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Abstract

This study evaluated whether grass intercropping can be used to alleviate Fe

deficiency chlorosis in dry beans (Phaseolus vulgaris L.) grown in high pH,

calcareous soils with low organic matter. Field studies were conducted at the

University of Wyoming Sustainable Agriculture Research and Extension Center in

2009 and 2010. Black- and navy beans were grown alone or intercropped with

annual ryegrass (Lolium multiflorum Lam.), oat (Avena sativa L.), corn (Zea mays

L.), or spring wheat (Triticum aestivum L.) in a two-factor factorial strip-plot

randomized complete block design. All four grass species increased chlorophyll

intensity in dry beans. However, grass species did not increase iron (Fe)

concentration in dry bean tissues suggesting inefficient utilization of Fe present in

the dry bean tissues. In 2009, nitrate-nitrogen (NO3-N) and manganese (Mn)

concentration in bean tissue were greater in bean monoculture than in grass

intercropped beans. Bean monoculture also had greater soil NO3-N concentrations

than grass intercropped treatments. In 2009, grass intercrops reduced dry bean

yield .25% compared to bean monoculture. Annual ryegrass was the least

competitive of the four annual grass species. This suggests that competition from

grasses for nutrients, water, or light may have outweighed benefits accruing from

grass intercropping. Additional studies are required to determine the appropriate

grass and dry bean densities, as well as the optimum time of grass removal.
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Introduction

The northern Great Plains is a key contributor to dry edible bean production in

the United States accounting for 52% of the total dry bean production in 2008 [1].

Iron deficiency chlorosis in dry bean is common in the high pH, calcareous soils

prevalent in this region [2]. Iron deficiency chlorosis under these conditions may

not be due to low Fe concentration in soil but more frequently a result of low Fe

availability [3]. Iron is almost exclusively present in the soil in its oxidized form,

Fe (III), whose availability for plant uptake is limited due to its low solubility,

especially at high pH and in the presence of oxygen [4], [5], [6]. In calcareous

soils, constituting over one third of global cultivated land [7], the soil solution

provides less than one tenth of plants’ requirement for Fe [8]. Iron is essential for

many physiological and biochemical processes that drive the biotic system

including photosynthesis, respiration, DNA synthesis and dinitrogen fixation [9].

Conventional management of Fe deficiency involves foliar application of 1 to

2% of Fe sulfate solution (FeSO4.7H2O) at 200 to 400 l ha21) [2], [10]. An

understanding of cultural options of managing Fe deficiency is important in

determining more sustainable and less expensive alternatives for conventional,

organic, and natural dry bean producers. One such option may involve utilizing

synergistic relationships that may exist between plant species that are tolerant and

susceptible to Fe deficiency grown together in polycultures.

Higher plants have developed two different Fe-efficient strategies to increase Fe

availability in soils; referred to as Strategy I and II [11]. Strategy I, found in dicot

and non-graminaceous monocot species in response to Fe deficiency, involves

acidification of the rhizosphere by the plants through proton (H+) extrusion,

increasing Fe3+-chelates’ solubility and the concomitant reduction by a ferric

reductase to Fe2+, which can then be taken up by the plants [12]. In Strategy II

plants found in Poaceae species, such as wheat (Triticum aestivum L.), barley

(Hordeum vulgare L.), and corn (Zea mays L.), phytosiderophores are synthesized

by the plant roots and secreted in the rhizosphere where they chelate Fe3+ and

make it more bioavailable [13], [6], [14]. In high pH calcareous soils with elevated

bicarbonate content, the activity of Strategy I can be neutralized, causing Fe

deficiency chlorosis in the plants [10]. Venkat and Marschner [15] showed that

release of reducing substances by Fe-efficient Strategy I plants under Fe deficiency

declined at high pH level during the growth of sunflower (Helianthus annuus L.)

in nutrient solution.

As with most micronutrients, the concentration of Fe in the soil can be altered

by the availability of other nutrients creating antagonistic or synergistic effects

[16]. For example, Ambler et al. [17] found that soil Zn interfered with the

translocation of Fe in soybean by inhibiting the capacity of the root conversion of

ferric to ferrous iron or by accentuating other reactions detrimental to Fe

transport. Aktas and Van Egmond [18], Mengel [3], Mengel et al. [19], and

Bloom et al. [20] have shown that high nitrate-nitrogen (NO3-N) concentration

in the soil can also induce Fe chlorosis. Bloom et al. [20] attributed the greater

chlorophyll intensity in soybean [Glycine max (L.)] plants growing on wheel
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tracks to lower soil and leaf tissue NO3-N on those tracks compared to adjacent

areas that had more chlorotic soybeans. They also found significantly greater soil

and leaf tissue NO3-N of the more chlorotic soybean monoculture than the less

chlorotic soybean plants intercropped with oat. Bloom et al. [20] also

demonstrated that increasing soil NO3-N through fertilization resulted in

increased Fe deficiency chlorosis and decreased yields of the Fe-deficiency tolerant

soybean variety used in the study. In addition to the proton extrusion strategy

developed by Strategy I plants in response to Fe stress, N nutritional status

considerably influences proton or hydroxyl (OH-) ion excretion from plant roots

[18]. Plant species growing in complete nutrient solution with NO3-N exude OH-

or HCO- into the nutrient medium as long as there is sufficient NO3 in the

medium [21], [18]. Iron efficient plants secrete H+ ions into the rhizosphere when

Fe stress develops, regardless of the NO3 status of the soil, and continue to excrete

protons even after soil NO3 supply is depleted [18]. Iron inefficient plants, on the

other hand, continue to secrete OH2 and HCO2 ions into the rhizosphere when

NO3 is sufficiently available, even when Fe stress develops, with excretion of

protons beginning only after NO3 supply in the soil has been depleted. Elevated

HCO3
2 concentration can make Fe insoluble thereby inhibiting its uptake by

roots and subsequent translocation into shoots and leaves [18], [22], [23], [24].

Kosegarten et al. [24] found that NO3
2 solution culture and simulated calcareous

soil solution (NO3
2 together with bicarbonate) severely affected the physiological

Fe efficiency in roots and leaves of sunflower resulting in Fe deficiency chlorosis

symptoms.

Practiced worldwide for many generations, mixed cropping, especially of

legumes and grasses, can enhance on-farm biodiversity, promote biological N

fixation, increase dry matter production and grain yield, and enhance resource use

efficiency [25], [26], [27], [28], [29]. Plant cultivars that are tolerant to Fe

deficiency selectively intercropped with susceptible plant cultivars can alleviate Fe

chlorosis of the latter. In comparative studies between Fe-efficient sunflower plant

species and Fe-inefficient corn species, Venkat Raju and Marschner [15] and

Kashirad and Marschner [21] showed that under Fe deficiency conditions,

sunflower plants lowered the pH of the nutrient solution resulting in increased

uptake of inorganic Fe3+ evidenced by re-greening of the sunflower plants.

Contrary to this observation, corn plants were not able to lower the pH of the

nutrient solution as a result of which they were unable to utilize Fe3+ as a source of

Fe. When the two plant species were intercropped in the nutrient solution under

Fe-stress, the Fe-efficient sunflower lowered the pH of the nutrient solution

enabling corn plants to also re-green with Fe3+ as the source of Fe.

In 2002, a Wyoming farmer observed that pinto beans accidentally growing

with annual ryegrass were less chlorotic and produced better yields than a nearby

monoculture of pinto beans growing in the absence of ryegrass. A subsequent

bean-ryegrass intercropping on-farm study by Omondi et al. [30] revealed that

annual ryegrass increased soil Fe concentration, extracted using the diethylene-

triaminepentaacetic acid (DTPA) [42], by 23% when intercropped with pinto

beans. Whereas the potential of annual ryegrass to alleviate Fe deficiency chlorosis
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was demonstrated, the increase in soil Fe concentration was only marginal, and

pinto bean yields were not improved by ryegrass. The objective of this study was

to determine whether interplantings of four annual grass species (annual ryegrass,

oat, corn, and wheat), with dry bean can mitigate Fe deficiency in calcareous soils.

Materials and Methods

A field experiment was established under sprinkler irrigation at the University of

Wyoming James C. Hageman Sustainable Agriculture Research and Extension

Center near Lingle, Wyoming in 2009 and repeated in 2010 close to the same field

(42 0̊5’N, 104 2̊3’W; altitude of 1,390 m above sea level). Soil at the site was a

Haverson and McCook loam (42% sand, 41% silt, 17% clay, 1.9% organic matter,

pH 7.9). The study was a two-factor factorial strip plot randomized complete

block design with four replicates. The first factor consisted of dry bean market

class and included 3 levels: ‘Schooner’ navy bean, ‘T-39’ black bean, and a control

with no beans planted. The second factor consisted of grass species and included 5

levels: ‘Gulf’ annual ryegrass, ‘Oslo’ spring wheat, ‘Russell’ oat, ‘Pioneer 38N85’

corn, and a control with no grass planted. Grass species were planted

perpendicular to dry bean rows, and levels of each factor were randomly assigned

to plots within each replicate (Fig. 1). Plots were 3 by 4 meters. Dry bean and corn

were planted in 76 cm row spacing using a John Deere Maxemerge 7300, 4-row,

vacuum planter. In both the grass intercropped and monoculture bean plots,

beans were seeded at a density of 163,000 seeds ha21 and corn was planted at a

density of 79,000 seeds ha21. Grass species other than corn were seeded using a

Tye double disk drill at 20 cm spacing. Annual ryegrass was seeded at the rate of

22 kg ha21 [31] and wheat seeded at 44 kg ha21 [32]. Trials were planted on June

19, 2009 and June 1, 2010.

Halosulfuron-methyl (‘Permit’ – Gowan Company) herbicide was applied pre-

emergence over the entire trial area for weed control. Weeds surviving herbicide

treatment were removed by hand as needed. Clethodim (‘Select’ – Valent U.S.A.

Corporation) herbicide was applied to all intercropped plots 4 weeks after

planting to selectively remove grass species.

Chlorophyll intensity in dry bean leaves was measured nondestructively using a

SPAD-503Plus meter when dry bean had 2 to 4 trifoliolate leaves, and again at the

8 to 16 trifoliolate leaf stage. Two to three of the youngest fully expanded leaves

from an average of 3 consecutive plants from the two middle rows of each plot

were measured. Conversion of SPAD units to actual chlorophyll content requires

calibration of SPAD chlorophyll meter readings using calibration curves

developed from actual spectrophotometric measurements of extracted chlorophyll

[33], [34], [35], [36]. We did not directly quantify chlorophyll content in this

study. Previous studies have shown that SPAD readings correlate closely with

direct spectrophotometric measurements of extracted chlorophyll [33], [34], [35],

[36], [37], therefore, SPAD readings are presented as an approximation of

chlorophyll intensity in bean tissue.
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Dry bean leaf tissue samples were collected when dry bean had 2 to 4 trifoliolate

leaves and again at the 8 to 16 trifoliolate leaf stage in both years. In 2010,

additional bean leaf samples were collected at 4 to 8 trifoliolate leaf stages, and

again at flowering. Two to three of the youngest fully expanded leaves were

collected from an average of 30 consecutive plants from the two middle rows of

each plot [38]. Tissue samples were rinsed in deionized water and dried at 60 C̊

for 72 hours in accordance with Campbell and Plank [39] and then analyzed at

Ward Laboratories, Inc. Kearney, Nebraska. Zinc (Zn), Fe, and Mn were

determined using the Inductively Coupled Plasma Spectroscopy method [40].

Bean Tissue NO3-N was determined using the phenoldisulfonic acid (PDA)

procedure described by Johnson and Ulrich [41] and detected using the flow

injection analysis.

Soil samples were collected from each plot at planting and again when dry bean

had 2 to 4 trifoliolate leaves. In 2010, additional soil samples were collected at 4 to

8 and 8 to 16 trifoliolate stage, and at bean flowering. Each soil sample consisted

of five soil cores randomly located within each plot to 15-cm depth using a 2.5-cm

diameter soil probe. Cores from each plot were thoroughly mixed together into a

composite sample, dried at 60 C̊ for 72 hours, and then shipped to Ward

Laboratories, Inc. Kearney, Nebraska for analysis. Soil samples were analyzed for

Fe, Zn, NO3-N, soil organic matter (SOM), pH, and Mn. Soil Fe, Zn, and Mn

were extracted from soil samples using the DTPA micronutrient extraction

method developed by Lindsay and Norvell [42]. Inductively coupled plasma

atomic emission spectrometry [42], was used to determine the analytical

concentration of the micronutrients.

The pH of the samples was determined using the saturation paste method [43]

while SOM was determined using the ‘loss of weight on ignition’ method based on

[44] and described by Combs and Nathan [45]. Soil NO3-N was extracted with

2 M potassium chloride in accordance with Keeney and Nelson [46].

At dry bean maturity, yields were measured by harvesting three meters of row

from the middle two rows with a plot combine in September. A three meter pole

was used to determine the length of rows from which to harvest; beans from those

Fig. 1. Experimental plot plan for one of the four replicates of the study showing rows of grass species
(sub-plots) planted perpendicular to rows of dry beans (main plots).

doi:10.1371/journal.pone.0115673.g001
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rows were pulled out and air dried in the field for five days before threshing and

weighing using a plot combine. Yields were adjusted to 13% moisture content.

We reviewed the data and removed a single outlier in the 2009 pre-treatment

soil NO3-N data [47]. Soil and tissue nutrient content (Fe, Zn, Mn, and NO3-N),

soil pH, SOM, dry bean leaf chlorophyll intensity, and dry bean grain yield were

subjected to analysis of variance (ANOVA) using the MIXED procedure of SAS

[48]. The effect of grass species (none, oat, corn, annual ryegrass, or wheat), dry

bean market class (Navy and black), and sampling date within a year were

considered fixed effects in the model, while year and block within year were

considered random effects. Treatment means were separated using Fisher’s

protected LSD (a50.05).

Results

Chlorophyll Intensity

There was a significant (P,0.001) year by date by market class interaction for

bean leaf chlorophyll intensity. The three-way interaction was due to black bean

having a lower chlorophyll intensity compared to Navy bean at the second

sampling date in 2010, but no differences among bean market class were observed

at other sampling dates (data not shown). There was a significant date by grass

interaction for chlorophyll intensity (P50.002), thus data was analyzed separately

by sampling date. Chlorophyll intensity was greater in all grass-intercropped

beans at 2 to 4 trifoliate leaf stage compared to bean monoculture (Fig. 2;

Table 1). By the second sampling date, however, chlorophyll intensity had

increased in the bean monoculture and decreased in the grass-intercropped

treatments such that no differences between treatments were observed at the bean

8 to 16-trifoliolate stage (data not shown).

Tissue Analysis

Tissue nutrient data were analyzed separately for each year because tissue

sampling was conducted at different times in 2009 and 2010 (twice and five times

respectively). In 2009, there was a significant (P,0.05) sampling date by grass

species interaction with respect to bean tissue Fe and Mn concentration, and a

marginally significant (P50.10) date by grass species interaction with respect to

tissue Zn concentration, thus data for these nutrients were analysed separately at

each sampling stage.

In 2009, dry bean monoculture had greater tissue Fe concentration compared

to corn intercropped beans at the first sampling date, and greater tissue Fe

concentration than all grass intercropped beans at the second sampling date

(Table 1). Dry bean monoculture had greater Zn concentration compared to grass

intercropped beans at the first sampling date, but no differences in tissue Zn were

observed among intercrop treatments at the second sampling date. There was

significant increase in tissue Zn concentration with time in all treatments.
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Manganese concentration in dry bean tissue was greater in dry bean monoculture

compared with all grass intercropping treatments at both sampling dates.

In 2009, dry bean monoculture had nearly twice as much tissue NO3-N

(3,609 mg kg21) than beans intercropped with any grass species (1,884 mg kg21)

(P,0.0001). However, there were no differences among intercrop treatments for

Fig. 2. Picture taken in 2009 showing that beans planted in monoculture appeared more chlorotic than
those in grass intercropped plots.

doi:10.1371/journal.pone.0115673.g002

Table 1. Effect of grass species intercrops on bean leaf chlorophyll intensity (SPAD units), bean tissue and soil nutrients (mg kg21) and dry bean grain yield
(tons ha21) in 2009 and 2010 near Lingle, WY.

Year SPAD Bean tissue Fe
Bean tissue
Zn Bean tissue Mn Soil Zn Soil NO3-N

Dry
bean

2-4TL 2-4TL 8-16TL 2-4TL 8-16TL 2-4TL 8-16TL 2-4TL 2-4TL yield

2009 Bare soil — — — — — — — 1.78ab 23.85ab —

Bean monoculture 29.68b{ 814a 910a 29a 40a 115a 140a 1.81ab 29.20a 2.3a

Bean + oat 37.20a 760ab 382c 22b 42a 97b 98c 1.67ab 17.85bc 1.5bc

Bean + wheat 37.84a 739ab 353c 22b 40a 88b 81c 2.10a 15.94c 1.3c

Bean + corn 36.89a 627b 620b 23b 42a 87b 105b 1.80ab 18.97bc 1.6bc

Bean + ryegrass 36.30a 740ab 577 b 24b 39a 97b 97c 1.41b 23.64abc 1.7ab

2TL to Flowering 2TL to Flowering

2010 Bare soil — — — — — — — 2.21 21.76ab —

Bean monoculture 25.40b 632{ 234 76 103 65 63 2.27 26.30a 2.8

Bean + oat 33.68a 490 315 69 58 60 49 2.06 14.48c 2.8

Bean + wheat 32.34a 591 241 84 57 70 46 1.99 13.81c 2.9

Bean + corn 32.73a 645 239 57 61 61 45 2.09 17.29bc 2.5

Bean + ryegrass 32.89a 600 280 74 59 69 48 2.16 19.58bc 3.0

{Means within a column and year followed by the same letter are not statistically different (alpha 50.05).
{Means without letters were not significantly different from other treatments within a year.

doi:10.1371/journal.pone.0115673.t001
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bean tissue NO3-N in 2010. In fact, contrary to 2009, there were no differences in

tissue Fe, Zn, or Mn due to intercropping treatment.

Soil Analysis

Given that soil was sampled at different times in 2009 and 2010, (twice and five

times respectively), soil nutrient data were analyzed separately for each year. No

differences between treatments were present for any soil variable at the time of

bean planting (data not shown). There were no differences between treatments for

soil pH, soil Fe, or SOM in either year.

In 2009, none of the grass intercropped treatments had soil Zn concentrations

different from either the bare soil or dry bean monoculture treatment (Table 1).

The wheat intercropping treatment reduced soil NO3-N compared to either dry

bean monoculture or bare soil, while oat and corn intercropped treatments had

lower soil NO3-N compared with the dry bean monoculture. The ryegrass

intercropping treatment was not statistically different from any other treatment

with respect to soil NO3-N. The wheat intercropped treatment was the only

treatment to cause a statistically significant (P,0.05) decline in soil NO3-N

concentrations between planting and the bean 8 trifoliolate stage. The bean

monoculture treatment caused a statistically significant increase in soil NO3-N

concentrations between planting and the 8 trifoliolate stage (data not shown).

In 2010, a similar trend in soil NO3-N was observed; all grass intercrops had

lower (P50.0004) soil NO3-N compared to the bean monoculture, while bare soil

was intermediary (Table 1).

Dry Bean Yield

There was a significant year by grass species interaction for dry bean yield, thus

data for bean yield were analyzed separately by year. In 2009, the bean

monoculture had significantly greater yields than grass intercropped beans except

for beans intercropped with ryegrass (Table 1). Ryegrass intercropped beans had

significantly greater yields than wheat intercropped bean, but these yields were not

statistically different from corn or oat intercropped beans. In 2010, no differences

between intercropping treatments were observed.

Discussion

Symptoms of Zn, Mn, and Fe deficiency can be similar in dry bean. Symptoms of

Zn deficiency include interveinal chlorosis of leaves, shortening internodes and

rosetting of terminal leaves. Minimum soil Zn concentration (DTPA) before Zn

chlorosis symptoms can occur is 0.3 mg kg21 [10]. Average soil Zn concentration

from our study (2 mg kg21) was far above the threshold found by Fageria and

Stone [10] as capable of causing Zn deficiency chlorosis. The deficiency range of

soil Fe concentration is 2.5–5 mg kg21 [49]. Average soil Fe concentration, on the

other hand, was 5 mg kg21 in 2009 which was within the range found by Jacobsen
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et al. [49] as capable of causing Fe chlorosis. Although symptoms of Fe deficiency

also include interveinal chlorosis of terminal leaves with the main veins remaining

green [50], [51], rosetting of terminal leaves typical of Zn deficiency was absent in

our study. Manganese deficiency can also result in interveinal chlorosis of leaves.

However, average soil Mn concentration (DTPA) in our study was 7.35 mg kg21,

which was above the 6 mg kg21 recommended by Fageria and Stone [10] as

sufficient for dry bean production. These results therefore suggest that the

chlorosis symptoms observed in the field study were caused by Fe deficiency

rather than Zn or Mn deficiency.

High concentration of Zn, Mn, and several other heavy metals might compete

with normal Fe uptake resulting in Fe deficiency chlorosis [52], [53], [54], [55],

[56]. Both nutrient supply and nutrient balance are important considerations in

plant nutrition as the concentration of one nutrient in the soil will often affect the

uptake or transport of another nutrient within the plant [57]. However, while the

soil Zn concentration (DTPA) in our study was above the threshold capable of

causing Zn deficiency chlorosis [24], this concentration was still far below the

toxic levels [24], [29] capable of competing with Fe uptake and is, therefore,

unlikely to have had an impact on the performance of beans. Depressive effect of

Mn on Fe uptake can occur when ferrous Fe is oxidized by Mn4+ non-

enzymatically to ferric Fe [58] thus reducing Fe uptake, which is normally taken

up as Fe2+ [56]. While results from our study showing significantly greater bean

tissue Mn concentration (DTPA) in bean monoculture compared to grass

intercropped beans in 2009 (Table 1), and a similar non-significant trend in 2010,

suggest that Mn may have contributed to Fe deficiency chlorosis in bean

monocultures, bean tissue concentration of Mn (averaging 127.5 mg kg21 in

2009) was below the 400 mg kg21 determined by Fageria and Stone [10] as

sufficient for dry beans. The mean concentration of soil Mn concentration

(DTPA) in monoculture bean plots (7.22 mg kg21) was also only slightly above

the 6 mg kg21 determined by Fageria [59] and Fageria and Stone [10] as adequate

for dry bean production. Also, no effect of tissue or soil Mn concentrations were

observed in 2010. It is, therefore, unlikely that Mn had a substantial if any effect

on Fe deficiency chlorosis in the dry beans.

Even though the dry bean monoculture exhibited greater Fe deficiency

symptoms than intercropped beans, the monoculture had greater concentrations

of Fe (DTPA) in leaf tissue. Several studies have shown that plants growing in high

pH calcareous soils exhibiting Fe deficiency chlorosis frequently have comparable

or higher Fe concentrations than green ones [60], [61]. This is explained by a

phenomenon referred to as the "chlorosis paradox" described by Marschner [4],

Abadia [62], and Morales et al. [60] attributed to the localization and binding

state of Fe in leaves [4], whereby some of the Fe may precipitate in the apoplasm

of leaves and become less available physiologically [4], [63]. Studies by Mengel [3]

showed that Fe (III) reduction and Fe uptake from the apoplast into the cytosol in

the leaves is affected by NO3 and –HCO3 in the same way as in the roots.

Transportation and reduction of Fe (III) to Fe (II) is mediated by a system of

ferric-chelate reductase ensymes [61], whose activity is depressed at high pH [3].
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Mengel [3] hypothesized that –HCO3 in the root or leaf apoplast can neutralize H+

pumped out of the cytosol, which, together with NO3 taken up by H+/NO3

cotransport across the plasma membrane, can result in high pH levels at the root

and leaf apoplast, thereby hampering or blocking Fe (III) reduction. The authors

found a highly significant negative correlation between the leaf apoplast pH and

the degree of Fe chlorosis in susceptible plants. These studies are consistent with

our study findings that grass intercropped treatments tended to have less soil and

tissue NO3-N, suggesting that high NO3-N in the monoculture treatments

interfered with Fe metabolism in bean leaves, depressed chlorophyll synthesis, and

induced Fe deficiency chlorosis.

Our results are also consistent with findings by Bloom et al. [20] that oat,

planted as a competition crop just ahead of planting soybean, then killed with

glyphosate herbicide at the height of 30 centimeters, absorbed NO3-N thereby

reducing the amount available to the soybean crop and alleviated Fe deficiency

chlorosis in soybean compared to soybean grown without the oat treatment. Our

data suggest a similar finding. Lower soil NO3-N concentration in plots with

grasses suggests that grasses reduced soil NO3-N concentration in those plots.

Nitrogen fixation by Rhizobia associated with the legume may also have

contributed to the greater NO3-N concentration in bean monoculture plots.

Intercropping dry beans with annual ryegrass, spring wheat, oat, or corn as a

means to reduce NO3-N in the soil and bean tissues may therefore provide a

potential management tool for Fe deficiency chlorosis induced by high NO3-N in

dry beans.

Although soil moisture was not measured in our study, grasses may also have

reduced excess moisture from the soil that might induce Fe deficiency chlorosis.

Studies have shown that increase in soil moisture can increase soil solution

bicarbonate, which in turn can induce Fe deficiency chlorosis [20], [64). Inskeep

and Bloom [65] found a highly significant correlation in soil moisture with Fe

deficiency chlorosis in soybeans. However, irrigation was scheduled for bean

monoculture, so it is unlikely that soil moisture played a major role in the Fe

deficiency symptoms.

Soil splash may also have contributed to high dry bean tissue Fe concentrations

measured across-the-board in our experiment [20], [51], [66]. A study by Inskeep

and Bloom [51] measured Fe concentrations of 100 mg kg21 and 70 mg kg21

respectively in non-chlorotic and chlorotic soybeans leaves grown in Calciaquoll

soils in pots. This contrasted with their findings in fields with similar soils that

revealed soybean leaf tissue concentration ranging from 108 to 236 mg kg21. They

speculated that greater leaf Fe in chlorotic leaves is caused by fine soil particles

containing aluminosilicates on both leaf surfaces that may not be completely

removed despite careful washing of leaves in preparation for analysis [20]. Lower

Fe concentration in grass intercropped bean tissues in our study may have been

due to reduced raindrop and/or irrigation water impact on soil surface because of

the increased plant cover. However, the grass species were still relatively small at

the time of removal with the herbicide, so this protective effect was unlikely to

have contributed much to treatment differences. Similar results were observed by
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Bloom et al. [20] who measured greater Fe concentration in monoculture soybean

leaf tissues compared with soybean intercropped with oats. In a pot experiment,

Inskeep and Bloom [65] measured greater Fe concentration in non-chlorotic

compared to chlorotic soybeans leaves, but they did not find a significant

correlation between leaf tissue Fe concentration and Fe deficiency chlorosis or

soybean yields.

While results from our study showed that grasses used in this study can

mitigate early season chlorosis symptoms in dry beans, grass intercropping did

not result in greater dry bean yield. In fact, competition from the intercropped

grasses (probably for water) decreased dry bean yield in 2009, although no

negative effect on dry bean yield from grass intercrops was observed in 2010.

Greater precipitation in 2010 (475 mm) compared to 2009 (404 mm) may have

mitigated grass-bean competition for water. Greater yield in bean monoculture,

despite observations and analytical results showing that they were more chlorotic

than grass intercropped beans, suggest that benefits accruing from grass

intercropping may have been outweighed by competition from grasses for

nutrients, water, or light. Additional studies are required to determine the

appropriate grass and dry bean densities, as well as the optimum time of removal

of grasses from the intercropped treatment. Further research should focus on

determining whether it is possible to find a grass removal timing that will both

alleviate Fe deficiency chlorosis symptoms, but reduce the duration of

competition so that a corresponding increase in dry bean yield is observed. This

research will only be useful in a location where early season chlorosis symptoms

are severe enough to significantly reduce dry bean yield.

Conclusions

Our results showing that intercropping dry bean with annual grasses and other

grass species can reduce Fe chlorosis symptoms early in the season are in

agreement with Bloom et al. [20] who found similar results in soybean. Our

results also suggest that annual ryegrass and oats may be better intercropping

grasses compared to corn and wheat. This is because bean yields were less affected

by annual ryegrass compared to wheat in 2009 and corn may be a more expensive

crop in terms of seeds and fertilizer requirements and does not provide as good a

ground cover as ryegrass and oat. Annual ryegrass’ suitability is further enhanced

by its slow and less prolific early season germination and establishment when soil

and air temperatures are cooler [31], [67] and when Fe deficiency chlorosis is

most severe. This, along with relatively lower stature of both grass species, makes

them potentially less competitive for water and sunlight. Further research should

investigate the potential of growing ryegrass and/or oat in the fall as winter cover

crops and killing them the following spring as a means to reduce residual nitrates

in the soil that can induce Fe deficiency chlorosis in subsequent dry bean or other

susceptible crop.
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