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Abstract

Background: Immunosuppressive factors such as regulatory T cells (Tregs) limit the efficacy of immunotherapies. Histone
deacetylase (HDAC) inhibitors have been reported to have antitumor activity in different malignancies and
immunomodulatory effects. Herein, we report the Tregs-targeting and immune-promoting effect of a class I specific
HDAC inhibitor, entinostat, in combination with either IL-2 in a murine renal cell carcinoma (RENCA) model or a survivin-
based vaccine therapy (SurVaxM) in a castration resistant prostate cancer (CR Myc-CaP) model.

Methods and Results: RENCA or CR Myc-CaP tumors were implanted orthotopically or subcutaneously, respectively.
Inoculated mice were randomized into four treatment groups: vehicle, entinostat, cytokine or vaccine, and combination.
Tregs in the blood were assessed by FACS analysis. Real time quantitative PCR and Western blot analysis of isolated T cell
subpopulations from spleen were performed to determine Foxp3 gene and protein expression. The suppressive function of
Tregs was tested by T cell proliferation assay. Low dose (5 mg/kg) entinostat reduced Foxp3 levels in Tregs and this was
associated with enhanced tumor growth inhibition in combination with either IL-2 or a SurVaxM vaccine. Entinostat down-
regulated Foxp3 expression transcriptionally and blocked Tregs suppressive function without affecting T effector cells
(Teffs). In vitro low dose entinostat (0.5 mM) induced STAT3 acetylation and a specific inhibitor of STAT3 partially rescued
entinostat-induced down-regulation of Foxp3, suggesting that STAT3 signaling is involved in Foxp3 down-regulation by
entinostat.

Conclusions: These results demonstrate a novel immunomodulatory effect of class I HDAC inhibition and provide a
rationale for the clinical testing of entinostat to enhance cancer immunotherapy.
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Introduction

Tumor growth represents an outcome of tumor cells escaping

host immune surveillance. Despite some successes, immunother-

apeutic interventions have shown limited benefit. A major barrier

is represented by the presence of immunosuppressive factors that

appear to be predominant in cancer patients. These immunosup-

pressive components include Tregs [1,2], myeloid derived

suppressor cells (MDSCs), immunological checkpoints mediated

by cell surface molecules such as CTLA-4 [3] and PD-1 [4], and

circulating cytokines such as TGF-b and IL-10 [5]. Studies have

shown that these tolerance mechanisms can be induced by tumor

and surrounding stromal cells. Tregs normally maintain the

tolerance for self-antigens and prevent autoimmune responses

[6,7]. On the other hand, Tregs have been identified as one of the

major players in tumor immune tolerance. The supporting

evidence includes Tregs promotion in cancer patients and Tregs

expansion following immunotherapy [2,8–11]. Further clinical

reports suggest that depletion of Tregs may enhance an antitumor

immune response in cancer patients.

High dose IL-2 is an FDA-approved treatment for selected

patients with metastatic clear cell renal cell cancer [12,13]. IL-2

therapy induces objective responses in about 20% of patients, with

durable complete responses in a small fraction. Given the limited

efficacy of high dose IL-2 therapy, additional efforts have been

directed to increase the efficacy of this immunotherapeutic

approach.

Vaccine therapies remain of limited benefit in solid tumors,

though the vaccine therapy Sipuleucel-T was recently approved

for the treatment of castration resistant prostate cancer. Tregs are

predominant in various cancers, including advanced prostate

cancer [2]. Studies have shown that the presence of immunosup-

pressive factors such as Tregs play an important role in immune

tolerance and low efficacy in vaccine therapy [14,15]. Accordingly,

combination of vaccines with approach(es) to deplete or suppress

Tregs represents a rational strategy in prostate cancer therapy.
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HDACs have been shown to be involved in oncogenic

transformation by mediating the transcriptional regulation of

genes that are involved in cell cycle progression, proliferation, and

apoptosis [16,17]. HDAC inhibitors are currently being developed

for cancer treatment and have demonstrated antitumor activity in

different tumors. HDACs have been characterized into four

different classes with different targets and subcellular locations. In

addition to histones, several non-histone proteins are also

reversibly acetylated at lysine residues and these post-translational

modifications may also play an important role in the antitumor

effects of HDAC inhibitors [18–20]. The synthetic benzamide,

entinostat, is a selective inhibitor of class I HDACs. Entinostat has

antitumor activity both in vitro and in vivo in several tumor models

[21–24]. In addition, our group has previously reported the

synergistic antitumor activity of entinostat in combination with

high dose IL-2 in the RENCA model [25].

Recent experimental studies have demonstrated that HDAC

inhibitors have potential immunomodulatory activity in both in

vitro and in vivo models of inflammation, autoimmunity, and

transplantation. HDAC inhibitors can affect immune responses by

regulating the production of cytokines. In a murine model of

allogeneic bone marrow transplantation, the HDAC inhibitor,

vorinostat (SAHA), reduced acute graft-versus-host disease by

suppression of pro-inflammation cytokines such as TNF-a, IL-1,

and INF-c [26]. The HDAC inhibitor, LAQ824, has been shown

to alter activation and function of macrophage and dendritic cells.

LAQ824 has also been found to modulate dendritic cell function

to inhibit Th1, but not Th2 effector function [27]. In addition,

HDAC inhibitors can regulate the transcription of major

histocompatibility class I and II [28], or the activation of co-

stimulatory molecules [28,29]. More recently, it has been reported

that a pan HDAC inhibitor, tricostatin A (TSA) may increase the

function of Tregs and enhance their immunosuppressive effect in

vivo [30]. Moreover, the positive results from clinical trials in

cutaneous T cell lymphomas (CTCL) suggest that HDAC

inhibitors may affect the immune response, since some of the

pathological mechanisms of CTCL are mediated through

inflammation and an imbalance of the immune system. Taken

together, these observations suggest that the antitumor activity of

HDAC inhibitors may be in part due to their immunomodulatory

properties.

In this study, we have different results in our system and report

that treatment with entinostat decreases Foxp3 expression in Tregs

and inhibits the suppressive function of Tregs. In addition, STAT3

signaling was shown to be associated with Foxp3 down-regulation

by entinostat. This property of entinostat may enhance the

antitumor immune response to IL-2 and vaccine therapy and

provides a rationale for using entinostat in combination strategies

with immunotherapies.

Results

Entinostat enhancing high dose IL-2 therapy is
associated with modulation of Tregs in tumor-bearing
mice

Our group previously reported that the class I HDAC inhibitor,

entinostat, has an antitumor effect in the RENCA model [25,31].

Entinostat appears to have an immunomodulatory effect that leads

to a synergistic antitumor effect in combination with IL-2. IL-2

treatment promotes proliferation and activation of T effector cells

(Teffs), but also induces immunosuppressive Tregs with stable

expression of the IL-2 receptor CD25. Therefore, in the current

study, we focused on the effect of entinostat on Tregs. We tested

the effect of entinostat as a single agent and in combination with

IL-2 on Tregs in the RENCA model. RENCA cells were

inoculated orthotopically in BALB/c mice. Three days after

inoculation, animals received treatment with either vehicle, IL-2,

entinostat (5 mg/kg), or combination. After 5 days of treatment,

peripheral blood was collected from each mouse, stained for cell

surface markers and intracellular Foxp3 protein, and subjected to

fluorescence associated cell sorting (FACS) analysis. No significant

differences were observed in the numbers of CD4+Foxp3+ Tregs

(Fig. 1A and B). However, Foxp3 protein levels in CD4+Foxp3+

cells, as represented as mean fluorescence intensity (MFI),

decreased with entinostat treatment (Fig. 1A and B). An increase

in Foxp3 levels was observed with IL-2 treatment alone,

confirming the notion that IL-2 promotes Tregs while supporting

T cell proliferation. In combination treatment, entinostat still

rescued Foxp3 levels back to control levels (Fig. 1A and B).

Western blot analyses showed that in vivo entinostat treatment

increased the acetylation level of H3 histone in splenocytes

(Fig. 1F). Antitumor effects of treatments were evaluated by

assessing tumor weights after two weeks. No significant body

weight changes were observed with treatments. IL-2 treatment

induced a modest reduction of tumor weight (,10%). Entinostat

single agent administration at a 5 mg/kg led to a significant tumor

weight reduction as compared to control group (,40% reduction,

Fig. 1C). The combination of entinostat with IL-2 had a much

greater inhibitory effect on tumor growth (,80% reduction,

Fig. 1C). To determine whether the reduction of Foxp3 expression

and inhibition of tumor growth induced by entinostat was

associated with increased immune response, we examined IFN-c
induction. IFN-c was slightly induced in CD8 cells in IL-2-treated

animals, while CD8 cells in combination-treated animals had

much higher IFN-c induction (Fig. 1D). Taken together, these

observations suggest that entinostat enhances CD8 cell immune

response induced by IL-2 while reducing Foxp3 level in Tregs.

We examined whether entinostat treatment affected the Tregs

that were infiltrating the tumors. Immunohistochemistry staining

of the tumor sections demonstrated that the entinostat treatment

reduced Tregs infiltration (Fig. 1E and Fig. S1).

We also tested the anti-mouse CD25 antibody, PC61, to deplete

Tregs [32] in the RENCA model. PC61 treatment at 500 mg/

mouse/wk was sufficient to deplete CD25+ cells (Fig. 2A),

dramatically reduced CD4+Foxp3+ Tregs cell number (Fig. 2A),

and had a similar antitumor effect as observed with entinostat

(Fig. 2B). In addition, adding PC61 treatment did not have an

additional antitumor activity over entinostat treatment (Fig. 2B),

which suggests that entinostat and PC61 may have a redundant

mechanism of activity.

Entinostat synergizes with peptide vaccine therapy in a
castration resistant prostate cancer model

In addition to a cytokine therapy, we also tested entinostat in

combination with another immunotherapeutic approach, a

peptide vaccine therapy, in a castration resistant prostate cancer

(CR Myc-CaP) model. We used a novel modified survivin peptide

vaccine SVN53-67/M57-KLH (SurVaxM) [33]. Survivin is an

intracellular tumor-associated antigen expressed in solid tumors,

including prostate cancer. The level of survivin expression is

associated with tumor progression and aggressiveness [34], and

represents a suitable target for vaccine therapy. A transplantable

castration resistant prostate cancer (CR Myc-CaP) model has been

developed in our lab [35]. Myc-CaP cells, derived from the Hi-

Myc transgenic prostate cancer mouse model [36], were injected

(16106 cells/mouse) subcutaneously into male FVB mice. Tumor

bearing animals were surgically castrated post tumor establishment

and consequent tumors were passaged through 5 additional
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Figure 1. Enhancement of IL-2 therapy by entinostat is associated with inhibition of Tregs. Mice with orthotopic inoculation of RENCA
cells were treated for 5 days. Blood was drawn from mice on the fifth day and stained for antibodies specific for CD4, CD25, and Foxp3. Tumor
weights were measured at the end of two weeks of treatment. A and B, Effect of entinostat on Tregs in tumor bearing mice. A, Effects of vehicle, IL-2,
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rounds of surgically castrated FVB mice. Survivin expression was

confirmed in Myc-CaP tumors by immunohistochemistry. CR

Myc-CaP tumor bearing mice were randomized into four groups

and treated with vehicle, entinostat (5 days/wk, 5 mg/kg),

SurVaxM (1 dose/wk) or combination. Following three weeks of

treatment, entinostat or SurVaxM single treatment displayed

modest antitumor effect (10–25% of reduction) (Fig. 3A and B).

However, combination of entinostat and SurVaxM dramatically

reduced tumor weight (,80% reduction, p = 0.002) when

compared to either vehicle or single treatment groups (Fig. 3A

and B). Peripheral blood cell staining showed that treatment with

entinostat alone and in combination with SurVaxM reduced

Foxp3 level in Tregs of tumor-bearing mice (Fig. 3C), but had no

effect on Tregs number (data not shown).

Survivin vaccine treatment induces antigen-specific CD8
cells and entinostat synergizes with vaccine to induce
IFN-c immune response

In order to assess the presence of survivin antigen-specific T

cells that may be generated in response to vaccination, we did a

survivin vaccine-specific peptide-MHC class I tetramer binding

assay. The tetramer is specific to a survivin peptide epitope [33].

Splenocytes were isolated from mice that received different

treatments as done in the therapy experiment and subjected to

survivin–specific tetramer and surface marker staining. Only the

splenocytes from mice treated with the survivin vaccine (vaccine

single and combination treatment) showed induction of antigen-

specific CD8 cells (Fig. 4A). Interestingly, the intracellular cytokine

staining suggests substantial induction of CD8+IFN-c+ cells over

vehicle level in the combination group, which matches its

enhanced antitumor activity (Fig. 4B).

Entinostat suppresses Foxp3 gene expression in Treg
cells and inhibits Tregs function

To further investigate the immune promoting effect of

entinostat, we treated naı̈ve BALB/c mice with either vehicle or

entinostat (5 mg/kg or 20 mg/kg) for 5 days. Splenocytes and

lymph node cells were harvested. The number of Tregs and Foxp3

expression were accessed by FACS analysis. In vivo treatment with

entinostat had no significant effect on the number of Tregs

(CD4+Foxp3+ T cells) in CD4+ T cell population from either

lymph nodes or spleen. However, compared to vehicle-treated

mice, Tregs from treated mice had a dose-dependent decrease in

Foxp3 levels (Fig. 5A). The effect of entinostat on Foxp3

expression was also tested by measuring Foxp3 mRNA levels in

isolated cell populations by quantitative real time RT-PCR. Tregs

(CD4+CD25+) and non-Tregs (CD4+CD252) CD4 T cells were

purified from entinostat- and vehicle- treated mice by using

magnetic beads. In vivo entinostat treatment significantly decreased

Foxp3 messenger RNA in Tregs, as compared to Tregs from

vehicle treated mice (Fig. 5B). The reduced Foxp3 protein

expression in treated Tregs was also confirmed by Western blot

analysis (Fig. 5C).

To determine whether decreased Foxp3 expression in entinostat

treated Tregs leads to impaired suppressive function of Tregs,

CFSE-labeled purified CD4+CD252 T cells (Teffs) were cultured

with anti-CD3e antibody and antigen presenting cells. Tregs were

then added into the culture with different Treg vs. Teff ratios

(Fig. 5D). BALB/c mice were treated with vehicle or different

doses of entinostat in vivo as indicated. Tregs were isolated from

splenocytes from differentially treated mice and cultured with

isolated Teffs from vehicle-treated mice to test the effect of

treatment on Tregs suppressive activities (Fig. 5D, left panel). In

addition, Teffs isolated from splenocytes from differentially treated

mice were stimulated to test the effects of different treatments on

proliferation capacity of Teffs (Fig. 5D, right panel). Entinostat

(5 mg/kg) treated Tregs were two to three times (for example, at

Tregs:Teff = 1:4, 25% vs. 63% suppression) less effective in

suppressing Teffs proliferation than vehicle-treated Tregs

(Fig. 5D, left panel). Higher entinostat dose (20 mg/kg) further

inhibited Treg suppressive function with up to a seven fold

(Tregs:Teffs = 1:2) reduction (Fig. 5D, left panel). Interestingly, in

vivo low dose entinostat treatment (5 mg/kg) showed minimal

inhibition of proliferation capacity of Teffs, whereas higher dose

(20 mg/kg) significantly inhibited the proliferation capacity of

Teffs, as compared to vehicle-treated Teffs (Fig. 5D, right panel).

Taken together, these results suggest that in vivo treatment with

low, not cytotoxic dose of entinostat [25] inhibits Tregs suppressive

function with minimal influence on Teffs proliferating capacity.

STAT3 is acetylated by entinostat treatment and is
associated with Foxp3 down-regulation

We next examined possible signaling mediators responsible for

Foxp3 down-regulation induced by entinostat. STAT3 signaling is

activated by acetylation and has been implicated in Foxp3

modulation [37,38]. To test whether STAT3 is one of the targets

of entinostat, HepG2 cells, a hepatoma cell line with inducible

STAT3 signaling used for STAT3 signaling studies [38], were

treated for 6 hours. Treatment with 0.5 mM entinostat was

sufficient to induce acetylation of STAT3 (Fig. 6A) without

significantly changing total STAT3 protein levels (Fig. 6A). In

addition, we tested STAT3 acetylation in splenocytes. Again,

entinostat treatment increased acetylation of STAT3 in spleno-

cytes (Fig. 6B). To further test whether STAT3 is mediating down-

regulation of Foxp3 by entinostat, we used a highly specific, cell

permeable peptide STAT3 inhibitor [39]. Entinostat treatment

reduced Foxp3 levels in Tregs, whereas the presence of the

STAT3 specific inhibitor partially, but significantly neutralized the

entinostat, or combination treatment on Tregs Foxp3 expression. Cells were stained and subjected to flow cytometry analysis. The dot plots were
gated for CD4+ cells. The rectangular area encloses the CD4+Foxp3+ cells, the numbers on the top represent the percentage of Foxp3+ cells. The
numbers on the bottom in the area represent the mean fluorescence intensity (MFI) of Foxp3 PE staining of CD4+Foxp3+ cells. B, Quantification of
Tregs percentage in CD4 population (left panel) and Foxp3 levels (MFI) in Tregs (right panel) by FACS analysis. Values are means and error bars
represent S.D. for 5–7 samples per group. In right panel, p = 0.0011 for IL-2 vs. vehicle; p = 0.000009 for entinostat vs. vehicle. Results are
representative of three separate experiments. C, Tumor weight measurements. Columns, mean grams of tumor; Bars, S.D. n = 5–7. p = 0.0209 for
entinostat vs. vehicle; p = 0.0077 for combination vs. vehicle; p = 0.0272 for combination vs. entinostat. Results are representative of three separate
experiments. D, Entinostat enhanced IFN-c type immune response induced by IL-2 treatment. Splenocytes (16106 cells) were harvested and
stimulated with PMA (20 ng/ml) and Ionomycin (1 mg/ml) for 5 hours in the presence of Brefeldin A. Cells were then stained for surface markers and
intracellular IFN-c. Histograms show percentage of IFN-c expressing cells in CD8 population. p = 0.01 for combination vs. IL-2. E, Entinostat reduced
tumor infiltration of Tregs. Tumor sections were stained with anti-Foxp3 antibody to show infiltration of Tregs. Histogram shows average numbers of
stained Tregs in random 206resolution bright fields (Tregs number in each field was obtained by blinded count). F, Entinostat treatment induced H3
histone acetylation in splenocytes. BALB/c mice were treated with vehicle (0.5% methocel) or 5 mg/kg/day entinostat by gavage for 5 days. Cells
were harvested from spleens and subjected to Western blot analysis for acetylated-H3 histone.
doi:10.1371/journal.pone.0030815.g001
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Figure 2. Antitumor activity of Tregs depletion antibody PC61 in RENCA tumor. A, Plots show effect of vehicle, PC61, entinostat or
combination treatment on CD25 and Foxp3 levels. Quantification of Tregs percentage, Foxp3 expression by FACS analysis is shown as histograms.
Values are means and error bars represent S.D. for 6–7 samples per group. B, Tumor weight measurements from PC61 depletion experiment. Columns,
mean grams of tumor; Bars, S.D.. n = 6–7. * represents p,0.05 for marked point vs. vehicle; ** represents p,0.01 for marked point vs. vehicle.
doi:10.1371/journal.pone.0030815.g002
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inhibitory effect of entinostat on Foxp3 expression in Tregs

(,50% neutralization) in both the absence and presence of IL-2

(Fig. 6C and 6D, respectively). In all of the conditions, there was

no significant difference in the number of Tregs. This result

suggests that STAT3 is in part involved in entinostat down-

regulation of Foxp3 expression in Tregs.

Figure 3. The HDAC inhibitor, entinostat, enhances peptide vaccine therapy in a castration resistant prostate cancer model. A and B,
Entinostat enhances the antitumor effect of the survivin vaccine, SurVaxM. FVB mice were castrated and subcutaneously inoculated with small
castration resistant tumor pieces. Approximately 7 days after inoculation when tumors reached an average size of 50 mm2, mice were treated three
weeks with vehicle, entinostat (5 mg/kg, 1 dose/day, 5 days/wk), survivin vaccine SurVaxM (100 mg/dose, 1 dose/wk), or combination. A, Single tumor
growth graph lines were generated by serial caliper measurements. B, Tumors were harvested at the end of treatment and weighed (combination vs.
survivin vaccine, p = 0.003). C, Entinostat treatment reduced Foxp3 levels in Tregs from CR Myc-CaP tumor-bearing mice. After 5 days of treatment,
peripheral blood cells were collected from mice, stained for CD4 and Foxp3, and subjected to FACS analysis. Quantitation of Foxp3 mean
fluorescence intensity (Foxp3 MFI) (vehicle vs. entinostat, p = 0.0002; combination vs. survivin, p = 0.0004).
doi:10.1371/journal.pone.0030815.g003
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Class I, but not Class II HDAC inhibition suppresses Foxp3
expression in Tregs in vitro

Previous studies have reported that inhibition of HDACs

increases Tregs number, and promotes Tregs function and

associated immune response suppression [30,40]. Hence, we

investigated whether inhibition of different classes of HDACs

may have differential effects on Tregs. We tested other HDAC

inhibitors including the selective class I inhibitor, MGCD0103, the

pan inhibitor, panobinostat, and two selective class II inhibitors,

MC1568 and MC1575 [41]. Splenocytes isolated from BALB/c

mice were cultured with different treatments for 24 hours. The

doses of inhibitors were chosen based on previous studies [41,42].

Cells were harvested, stained for surface markers and Foxp3, and

subjected to FACS analysis. Both class I HDAC inhibitors,

entinostat and MGCD0103, down-regulated Foxp3 in Tregs

(Fig. 7A). Both entinostat and panobinostat reduced Foxp3 protein

levels in Tregs population in a dose-dependent manner. Selective

Class II HDAC inhibitors did not have a significant effect on Tregs

(Fig. 7B). These results suggest that inhibition of class I, not class II

HDACs leads to down-regulation of Foxp3.

Discussion

In our study, we provide evidence that the class I HDAC

inhibitor, entinostat, inhibits Tregs and enhances the antitumor

effect of two different immunotherapies. In the entinostat and IL-2

combination strategy, IL-2 treatment activated and promoted

proliferation of Teffs, but also activated Tregs (Fig. 1). Low dose

entinostat, in combination with IL-2, did not have a direct

cytotoxicity against tumor cells. In contrast, entinostat targeted

Tregs activity, while IL-2 activated Teffs, with consequent

enhancement of the antitumor immune response. Entinostat

reduced IL-2 induced elevated Foxp3 levels and counteracted

the Treg-promoting ‘‘side effect’’ of IL-2 treatment. This opposite

action of entinostat and IL-2 on Tregs may be responsible in part

for the in vivo synergistic antitumor activity observed with this

combination. In the SurVaxM and entinostat combination

strategy, the peptide vaccine treatment aimed at inducing

antigen-specific immune response, while the entinostat targeted

Tregs as part of immunosuppressive environment in tumor-

bearing animals. By counteracting the Treg function, entinostat

likely allowed for the generation of antigen specific Teffs and

facilitated the activation of T effectors to kill target tumors cells.

Antigen specific CD8 cells were induced by both vaccine single

and combination treatments, but only combination treatment led

to enhanced CD8+IFN-c+ cells induction in this model (Fig. 4).

This result suggests that entinostat may facilitate the activation of

antigen specific CD8+ T cells through additional CD4+ T cell

helper support. This is the first study, to our knowledge, to show

that the class I HDAC inhibitor, entinostat, in combination with a

vaccine therapy, enhances prostate tumor response. The results

from these two strategies demonstrate that the application of

entinostat may be general and versatile to support different

antitumor immunotherapies.

Several previous findings from our group also support the

notion that the effect of entinostat in combination with

immunotherapy results from immunomodulatory activity rather

than a direct cytotoxic effect against tumor cells [25]. First, the

combination strategy does not have a synergistic effect in

immunodeficient mice. Secondly, survival benefit from the

combination therapy was abrogated by depletion of CD8 T cells

in immunocompetent mice [25]. In addition, we used a

suboptimal dose of entinostat, 5 mg/kg (optimal dose is more

than 20 mg/kg in order to direct target tumor cells). The median

plasma concentration 20.665.01 ng/ml achieved from this dose

had no or minimal direct antitumor cytotoxic effect in vitro [25].

However, this dose appears to modulate immune response. A

higher dose (20 mg/kg) of entinostat did not have the synergistic

antitumor effect observed with a lower dose possibly due to toxicity

to Teffs (Fig. 5).

Previous reports have suggested that HDAC inhibition leads to

reduced immune response by promoting Tregs and down-

regulating pro-inflammatory cytokines [26,30]. A recent study

has shown the class I/II HDAC inhibitor TSA promoted Foxp3

expression and the generation and function of Tregs in an

autoimmune disease murine model with C57BL/6 mice [30].

Under our experimental conditions utilizing BALB/c mice and the

RENCA tumor model, TSA (1 mg/kg/day) did not induce

changes in either number or Foxp3 expression of Tregs (data

not shown). The strain difference may play a role in these different

observations since BALB/c mice have increased number of Tregs

and show a different response to suppression of their Teffs as

Figure 4. Survivin vaccine induces antigen-specific CD8 cells and entinostat enhances IFN-c induction. A. Tetramer analysis of
splenocytes obtained from mice immunized with SurVaxM. Splenocytes were stained with anti CD8 antibodies and survivin-specific tetramers for flow
cytometric analysis. Results are based upon gating of CD8+ T cells and indicate the percent of double labeled cells (CD8+/Tetramer+) with respect to
specific tetramer. B, Combination treatment led to CD8+ IFN-c+ cells induction. Mice were treated as indicated. Splenocytes were stimulated and
intracellular IFN-c staining was performed as described in Figure 1D. p,0.01 for combination vs. vehicle.
doi:10.1371/journal.pone.0030815.g004
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Figure 5. In vivo treatment with entinostat decreases Foxp3 expression in Tregs and inhibits Tregs function. BALB/c mice were treated
with vehicle (0.5% methocel) or 5 mg/kg/day or 20 mg/kg/day of entinostat by gavage for 5 days. Cells were harvested from spleens and lymph
nodes. A, In vivo entinostat treatment decreased the expression level of Foxp3 in CD4+Foxp3+ (Treg) cells. Cells were stained with fluorescence-
conjugated antibodies specific to CD4, CD25, and Foxp3 and subjected to flow cytometry analysis. The dot plots were gated for CD4+ cells. The
rectangular area encloses the CD4+Foxp3+ cells, the numbers on the top represent the percentage of Foxp3+ cells. The numbers on the bottom in the
area represent the mean fluorescence intensity of Foxp3 PE staining of CD4+Foxp3+ cells. The panels on the right represent quantification of Tregs
percentage (top) and Foxp3 expression (bottom) in FACS analysis. Graph shows means, error bars represent standard deviations for 6 samples in each
group. p = 0.00078 for 5 mg/kg entinostat vs. vehicle; p = 0.000004 for 20 mg/kg entinostat vs. vehicle; p = 0.0038 for 20 mg/kg entinostat vs. 5 mg/
kg entinostat. a= 0.05. Results are representative of three separate experiments. B, In vivo entinostat treatment reduced Foxp3 mRNA levels in
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PLoS ONE | www.plosone.org 8 January 2012 | Volume 7 | Issue 1 | e30815



compared to C57BL/6 mice [43]. In addition, TSA has different

pharmacokinetic features from other HDAC inhibitors [44]. TSA

undergoes rapid and extensive metabolism once absorbed and is

rapidly inactivated in rodents. It has been suggested that inhibition

of class II HDAC9 by TSA induces acetylation of Foxp3 protein,

which enhances Treg suppression function [30]. TSA also inhibits

class I HDACs, but at the dose used in the study, a class II HDAC

inhibition induced effect on Tregs may be dominant. Inhibition of

the class III HDAC, SIRT1, also induced acetylation-mediated

Foxp3 protein stabilization, which led to an increase of Tregs

functionality [45]. In contrast, our study demonstrates an opposite

effect on Tregs by inhibition of class I HDACs. Both low and high

doses of the class I HDAC inhibitor, entinostat, suppressed the

inhibitory effect of Tregs (Fig. 5). Taken together, these results

indicate that class I HDAC inhibition and class II inhibition may

have a different or even an opposite effect on Tregs. Additional

comparisons between different types of HDAC inhibitors suggest

only class I HDAC inhibition down-regulated Foxp3 (Fig. 7).

Inhibition of class II HDACs may promote Tregs function through

different mechanisms of action [30]. These considerations have

direct clinical impacts in designing rational combination clinical

trials with HDAC inhibitors and immunotherapies.

Increased levels of Tregs, or increased expression of Foxp3 and

enhanced Tregs function have been reported in cancer patients,

including kidney and prostate cancer patients [2,8,9]. IL-2 induces

Tregs expansion in normal individuals, and more extensively in

lymphopenic cancer patients [10], which may impair its antitumor

immune response. Several studies have shown that Tregs reduce

the efficacy of immunotherapy [15] and depletion of Tregs

enhances antitumor immune responses [9]. Tregs are also induced

in cancer patients receiving high dose IL-2 [11,46]. However, a

decrease in Tregs has been associated with objective clinical

response to IL-2 therapy [11]. The mechanism responsible for

these observations has not previously been elucidated, but these

clinical reports suggest that depletion of Tregs may enhance the

ability of IL-2 to elicit an antitumor immune response in cancer

patients. Some studies have also suggested that Tregs are an

important immunosuppressive component that leads to irrespon-

siveness to and limited efficacy of vaccine therapy. The Tregs

depletion reagents in development are anti-CD25 antibody or

toxin conjugated IL-2. These reagents target cells with the CD25

surface marker. The depletion effect of these reagents may not be

specific to Tregs since activated T effectors also express the CD25

surface marker while Tregs stably express CD25. Entinostat

treatment appears to have an advantage over current approaches

as it selectively inhibited Tregs by down-regulating Foxp3

expression without affecting Teffs proliferation (Fig. 5). No

significant differences were observed in the level of CD8+, natural

killer, and natural killer T cells after entinostat treatment [25].

Foxp3 protein is essential for the development and function of

Tregs. Other cell types such as CD4+CD252 T cells can acquire

immunosuppressive activity if induced to express Foxp3 [47],

suggesting that Foxp3 expression is sufficient to drive the

suppressive function. In general, histone hyperacetylation at certain

loci induces gene expression. Negative regulation of Foxp3 by

entinostat treatment is unlikely related to histone acetylation at the

Foxp3 site, but rather to the modulation of upstream pathways. Our

study suggests a class I HDAC substrate protein (non-histone) is

modified by entinostat treatment and is responsible for its Foxp3

transcriptional regulation. Down-regulation of Foxp3 by IL-6 and

IL-27 has been reported to be STAT3-dependent [48,49]. STAT3

protein is activated by acetylation [37,38] via CBP/p300 in vivo, and

interacts with class I HDACs (HDAC 3 displayed strongest

interaction) [37]. It is conceivable that inhibition of class I HDACs

by entinostat induces STAT3 acetylation and facilitates its signaling

with consequent down-regulation of Foxp3. Our results also show

that blockage of the STAT3 pathway partially inhibits the down-

regulation of Foxp3 by entinostat (Fig. 6), and suggests that STAT3

is at least in part responsible for this effect. Blockage of STAT3 by

the specific peptide inhibitor might not have been optimal in our

setting because we were unable to reach the recommended

concentration [39]. Interestingly, one of the transcriptional partners

of Foxp3 in Tregs, Runx, controls Foxp3 expression by interacting

with CBFb [50]. Additional mechanisms responsible for the

regulation of Foxp3 expression by HDAC inhibitors are now under

investigation in our group. This will not only provide additional

evidence supporting the utilization of these agents in combination

with immunotherapy strategies, but will also identify new targets for

therapeutic interventions.

In summary, our study suggests a novel mechanism of the in vivo

antitumor effect of HDAC inhibitors. Entinostat has an immuno-

modulatory ability by inhibiting Tregs and consequently enhanc-

ing an IL-2 and vaccine induced antitumor response. This

combination strategy also has promising potential to be effective

in other immunotherapies and in different tumors. A clinical trial

of combinational therapy with high dose IL-2 and entinostat in

metastatic renal cell carcinoma patients has been initiated at our

institution.

Materials and Methods

Cells
The murine renal cell carcinoma cell line RENCA was

purchased from American Type Culture Collection (National

Cancer Institute) and cultured in RPMI 1640 (Life Technologies)

with 10% fetal bovine serum (Sigma-Aldrich) and 1% Pen/Strep

(Life Technologies, Invitrogen, Gibco), and incubated at 37uC in

an atmosphere containing 5% CO2. Myc-CaP cell line was

cultured in DMEM (Mediatech, Inc.) with 10% FBS. For isolation

of splenocytes, five- to six-week-old female BALB/c mouse

(National Cancer Institute) spleens were harvested, mashed on,

and passed through a 70 mm strainer. These cell suspensions were

isolated Tregs. Total RNAs were extracted from isolated CD4+CD25+ T cells (Tregs) and CD4+CD252 T cells (Teffs) and were analyzed for Foxp3 mRNA
by real time RT-PCR. Foxp3 mRNA levels were normalized to GAPDH mRNA (or ribosomal RNA RPL13A) and values represent means for three samples
(three mice per sample) per group and have relative units. p = 0.0157 for Tregs treated with entinostat vs. Tregs treated with vehicle. Results are
representative of three separate experiments. C, In vivo entinostat treatment reduced Foxp3 protein level in Tregs. Total cell protein was extracted
from isolated Tregs and Teffs and was analyzed for Foxp3 protein by Western blot. D, The effects of HDAC inhibitor, entinostat, on Tregs suppressive
function and Teffs proliferation. Tregs suppression assays: 26105 CFSE-labeled Teffs were stimulated with 0.5 mg/ml of anti-CD3e antibody and 46105

irradiated antigen presenting cells (CD4 cells-depleted splenocytes) and co-cultured with Tregs in different ratios to Teffs for 62–80 hrs. Percentages
of divided Teffs were calculated at all ratio points for each treatment. Percentage of suppression of Teffs dividing was calculated for each point by
comparing cell dividing at each ratio to the cell dividing in absence of Tregs (0:1). Left panel: Effect of entinostat treatment on Tregs function. Right
panel: Effect of entinostat treatment on proliferation of Teffs. Histogram shows percentage of divided Teffs without Tregs. Data are representative of
three separate experiments. Values are means from triplicate measurements. * represents p,0.05 for marked point vs. vehicle; ** represents p,0.01
for marked point vs. vehicle.
doi:10.1371/journal.pone.0030815.g005
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centrifuged at 300 g for 10 min at 4uC. Cell pellets were treated

with ACK lysing buffer (Biosource). Splenocytes were then

resuspended and cultured in complete media (RPMI supplement-

ed with 10% FBS, 1 mM sodium pyruvate, 100 mM non-essential

amino acid, 2 mM L-glutamine, Pen (100 units/ml)-Strep

(100 mg/ml) and 55 mM b-mecaptoethanol). For in vitro treat-

ments, cells were incubated in media with entinostat (kindly

provided by Syndax Pharmaceuticals, Inc.), MGCD0103 (Active

Biochemicals Co. Ltd.), MC1575 and MC1568 (kindly provided

by Dr. Antonello Mai at Università degli Studi di Roma ‘‘La

Sapienza’’, Rome, Italy), panobinostat (Novartis) or vehicle (0.1%

DMSO in the media) with or without supplement of 20 U/ml of

IL-2 (Invitrogen).

Isolation of regulatory T cells
Spleens and lymph nodes were harvested and cell suspensions

were made as described above. Tregs (CD4+ CD25+ cells) and T

effector cells (Teffs, CD4+ CD252 cells) were enriched using a

Treg isolation kit according to the manufacturer’s instructions

(Miltenyi Biotech).

Figure 6. STAT3 signaling is involved in down-regulation of Foxp3 by entinostat. A and B, Entinostat treatment induces STAT3 acetylation.
HepG2 cells or splenocytes were treated for 6 hours, harvested, and lyzed for Western immunobloting or immunoprecipitation. A, Entinostat induced
STAT3 acetylation in HepG2 cells. Upper panel: Cell lysates were analyzed directly and blotted with anti-STAT3 and actin. Bottom panel, Cell lysates
were immunoprecipitated with anti-STAT3 antibody and then blotted with anti-STAT3 antibody and with anti-acetylated lysine antibody. B,
Entinostat induced STAT3 acetylation in splenocytes. IP and Western blot were performed as described in A. C and D, Down-regulation of Foxp3 is
inhibited by blocking STAT3 signaling. Splenocytes were harvested from BALB/c mice and put in culture. Cultures were treated with vehicle or
0.5 mM specific STAT3 peptide inhibitor for one hour, followed by vehicle or 0.5 mM entinostat treatment for 23 hours. Cells were harvested and
analyzed by flow cytometry using fluorescence-conjugated antibodies specific to CD4 and Foxp3. Fixable live/dead dye was used to stain cells and
live cells were gated. Cell culture was in absence (panel C) or in presence (panel D) of IL-2. In each condition, histograms show quantification of Foxp3
expression in Tregs by FACS analysis. Graph shows means, error bars represent standard deviations. In C, p = 0.0002 for entinostat vs. STAT3
inhibitor+entinostat. In D, p = 0.00015 for entinostat vs. STAT3 inhibitor+entinostat. Results are representative of three separate experiments.
doi:10.1371/journal.pone.0030815.g006
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Figure 7. Class I inhibition, not class II inhibition suppresses Foxp3 expression in Tregs. Splenocytes were isolated from BALB/c mice and
put in culture with different treatment conditions as indicated for 24 hours. Cells were harvested, stained for surface markers and intracellular Foxp3,
and subjected to FACS analysis. Plot gating and parameter indication were described in Figure 1. Histograms show quantification of Foxp3 levels in
Tregs. A, Both class I HDAC inhibitors, entinostat and MGCD0103, inhibit Foxp3 expression in Tregs. When comparing entinostat with MGCD0103, PE
conjugated anti-Foxp3 antibody was used. B, Class I HDAC inhibitor, entinostat, and a pan inhibitor, panobinostat, but not class II HDAC inhibitors,
MC1568 and MC1575, inhibit Foxp3 expression in Tregs. When comparing entinostat with class II HDAC inhibitors and the pan inhibitor,
panobinostat, the Alexa 700 conjugated anti-Foxp3 antibody was used since other fluorochrome channels are interfered by the autofluorescence of
the class II HDAC inhibitors. ** represents p,0.01 for marked treatment vs. vehicle.
doi:10.1371/journal.pone.0030815.g007
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RNA analysis
Total cellular RNA was isolated with RNeasy mini kit (Qiagen).

cDNAs were synthesized with superscript reverse transcriptase

(Invitrogen). Quantitative PCR was performed with icycler (Bio-

Rad) or ABI 7300 (Applied Biosystem). Primers for Foxp3 cDNA:

Forward: 59-TTA TCC AGC CTG CCT CTG AC-39; Reverse:

59-AGC CCC TGG TCC CTA GAA GT-39. cDNA inputs were

normalized to housekeeping gene GAPDH RNA or ribosomal

RNA RPL13A. Primers for reference gene GAPDH: Forward: 59-

AAT GTA TCC GTT GTG GAT CTG A-39; Reverse: 59- GCC

TGC TTC ACC ACC TTC T-39. RPL13A: Forward: 59-GAG

GTC GGG TGG AAG TAC CA-39; Reverse: 59-TGC ATC

TTG GCC TTT TCC TT-39.

Immunoprecipitation and Western blot analysis
HepG2 cells were treated with vehicle, 0.5 mM, or 2 mM

entinostat for 6 hours before harvest. Cell pellets were lysed in

non-denaturing lysis buffer (20 mM Tris HCl, pH8, 137 mM

NaCL, 10% glycerol, 1% Nonidet P-40 (NP-40), 2 mM EDTA).

The cell lysates were immunoprecipitated with anti-STAT3 (C-20)

(Santa Cruz Biotechnology) and protein G DynaH beads

(Invitrogen). The beads were washed in lysis buffer, eluted by re-

suspension in loading buffer, and boiled for 5 minutes. The

samples were analyzed by Western blot with anti-acetylated lysine

(Cell Signaling), anti-STAT3 antibodies (Santa Cruz) or anti-

Foxp3 (eBioscience). The details of Western blot analyses have

been previously described [51].

Immunohistochemistry
Tumor pieces were fixed in 10% formalin and embedded in

paraffin blocks. 4 mm sections were stained according to detailed

methods described previously [25]. Rat anti-mouse/rat Foxp3

antibody (eBioscience) was used to stain Tregs. Rat IgG was used

as a negative control.

Regulatory T cell suppressive functional assay
Isolated Teffs (CD4+CD252) were labeled with carboxyfluor-

escein diacetate succinimidyl ester (CFDA-SE or CFSE) and

cultured in complete medium with stimulations, including anti-

mouse CD3e antibody (0.5 mg/ml) and antigen presenting cells

(CD4+ cells-depleted, irradiated splenocytes). Tregs were added to

the culture in different ratios to Teffs. After a 60–72 hour

incubation, all cells in culture were harvested and stained for CD4-

APC. Dividing cells were analyzed by calculating percentage of

cells with diluted CFDA-SE compared to the original undivided

Teff population. Cell events were acquired using FACSCalibur

and CellQuest. Data were analyzed with FCS Express (De Novo

Software).

In vivo tumor growth
The animal protocol was approved by the Institutional Animal

Care and Use Committee at Roswell Park Cancer Institute

(protocol 1137 M), and was in accordance with the NIH Guide for

the Care and Use of Laboratory Animals. Five- to six-week-old

female BALB/c mice (National Cancer Institute) were kept in a

temperature-controlled room on a 12/12 hour light/dark sched-

ule with food and water ad libitum. RENCA cells (56105) harvested

from non-confluent monolayer cell cultures in 20 mL of 16HBSS

were injected under the renal capsule. Animals were randomly

distributed into four groups (5–7 animals/group): vehicle (0.5%

methocel in saline, daily, 7 d/wk by oral gavage), IL-2

(Prometheus, 150,000 IU, twice a day, 2 d/wk, i.p.), entinostat

(5 mg/kg, daily, 5 d/wk by oral gavage), combination of IL-2 and

entinostat. The animals were treated for two to three weeks and

then euthanized by carbon dioxide inhalation. At the end of the

experiment, tumors and spleens were collected. The weight of the

healthy right kidney was subtracted from the RENCA-injected

kidney.

Castration resistant tumor [35] was developed from Myc-CaP

cell lines derived from the Hi-Myc transgenic prostate cancer

mouse model [36]. Small pieces of the tumor (1 mm3) were

inoculated subcutaneously in the right flank of castrated male FVB

mice. Animals were randomly distributed into four treatment

groups (7–9 animals/group): vehicle, vaccine (SurVaxM), entino-

stat, or combination. SurVaxM is a survivin peptide vaccine

composed of 15 amino acids with one amino acid alteration from

wild type sequence [33]. Mice were given 100 mg of SurVaxM

peptide and 100 ng of GM-CSF by subcutaneous injection, once

per week. At the end of the 3–4 week experiment, tumors and

spleens were collected and subjected to analysis.

Cell staining and flow cytometry
Splenocytes, lymph node cells or peripheral blood cells were

washed with flow buffer which included PBS with 1% of FBS and

2 mmol/L of EDTA, then blocked with c III/II R Ab (BD

Pharmingen) and stained with antibody against surface markers

such as CD4-FITC, CD4-APC, CD25-APC, and CD8-FITC (BD

Pharmingen). Cells were then fixed in Fix/Perm buffer

(eBioscience) and stained with antibodies against intercellular

proteins such as anti-mouse Foxp3 antibody (FJK-16, eBioscience).

Cells stained with specific antibodies, as well as isotype control

stained cells, were assayed on a FACScalibur (BD Biosciences) or a

LSR II flow cytometer (BD Biosciences). Data analysis was

performed using FCS Express software.

IFN-c induction assay
16106 splenocytes from mice that received different treatments

were cultured with stimulation of PMA (Sigma, 20 ng/ml) and

Ionomycin (Sigma, 1 mg/ml) for 5 hours. Brefeldin A (Sigma) was

added to the cultures to block the protein secretion. Cells were

harvested and stained for surface markers, then fixed and stained

for intracellular IFN-c (eBioscience).

Antigen specific tetramer binding assay
Splenocytes (16106) were incubated with 10 ml of iTAg MHC

Class I Murine H2-Kb Tetramer-SA-PE bound by MFFCFKEL

peptide with specificity for SurVaxM (Beckman Coulter) or iTAg

MHC Class I Murine H2-Kb Tetramer-SA-PE bound by

SIINFEKL ovalbumin peptide to represent negative control

(Beckman Coulter) for 30 minutes. Samples were also labeled

with 10 ml anti-CD8-FITC (clone 53.6.7; BioLegend). Following

incubation, 1 ml of iTAg MHC Tetramer Lyse Reagent (Beckman

Coulter) supplemented with 25 ml iTAg MHC Tetramer Fix

Reagent (Beckman Coulter) was added to the samples, which were

then incubated for 10 minutes at room temperature, subsequently

washed with PBS, and resuspended in 400 ml of FluoroFix Buffer

(BioLegend).

Statistical analysis
Differences between experimental groups were tested by either

Student’s t test or for variances by ANOVA. p,0.05 was

considered statistically significant.

Supporting Information

Figure S1 Tumor infiltration of Tregs. Tumor sections

from differently treated mice were stained with anti-mouse/rat
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Foxp3 antibody. Representative images with 206 resolution are

showed. Arrow in each image points one of the stained Tregs.

(TIF)
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