabetic islets.
To elucidate the molecular mechanisms governing glucose-
stimulated insulin secretion, we performed deep proteomic
profiling of murine pancreatic islets extracted from NOD healthy,
pre-diabetic and diabetic mice (Supplementary Fig. 1A). We
applied the recently developed iST proteomics workflow10,
combined with label-free LC–MS/MS analysis (Fig. 1a), and
processed the results in the MaxQuant environment11,12.
All experiments were performed in at least biological tripli-
cates, revealing high quantitation accuracy and reproducibility,
with Pearson correlation coefficients between 0.68 and 0.93
(Supplementary Fig. 1B). Remarkably our proteomic data enable
the unsupervised classification of pancreatic islets according to
their diabetic stratification (Fig. 1b; Supplementary Fig. 1C). To
decipher how the proteome was remodelled in NOD murine islets
at different diabetic stages, we focused on the 759 significantly

modulated proteins (analysis of variance (ANOVA), false
discovery rate (FDR)o0.05), and investigated whether these
proteins were enriched for particular biological processes or
pathways (Fig. 1c). Remarkably we found that proteins involved
in vesicle trafficking and secretion were downregulated in pre-
diabetic islets. This observation may shed further light at the
molecular level on the decreased insulin secretion capability
observed during pre-diabetes13. Our data reveal that decreased
insulin secretion is accompanied by a concomitant reduction in
proteins associated with glucose metabolism, while many proteins
involved in the regulation of fatty acids and proteins metabolism
are significantly upregulated (Fig. 1c). To our knowledge this is
the first proteomic data set describing proteome-wide
remodelling occurring in mice at different stages of type 1
diabetes (Supplementary Data 1).

We next investigated proteome changes occurring in the NOD
islets that may impact the wiring of signalling networks. Of
particular relevance was the finding that the levels of key kinases,
including AKT2, RAF1, PKA and CaMK2, as well as several
phosphatases were significantly modulated in diabetic islets
(Fig. 1d). This highlights the importance of phosphorylation
signalling networks in controlling the GSIS.

Validation of the experimental model. To further characterize
the signalling pathways involved in GSIS, we employed Min6
cells, a widely-used insulinoma beta cell line of murine origin
that is capable of eliciting a robust insulin secretion response
following acute stimulation with glucose14,15. Although there
are several alternatives with regards to cell lines for studying
beta cell function, there is an ongoing discussion as to how
faithfully they represent the biological process of interest. We
reasoned that similar expression values of proteins involved in a
process between two systems would suggest that these processes
are well preserved16. To quantitatively address this, we
performed deep proteomic profiling of both Min6 cells and
murine pancreatic islets, which is their in vivo cellular context,
and of which they constitute 80% of cellar mass17. As in our
previous experiments, we employed the recently developed iST
proteomics workflow10, combined with label-free LC–MS/MS
analysis processed in the MaxQuant environment11,12. This
strategy enabled the quantification of about 8,500 proteins in
Min6 cells, and about 7,800 proteins in whole pancreatic islets
(Fig. 2a; Supplementary Fig. 2B), making this the most
comprehensive catalogue of islet-cell proteins to our
knowledge. Importantly, key physiological processes, such as
insulin secretion, glycolysis and oxidative phosphorylation, are
amply and equally represented in both the proteome of
pancreatic islets and Min6 cells (Fig. 2b; Supplementary
Fig. 2B). Employing the recently developed ‘proteomic ruler’
method18 we estimated protein copy numbers across the
complete islet proteomes, revealing consistent rank orders
between the in vivo and in vitro systems (R¼ 0.98), as well as
excellent agreement between the highest and lowest abundant
proteins in both cell lines and islets (Fig. 2c). In islets, we were
able to measure copy numbers of all the widely used protein
markers of beta cells, as well of alpha, PP, delta and epsilon cells.
Reassuringly, beta cells markers, such as Ins, Pdx1, Iapp and
Mafa1, are largely equally expressed in Min6 cells and in islets
(Fig. 2d). Conversely, hormones secreted by non-beta cells, such
as glucagon, pancreatic polypeptide, somatostatin and ghrelin,
are substantially more abundant in islets than in Min6 cells.
Apart from validating the Min6 model at the level of expressed
proteins, these results represent a large resource of protein
abundance data for murine beta cells and pancreatic islets for
use by the community (Supplementary Data 2).
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Phosphoproteomics of beta cell glucose and drug stimulation.
To characterize signalling pathways involved in GSIS we next
quantified the dynamic response of the phosphoproteome in
Min6 cells, by activating or inhibiting the relevant signalling
networks in the presence of high or low glucose concentration. To
this end, we stimulated the cells by a combination of low or high
glucose concentration for 10 min, or high glucose concentration
for 30 min. This was combined with one of seven compounds
promoting insulin secretion: Glibenclamide, 8-bromo-cAMP,
8-bromo-cGMP, ATP, Carbachol, GLP-1 and the GSK3 inhibitor
SB216763, resulting in a total of 25 different signalling states
(Fig. 3a). We selected these compounds on the basis of the
involvement of their targets in different parts of insulin secretion
pathways (Fig. 3b). All experiments were performed in at least
biological triplicate. To evaluate the efficacy of each of these
conditions, we directly measured insulin secretion after each
treatment. All treatments robustly increased insulin secretion,
and consistent with published reports19, secreted insulin reached
a peak at 30 min of glucose stimulation (Fig. 3c).

To quantify changes to the global phosphoproteome over
these 25 different experimental conditions in great depth and
with minimal measurement time, we employed the EasyPhos

phosphoproteomic workflow that we recently developed9. This
resulted in the quantification of more than 35,000 phosphosites
located on 5,698 proteins (65% of the total detected proteome).
To our knowledge, with the exception of one very large-scale
study of mitotically arrested and EGF-stimulated HeLa cells20,
this is the largest quantified phosphoproteome to date. This is
made even more remarkable by the fact that previous deep
phosphoproteomes have typically relied on extensive fractio-
nation, while the experiments performed here were performed
exclusively in single-run mode. Intensity-ranked signal intensities
of the 35,058 quantified phosphosites span a wide dynamic range,
and phosphorylation sites on very low abundant proteins were
also detected (Supplementary Fig. 3A). In total 81% of the
phosphoproteome (28,637 of 35,058 sites) was localized with
single amino acid resolution (median localization probability
0.999, Supplementary Data 3). In nearly all experimental
conditions we quantified 413,000 phosphosites (Supplementary
Fig. 3B,C), with a high degree of overlap between them
(Supplementary Fig. 3D). Biological replicates measured for
each condition demonstrated high quantitation accuracy and
reproducibility with Pearson correlation coefficients between
0.75 and 0.90 (Supplementary Fig. 3E,F). Comparison of

3–4 biological replicates per condition
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Figure 1 | MS-based proteomic analysis of NOD islets. (a) Schematic representation of the experimental strategy applied to analyse the proteome of

pancreatic islets derived from healthy, pre-diabetic and diabetic NOD mice. (b) Principal component analysis (PCA) of NOD islets discriminates the healthy

islets from pre-diabetic and diabetic ones. (c) GO-Biological processes and pathways significantly enriched in three representative clusters are shown.

(d) Heat map of kinase and phosphatase protein levels in NOD islets.
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regulatory sites described in the literature suggested a very high
degree of coverage of the functional phosphoproteome. To assess
this more objectively, we compared the phosphosites quantified in
our study with those reported in the PhosphoSitePlus database21,
which revealed 20,209 identical sites—a high proportion
considering the depth of our analysis (Supplementary Fig. 3E).
Strikingly, about 20% of these phosphosites (4,235 out of these
20,209) were significantly regulated by drug and glucose
treatments (ANOVA test FDRo0.05), as revealed by our
MS-based approach (Supplementary Data 3). Remarkably, so
far o3% these sites (329 out of 20,209) have been annotated as
‘regulatory sites’, revealing that the vast majority of
phosphorylation sites quantified here have not been investigated
in terms of their functional role or upstream cognate kinase. Of
the 48,000 previously uncharacterized, high-confidence phos-
phorylation sites, a similar proportion (17%) were regulated by at
least one of the drugs (ANOVA test FDRo0.05), suggesting an
even larger scope of functional sites.

To assess whether glucose stimulation triggered the activity of
signalling pathways known to play important roles in glucose-
mediated insulin secretion in our system, we extracted the
phosphorylation sites on the activation loop of kinases of the
MAPK and PI3K-AKT pathways. The exposure of beta cells to a

high concentration of glucose for 10 min increased the activity of
the Mapk1/3 kinases, as well as Foxk1, p70S6K (Rps6kb1) and
pS6 (Rps6), considered hallmarks of the RAS-ERK and mTOR
pathways, respectively (Fig. 3d(a)). In the same way, we also
verified that the drug treatments affected the activity of their
targets. As expected, cAMP as well as GLP-1 increased the activity
of PKA (Fig. 2d(b,c)); cGMP triggered PKG kinase (Fig. 3d(f));
the GSK3 inhibitor SB216763 decreased the phosphorylation of
the GSK3 substrates (Fig. 3d(d)); and Carbachol treatment
triggered PKC activity (Fig. 3d(e)). Kinase-substrate motif
enrichment analysis of the phosphosites was significantly
modulated with respect to the control, independently verifying
these findings in each case (Supplementary Fig. 4; t-test,
FDRo0.05). The efficiency of the ATP and Glibenclamide
treatments, which do not directly target a kinases, was confirmed
by monitoring the phosphorylation of Ptpra, a substrate of CaMK
(Fig. 3d(g,h)).

Unbiased phosphoproteomics discriminates between drugs.
To investigate whether this large-scale multivariate phospho-
proteomics data could enable unsupervised classification of
small molecule compounds according to their targets, we next
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performed principal component analysis (PCA) of the 22,241
phosphosites quantified in at least 50% of our experimental
conditions. PCA segregated the drugs into three main clusters:
the first includes drugs increasing the activity of PKA (PKA and
GLP1R agonists) together with the GSK3 inhibitor; the second
consists of drugs triggering the PKC and PKG kinases (PKC and
PKG activators); and the third includes ATP and Glibenclamide,
which increase intracellular calcium concentration (Fig. 4a). The
fact that a quantitative data set of more than 22,000 phosphosites
clearly segregates by mode of action implies that compounds
triggering the same kinase/molecule produce similar effects on
global phosphorylation. Remarkably, the kinase substrate motifs
enriched in the loadings—the phosphosites most responsible for
the observed segregation in the PCA—almost always mirrored the
expected relationships between drugs and targets, with the
additional identification of enrichment of a CK2A substrate motif
in connection with the Glibenclamide and ATP compounds
(Fig. 4b,c). While PKA and PKC are believed to be essential for
GSIS22, to our knowledge this is the first time that the increased
activity of the CK2A kinase is correlated with enhanced insulin
secretion. Consistently, the MS-based proteomic profile of NOD
diabetic islets also revealed a significant reduction of CK2A levels
(Supplementary Data 1; Fig. 1d), highlighting its importance in
GSIS regulation

Independent analysis using a correlation matrix (Supple-
mentary Fig. 5A), as well as unsupervised hierarchical clustering
of the global phosphoproteome (Fig. 4d) further confirmed the
classification of the compounds affecting insulin secretion into
these three main groups. Finally, we verified that the activity of
kinases, whose substrate motifs were enriched in our analysis,
was regulated according to the grouping described above across
the many different treatment conditions (Fig. 4e). Thus, the

quantitative phosphoproteomes classify these drugs into three
main groups, reflecting their generally similar effects on the
pathways represented by three key kinases: PKA, PKC and CK2A
(Fig. 4f).

Mapping signalling pathways triggered by drug treatment. To
decipher how key signalling pathways are modulated by the
drugs, we focused on the 6,040 phosphosites significantly
modulated in an ANOVA test at a FDRo0.05 and investigated
whether these were significantly enriched for GO-Biological
processes (Supplementary Fig. 5B,C) and phosphorylation motifs
annotated in the Human Protein Reference Database (HPRD)23.
This analysis confirmed the kinases that we had previously found
to be modulated by the compounds. Interestingly, it also revealed
a strong enrichment for substrate motifs of kinases regulating key
pro-survival and cell cycle-related pathways, such as MAPK,
RAF1, AKT, PIM1 and CDK1/2/3 (Fig. 5a; Supplementary
Fig. 5B) (Fisher exact test, FDR o0.07).

To investigate these observations in greater detail, we applied a
recently developed strategy24 overlaying our phosphoproteomics
data onto a literature-derived signalling network that we extracted
from the PhosphoSite plus database (Supplementary Fig. 6)21. We
further filtered this network by maintaining only relationships
between proteins that our MS-based proteomic data indicated to
be expressed in beta cells (Supplementary Data 2). Using this beta
cell-specific signalling network as a scaffold, we overlaid the
changes at the phosphoproteome level induced by drug treatment
to visualize how the three different classes of drug differentially
modulate key signalling networks. (Fig. 5b; Supplementary Fig. 6).
While PKA activation (orange nodes) is correlated with increased
JNK signalling, drugs triggering the PKC and PKG kinases as well
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measured with an Elisa assay. Median and s.d. of triplicates are shown as a bar graph. (d) Glucose stimulation and drug treatment impair the activity of

targeted kinases/pathway.
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as modulating calcium concentration (blue and green nodes)
activate both AKT and MAPK1/2 signalling pathways. While
these connections have been described previously, although under
different cellular contexts25–28, our data now provide a global and
quantitative phosphoproteomic background to the mechanisms
involved.

Interestingly, we found that all the compounds employed
trigger pathways that converge upon activation of cell cycle-
related kinases, such as Cdk1, Cdk2, Cdk5 and Cdk7. This is
consistent with our kinase–substrate motif enrichment analysis
(Fig. 5a), which indicated that these compounds may also affect
cell cycle progression in addition to increasing insulin secretion.
Thus analysis of our deep phosphoproteome provide a molecular
framework for the findings that glucose in conjunction with
certain diabetic drugs can act as a ‘mitogenic hormone’ in beta
cells and providing a molecular underpinning to the observed
connection between insulin secretion and cell proliferation
signalling networks29–31.

Discovering functional nodes controlling the glucose response.
To extract new functional phosphosites involved in controlling
insulin secretion, we started with the 6,040 ANOVA significantly
modulated sites (Supplementary Data 4), and selected only those
peptides whose phosphorylation was increased after glucose
stimulation, and was also further enhanced by treatment with
all of the compounds tested (Fig. 6a). This strategy revealed
64 phosphosites on 63 proteins to be hyperphosphorylated by
drug treatments. Remarkably, many of the identified phospho-
proteins are involved in processes expected to be triggered by
glucose stimulation, such as vesicle trafficking, the regulation of
calcium channels and the release of insulin granules.

Next, we decided to investigate the temporal regulation of these
sites and of the global beta cell phosphoproteome in a glucose-
dependent time course in insulin-secreting cells. We again
applied the EasyPhos pipeline with increased time resolution
of glucose administration, with eight time points spanning
from 2.5 min to 1 h (Fig. 6b). Consistent with our previous
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experiments, glucose stimulation increased the amount of
secreted insulin in a time-dependent manner, with peak insulin
secretion occurring after around 30 min (Supplementary Fig. 7A).
For subsequent analysis, we focused on around 11,000 sites for
which we had quantitative values for at least four of the eight time
points (Class 1 sites, Supplementary Data 5). As with our
previous phosphoproteome measurements, biological replicates

demonstrated high reproducibility at each time point (Pearson
correlation coefficients 0.85–0.95) (Supplementary Fig. 7B).
In a PCA, component 1 clearly segregated the control and early
(0 and 2.5 min) time points from intermediate (5, 10 and 15 min)
and late (20, 30 and 60 min) time points (Fig. 6b). Unsupervised
hierarchical clustering of the significantly modulated phospho-
peptides (ANOVA, FDR o0.05) revealed four predominant
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groups of phosphosites with different dynamic profiles (Supple-
mentary Fig. 7C). Sustained glucose responders were enriched for
PKA and PKC substrate motifs, while the transient responders
were enriched for AKT and p70S6K kinase substrates, consistent
with literature reports32,33.

Of the 64 phosphosites universally regulated by drug treatment
in a glucose-dependent manner, 34 were also significantly
regulated by glucose in the time-series studies (Fig. 6c).
Discarding two sites that are not conserved between mouse and
human, our combined strategy resulted in a high stringency list of
32 potential regulatory phosphosites of which only four had
previously been characterized as being functional (Fig. 6d). One
of the known sites is S243 of the metabolic enzyme glutamine-
fructose-6-phosphate transaminase (Gfpt). Phosphorylation of
this residue controls the activity of the enzyme, which so far has
been characterized as a regulator of glucose flux into the
hexosamine pathway only in the brain34. The finding that this
site is regulated in the beta cell suggests that this may similarly be
an important control point for glucose metabolism in the context
of insulin secretion. A large proportion of these phosphosites
is involved in the regulation of vesicle trafficking and cell cycle-
related functions, providing molecular detail on the connection
between insulin secretion and cell proliferation. Among these
proteins were two poorly characterized calcium channels, Slc24a2
and Mcoln1, both localized to the endoplasmatic reticulum. We
found that overexpression of the unphosphorylable mutants of
both of these proteins impairs the ability of the beta cells to
secrete insulin upon glucose stimulation (Supplementary Fig. 8).
Remarkably the protein level of 10 out of these 32 novel
regulatory sites is significantly impaired in NOD pre-diabetic and
diabetic islets (Fig. 6e).

Characterization of the S7 DNMT3A phosphorylation. Among
the new potentially functional phosphosites (Supplementary
Fig. 9A), we also identified Serine 4 of the de novo DNA methyl-
transferase DNMT3A (Fig. 6c; Supplementary Fig. 9B,C). This
protein plays a crucial role in beta cell differentiation and
metabolism. Beta cell-specific deletion of DNMT3A is sufficient
to cause beta-to-alpha-cell reprogramming, driving a metabolic
program by repressing key genes to enable the coupling of
insulin secretion to glucose levels during beta cell maturation35,36.
Additionally, a genome-wide association study (GWAS) robustly
revealed DNMT3A as one of the genetic contributors to the
pathogenesis of type 1 diabetes37. To investigate the functional
role of this phosphorylation site, we employed interaction
proteomics of the human protein, where the corresponding site
occurs at S7 of DNMT3A.

We coupled immunoprecipitation experiments of the wild-type
form of the methyltransferase, as well as the unphosphorylable
S7A mutant, to quantitative MS-based proteomics38,39. Stati-
stically significant interactors of wild type DNMT3A included a
histone deacetylase (HDAC2) and histones (ex. histone H3.1), as
expected from the literature40,41 (Fig. 7a). Remarkably, we found
that these interactions were significantly decreased following
mutation of this regulated phosphorylation site (Fig. 7b). Both the
wild-type form and the unphosphorylable mutant are correctly
localized in the nucleus, therefore the differential interaction is
not due to aberrant subcellular localization (Supplementary
Fig. 10A). We also confirmed the role of S7 phosphorylation in
regulating the association of the methyltransferase to its partners
in a human cell line, HEK293 (Supplementary Fig. 10B,C).

Recently it has been shown that the histone H3-DNMT3A
interaction triggers activation of the methyltransferase after
its initial genomic positioning41. Given the role of the S7
phosphorylation in modulating the DNMT3A association with its

partners (Fig. 7a,b), we decided to investigate its effect on the
gene expression profile at the level of the proteome. To minimize
potential off-target effects of the overexpression, we performed
our experiments in two biological systems, Ins1e and HEK293 cell
lines, which express the exogenous Dnmt3a at low and high
levels, respectively. In both systems, we ectopically expressed the
wild type or the unphosphorylable mutant form of the
methyltransferase and compared the proteomes (Supplementary
Fig. 10C–G; Supplementary Data 6). Overexpression of wild-type
DNMT3A led to downregulation of a set of proteins involved in
cell proliferation and insulin signalling regulation (Fig. 7c,g). In
contrast, over-expression of the S7A mutant of DNMT3A
resulted in drastic upregulation of this set of proteins (mean
fold change of more than three), compared with the wild-type
form (Fig. 7d). These results, confirmed in the human cell line
Hek293 (Supplementary Fig. 10D,E; Supplementary Data 7),
demonstrate that the phosphorylation of S7 in response to
glucose contributes to the regulation of genomic DNMT3A
targets via phosphorylation dependent interactions.

To determine the proportion of gene regulatory events
mediated via regulated phosphorylation of S7 of DNMT3A, we
compared the proteomes of beta cells stimulated or not by glucose
for 6 or 12 h (Supplementary Data 8; Supplementary Fig. 11). Out
of 7,000 proteins, about 1,500 were significantly downregulated
and this set encompassed 65% of the DNMT3A-suppressed genes
(Fig. 7e). Conversely, DNMT3A is involved in 5% of the gene
regulatory events induced by glucose. Together, these observa-
tions establish that S7 phosphorylation of DNMT3A represents a
pathway through which glucose suppresses the expression of an
important subset of target genes (Fig. 7f).

Discussion
Beta cell dysfunction is a major hallmark of the progression of
diabetes. Comprehensive identification of the molecular mechan-
isms triggered by glucose stimulation and governing insulin
secretion is thus crucial not only for a deep understanding of this
process but also for the characterization of existing and
development of novel effective therapeutics targeting this disease.

Here, we applied state of the art, high-resolution MS-based
proteomics to quantitatively describe the phosphorylation events
occurring in murine beta cells actively secreting insulin. We first
profiled the proteomes of NOD mice at different diabetic stages.
Then we functionally characterized our experimental system by
comparing the proteomic profiles of islets and beta cells to a
depth of 49,000 proteins. Apart from validating our cell line
system for our purposes, our copy-number estimates of islet
proteins will be a useful resource to the community.

We quantified changes in the phosphorylation status of
428,000 Class 1 phosphosites upon glucose stimulation and
treatment with diverse drugs affecting insulin secretion. These
data classified the insulin secretion-modulating compounds into
three groups, representing key nodes in the beta cell signalling
network targeted. Through this analysis, we validated known
drug–kinase–substrate relationships, and also identified new
molecular targets by which compounds regulate insulin secretion.
For example, this approach revealed that the casein kinase 2
(CK2) substrate motif is strongly enriched in beta cells treated
with Glibenclamide and ATP. Both these drugs increase insulin
secretion by augmenting the calcium response42,43. The
combination of our phosphoproteomic data set with known
kinase–substrate relationships, extracted from PhosphositePlus,
enabled us to connect the drug-dependent increase in calcium
concentration with downstream activation of CK2. Our study
suggests that CAMK2 kinase, which is sensitive to intracellular
calcium levels, serves as a molecular bridge between the CK2
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kinase and the treatment with Glibenclamide and ATP. Addi-
tionally our approach revealed that ATP triggers the activity of
PKC kinase. This observation is in agreement with the current
hypothesis proposing that ATP promotes insulin exocytosis
partly by raising calcium concentration and partly by increasing
DAG via PLC pathway44,45. These results illustrate how unbiased
MS-based phosphoproteomics can be applied to identify
molecular targets involved in known outcomes as well as those
involved in as yet uncharacterized effect of the drugs. Mapping
our phosphoproteomics data onto signalling networks connected
the drugs tested here to cell cycle related and proliferative
pathways, which is a desirable effect in view of the fact that type 2
diabetes involves progressive failure of beta cells. Further
experiments are necessary to confirm the pro-proliferative
properties of these drugs in islets, which have a low proli-
feration rate compared with Min6 cells.

Our strategy did not reveal a differential regulation of glucose
and drugs on phosphatase activity. Although protein phospha-
tases regulate insulin-secretion pathways, our strategy did
not reveal a differential regulation of glucose and drugs on

phosphatase activity46. This could be explained by the fact
that phosphatases activity is rarely correlated with the phos-
phorylation level of key specific phosphatase residues47.

Given the prominent role of autocrine signalling in beta cells, it
is important to consider that it is difficult to discriminate whether
the mentioned kinases are activated directly and/or indirectly by
drugs.

We also generated a quantitative atlas of dynamic protein
phosphorylation following glucose stimulation at eight time
points. By integrating this large-scale phosphoproteomics data
with a manually curated insulin secretion pathway, we delineated
key topological features of this signalling network (Fig. 8). Two
major pathways regulated by glucose are PI3K-AKT and MAPK,
which control nutrient sensing, protein synthesis, metabolism
and cell proliferation48. In our quantitative phosphoproteome, we
observed that in beta cells both these pathways are fully activated
upon 10 min of glucose stimulation. The temporal resolution
of our time-series study enabled discrimination of AKT and
mTOR-p70S6K signalling in the context of regulating insulin,
which was delayed with respect to the activation of AKT. This is
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consistent with current knowledge of the PI3K-AKT-mTOR
signalling network, whereby mTOR is downstream of AKT49, and
the significant temporal latency between the activation of AKT
and mTOR50,51.

Upon 10 min of glucose stimulation almost all proteins
involved in the transport and the exocytosis of insulin granules
were highly phosphorylated. This observation is in line with
established models of insulin secretion, whereby in response to
glucose stimulation, a pool of docked and primed insulin storage
granules fuse and release insulin, while additional storage
granules traffic to join the readily releasable pool at the cell
surface52. These events are triggered by increased cytoplasmic
calcium concentration resulting from plasma membrane
depolarization. Consistently we found that upon 10 min of
glucose stimulation the voltage-dependent calcium channel was
highly phosphorylated and subsequently CAMK2 kinase activated
(Fig. 8). These molecular events are elegantly connected to the
activation of the PKA kinase, triggered by the generation of
cAMP by adenylyl cyclase, which is also highly phosphorylated
upon 10 min of glucose stimulation, as revealed by our
phosphoproteomics data.

Another crucial feature of the beta cell response to glucose
stimulation is the modulation of gene expression profiles through
the activation of different transcription factors53. We were able to
quantitatively measure the phosphorylation profiles of key beta
cell transcription factors, such as Pdx1, MafA, ChREBP and
Foxo1 and found that 15 min of glucose stimulation is sufficient
to trigger their phosphorylation. These data are in line with the
EGF-induced phosphorylation of transcription factors, such as

cFos, cJun, Stat5, occurring upon 15 or 20 min of stimulation in
cell line systems54.

Our approach also enabled the identification of new molecular
players of the glucose response in murine beta cells. By
combining our phosphoproteomics data sets with an in silico
approach, we identified 32 key phosphorylation events occurring
on 29 proteins as high-stringency candidate functional sites in
mediating the glucose response in beta cells. Strikingly a
significant proportion of these novel regulatory phosphoproteins
were downregulated in NOD pre-diabetic and diabetic mice
(P valueo0.005). This observation further highlights the
importance of these proteins in the regulation of insulin secretion.
We also identified the DNA methyltransferase, DNMT3A as a
new molecular target of glucose-mediated beta cell signalling.
This protein plays an important role in beta cells differentiation:
DNMT3A binds Nkx2.2, Grg3 and Hdac1 and mediates the
repression of the Arx gene, thereby preventing beta to alpha cell
conversion36. In addition, it has recently been reported that the
beta cell–specific deletion of DNMT3A results in loss of the
glucose-induced insulin secretion35. Here we show that glucose
stimulation increases the phosphorylation of S4 of DNMT3A
(S7 in human DNMT3A). Follow-up experiments using
interaction proteomics revealed that this phosphorylation event
mediates the association of the methyltransferase with specific
transcription factors and histones. Such interactions are already
known to play a crucial role in the regulation of the DNMT3A-
mediated repression of its target genes41. We now demonstrate
that the ability of the methyltransferase to downregulate its
targeted genes is regulated through interactions modulated by the
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S7A mutation. Taken together, our results indicate that glucose
stimulation downregulates a subset of genes involved in the
regulation of cell cycle and signalling, through the DNMT3A
phosphorylation of S7.

Here we have highlighted only a subset of the glucose-driven
physiological processes which we found in our data set. We
expect that these large-scale MS-based data will serve as a
valuable resource for future hypothesis-driven research to
investigate as yet unknown molecular mechanisms driving insulin
secretion in pancreatic beta cells, and that studies of this kind will
thereby reveal promising new targets for the treatment of diabetes
as well as mechanisms of action of diabetic drugs.

Methods
Reagents. Glibenclamide (20mM), 8-bromo cAMP (10 mM), 8-bromo cGMP
(10 mM), SB216763 (40mM) and ATP (20 mM) were purchased from Sigma. GLP-1
(10 nM) was provided by Sanofi and Carbachol (100 mM) obtained from European
Pharmacopeia Reference Standard. Flag-M2 beads were obtained from Sigma
(A2220) and Flag-DNMT3A from Invitrogen. Anti-HDAC2 antibody was obtained
from Cell Signaling (cat no. 5113, 1:1,000) and anti-Flag antibody from Sigma
(cat no. F3165, 1:2,000). Slc24a2 and Mcoln1 constructs from were purchased
from Origene.

Cell culture and transfection. Min6 cells were cultured in DMEM medium
(Glutamax, Gibco) supplemented with 10% fetal calf serum, 100 U ml� 1 penicillin,
100mg ml� 1 streptomycin, 1 mM sodium pyruvate, 1 M Hepes and 50 mM
2-mercaptoethanol. INS-1E cells (kindly provided by Dr Martin Jastroch,
Helmholtz center, IDO, Munich) were grown in a humidified atmosphere
(5% CO2, 95% air at 37 �C) in monolayer in modified RPMI 1,640 medium
supplemented with 10% fetal calf serum, 10 mM Hepes, 100 U ml� 1 penicillin,
100mg ml� 1 streptomycin, 1 mM sodium pyruvate, 50 mM b-mercaptoethanol
(all from Gibco) and 0.5% BSA (from Sigma). Hek293 cells were cultured in
DMEM medium supplemented with 10% fetal calf serum, 100 U ml� 1 penicillin,
100mg ml� 1 streptomycin. Cells were transfected with Lipofectamine 2,000 or
3,000, according to the manufacture protocol.

Islet isolation. Adult C57BL/6 and NOD mice (Jackson Laboratories, ME) were
euthanized by cervical dislocation. The upper abdomen was incised to expose liver
and intestines. Pancreas was perfused through the common bile duct with cold
collagenase P (from Roche) in saline solution. The pancreas was dissected and
placed into a warm collagenase saline solution for 15 min. After enzymatic
digestion of the pancreatic tissue, islet were picked and cultured overnight in an
incubator at 37 �C.

Insulin assay. Cells were grown overnight with DMEM low glucose medium, then
were washed with Krebs-Ringer-Buffer and incubated with starvation buffer for
90 min. Cells were then incubated with high glucose medium (Krebs-Ringer-Buffer
supplemented with glucose 16.7 mM and BSA 0.05%) or low glucose medium
(Krebs-Ringer-Buffer supplemented with glucose 2.5 mM and BSA 0.05%).
Aliquots of the supernatant were assayed for the amount of insulin (insulin
assay from Cisbio), according to the manufacture protocol.

Immunoprecipitations. For immunoprecipitations, cells were lysed in ice-cold
NP-40 extraction buffer (50 mM Tris-HCl, pH 7.5, 120 mM NaCl, 1 mM EDTA,
6 mM EGTA, 15 mM sodium pyrophosphate and 1% NP-40 supplemented with
protease and phosphatase inhibitors (Roche) and clarified by centrifugation at
14,000 r.p.m. Supernatants were incubated at a concentration of 30 ml of resin per
mg lysate over night with Flag-M2 beads (Sigma) previously washed 3 times with
PBS. Beads were then washed 3 times with lysis buffer and 3 times with This-HCl
50 mM pH 8.5 On bead digestion of protein complexes used for MS analysis was
performed38,39,55. Peptides were eluted, desalted and analysed by LC–MS/MS.

Proteome and phosphoproteome sample preparation. Cells were lysed in
GdmCl buffer. Proteome preparation was done using the in StageTip (iST)
method10. Large-scale phosphoproteome preparation was performed as previously
described9. A limited amount of material (1 mg per condition) was lysed, alkylated
and reduced in one single step. Then proteins were digested and phosphopetides
enriched by TiO2 beads. After elution, samples were separated by HPLC in a single
run (without pre-fractionations) and analysed by mass spectrometry.

Mass spectrometric analyses. The peptides or phosphopeptides were desalted on
StageTips56 and separated on a reverse phase column (packed in-house with
1.8-mm C18- Reprosil-AQ Pur reversed-phase beads) (Dr Maisch GmbH) over
270 min (single-run proteome and phosphoproteome analysis). Eluting peptides

were electrosprayed and analysed by tandem mass spectrometry on a Q Exactive
HF57,58 (Thermo Fischer Scientific) using HCD based fragmentation, which was set
to alternate between a full scan followed by up to five fragmentation scans.
Proteome and phosphoproteome data were processed and statistically analysed as
described in Supplementary Methods.

Data availability. The mass spectrometry proteomics data have been deposited to
the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org/
cgi/GetDataset) via the PRIDE59 partner repository with the data set identifier
PXD003850. All other data supporting the findings of this study are available
within the article and its supplementary information files or from the
corresponding author upon reasonable request.
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