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Abstract 15 
While large-scale functional genetic screens have uncovered numerous cancer dependencies, rare cancers 16 
are poorly represented in such efforts and the landscape of dependencies in many rare cancers remains 17 
obscure. We performed genome-scale CRISPR knockout screens in an exemplar rare cancer, TFE3-18 
translocation renal cell carcinoma (tRCC), revealing previously unknown tRCC-selective dependencies in 19 
pathways related to mitochondrial biogenesis, oxidative metabolism, and kidney lineage specification. To 20 
generalize to other rare cancers in which experimental models may not be readily available, we employed 21 
machine learning to infer gene dependencies in a tumor or cell line based on its transcriptional profile. By 22 
applying dependency prediction to alveolar soft part sarcoma (ASPS), a distinct rare cancer also driven by TFE3 23 
translocations, we discovered and validated that MCL1 represents a dependency in ASPS but not tRCC. 24 
Finally, we applied our model to predict gene dependencies in tumors from the TCGA (11,373 tumors; 28 25 
lineages) and multiple additional rare cancers (958 tumors across 16 types, including 13 distinct subtypes of 26 
kidney cancer), nominating potentially actionable vulnerabilities in several poorly-characterized cancer types. 27 
Our results couple unbiased functional genetic screening with a predictive model to establish a landscape of 28 
candidate vulnerabilities across cancers, including several rare cancers currently lacking in potential targets. 29 

Main Text 30 

Introduction 31 
A cornerstone of precision oncology is the matching of therapies to specific cancers based on 32 

predictive molecular features. Recent advances in the molecular classification of cancer coupled with 33 
advances in genome-scale functional genetic screening have enabled the discovery of multiple biomarker-34 
drug pairs that have proven clinically effective in specific cancer subtypes (1–9). Still, limited molecular 35 
profiles of rare cancer types and a paucity of robust cellular models for many of these cancers remain barriers 36 
to fully realizing the ideal of precision oncology; this is in spite of the fact that many rare cancers have 37 
homogeneous genomic landscapes with singular driver alterations that may be directly linked to robust 38 
vulnerabilities (10–12). 39 

Kidney cancer is notable in this regard as it comprises dozens of biologically distinct histologies in 40 
both adults and children, many of which are quite rare (13). To date, most discovery biology efforts in kidney 41 
cancer have focused on clear-cell renal cell carcinoma (ccRCC), which comprises 75% of RCC in adults and 42 
is typified by loss of the VHL tumor suppressor gene, leading to activation of hypoxia signaling (14). While 43 
therapeutic agents targeting this pathway have demonstrated promise in ccRCC (15), other RCC subtypes do 44 
not typically harbor VHL alterations and are driven by distinct biology (16). It is therefore likely that subtypes of 45 
kidney cancer differ in their dependency profiles, though this has not yet been systematically explored.  46 

Translocation renal cell carcinoma (tRCC) is one such subtype of RCC that strikes both adults and 47 
children. Molecularly, tRCC is driven by an activating gene fusion involving an MiT/TFE family transcription 48 
factor, most commonly TFE3 (17).  Due to a lack of therapies specifically targeted to the biology of tRCC, 49 
therapies for ccRCC are frequently used; however, these yield poor response rates (18–23). The discovery of 50 
novel molecular targets in tRCC is therefore a pressing unmet need.  51 

Recent studies have revealed few recurrent genomic alterations in tRCC apart from the driver fusion 52 
(23–28). Unbiased functional genetic screening can be useful for nominating vulnerabilities in such cases 53 
(11,12), but tRCC cell line models have not yet been included in large scale screening efforts (7,29–31), and 54 
only a limited number of cell line models of this cancer have been reported (17,32–34).  In addition, TFE3 55 
fusions can drive a spectrum of other rare cancers apart from tRCC, including alveolar soft part sarcoma 56 
(ASPS) (35), perivascular epithelioid cell tumor (PEComa) (36), epithelioid haemangioendothelioma (EHE (37), 57 
malignant chondroid syringoma (38), and ossifying fibromyxoid tumors (39). It remains unknown whether these 58 
tumor types, most of which do not have models amenable to large-scale screening, have distinct dependency 59 
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profiles from tRCC despite sharing the same driver fusion. More broadly, many subtypes of kidney cancer apart 60 
from ccRCC have limited cellular or in vivo models and have been poorly characterized with respect to their 61 
molecular features and dependency landscapes. 62 

In this study, we leveraged genome-scale CRISPR screening to discover selective vulnerabilities in 63 
tRCC cell line models. To complement this functional data, we applied a machine learning approach to 64 
nominate genetic dependencies based on tumor or cell line transcriptome profiles without the need for 65 
functional screening. By applying our predictive modeling to a broad range of tumor and cell line RNA-Seq 66 
datasets, with a focus on cancers not evaluated or underrepresented in prior functional screening efforts, we 67 
present a landscape of candidate vulnerabilities across multiple different TFE3 fusion cancers, as well as 68 
across 13 different molecular subtypes of kidney cancer.  69 

Results 70 
Genome-scale CRISPR knockout screening of tRCC cells 71 

We performed genome-scale pooled CRISPR-Cas9 knockout screening in three tRCC cell lines 72 
representing two distinct TFE3 fusions (FUUR-1: ASPSCR1-TFE3; S-TFE: ASPSCR1-TFE3; UOK109: NONO-73 
TFE3). Each cell line was stably transduced with Cas9 and subsequently transduced with a lentiviral library of 74 
76,441 single-guide RNAs (sgRNAs) targeting 19,114 genes (Broad Brunello library (40)) with 1,000 non-75 
targeting control sgRNAs. Cells were cultured for 28 days, at which point genomic DNA was extracted and 76 
sgRNA abundance was compared to the starting pool; sgRNAs depleted from the pool at the conclusion 77 
relative to the start of the experiment were inferred to target tRCC-essential genes (Fig.1A). 78 

While the Cancer Dependency Map (DepMap) has profiled >1100 cancer cell lines across 28 lineages 79 
via genome-scale genetic (RNAi/CRISPR) screening, tRCC cell lines have to date not been included in this 80 
effort (30,41). We therefore sought to calibrate our results against published results from the DepMap in order 81 
to identify candidate vulnerabilities that are selectively essential in tRCC relative to other cancer types. For 82 
each gene assayed in our screens, we calculated a Chronos score, which represents the relative essentiality 83 
of a gene accounting for various potential confounders, including sgRNA efficiency, copy number related bias, 84 
and heterogenous cutting events (Methods) (31); by the Chronos metric, cell-essential genes have a score of 85 
approximately -1 while non-essential genes have a score of approximately 0 (31). We compared Chronos 86 
scores for each gene in tRCC cells (averaged across the 3 tRCC cell lines screened in our study) to Chronos 87 
scores for these same genes in either clear-cell renal cell carcinoma (ccRCC) cell lines (averaged across 14 88 
cell lines) or all cancer lineages (averaged across 1193 cell lines representing 28 lineages, ccRCC excluded) 89 
screened in the DepMap (Fig.1B-C, Supplementary Table S1, Methods).  90 

Using established lists of essential and non-essential genes(42), we found that essential genes 91 
(reported in DepMap) had a mean Chronos score of –0.930 across tRCC cell lines screened in our study, while 92 
non-essential genes had a mean Chronos score of -0.026. Importantly, while cell lines in the DepMap effort 93 
were screened using the Avana CRISPR knockout sgRNA library (74,687 sgRNAs targeting ~18,560 genes) (40) 94 
and the tRCC cell lines in this study utilized the Brunello library, the strong concordance in the scores for both 95 
essential and non-essential genes suggests that informative comparisons can be made between our data and 96 
those generated via the DepMap effort, despite the use of different genome-scale sgRNA libraries and the 97 
screens being conducted over different durations (43). 98 

Among the most selective dependencies in tRCC cells were TFE3 and ASPSCR1 (fusion partner of 99 
TFE3 in two of three cell lines screened) (Fig.1B-C). TFE3 fusions typically retain the C-terminal exons of TFE3 100 
and the N-terminal exons of the fusion partner (23,44). As the Brunello sgRNA library contains 4 sgRNAs per 101 
gene, distributed across the gene body, we next sought to determine the log fold-change of individual sgRNAs 102 
in each of our CRISPR knockout screens. We found that sgRNAs targeting C-terminal exons of TFE3 retained 103 
within the oncogenic fusion (E, F, G) were strongly depleted in our screens while an sgRNA targeting exon 4 104 
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(not contained within the oncogenic fusion, H) was not. Similarly, sgRNAs targeting N-terminal exons of the 105 
ASPSCR1 or NONO fusion partners were strongly depleted in cell lines containing the ASPSCR1-TFE3 (s-TFE, 106 
FU-UR-1) or NONO-TFE3 fusions (UOK109), respectively. However, depletion of NONO sgRNAs was not 107 
observed in s-TFE or FU-UR-1 cells, nor was depletion of ASPSCR1 sgRNAs observed in UOK109 cells (Fig.1D, 108 
Supplementary Fig. S1A). We conclude that TFE3 scores as a strongly selective dependency in tRCC lines due 109 
to CRISPR-mediated depletion of the oncogenic driver fusion.  110 

To further validate these findings, we performed growth competition assays in tRCC or ccRCC cell 111 
lines transduced with Cas9 and either a control sgRNA or an sgRNA targeting TFE3 (C-terminal region). Strong 112 
depletion of TFE3 knockout cells was observed in all TFE3-fusion tRCC cell lines, but not in ccRCC cell lines 113 
that express wild type TFE3 (786-O, Caki-1) (Fig.1E, Supplementary Table S2). Together, these results 114 
indicate that the driver TFE3 fusion represents the primary selective essentiality in tRCC and that wild type 115 
TFE3 is dispensable in non-fusion cancer cells. 116 

Selectively essential pathways in tRCC 117 
We next sought to discover pathways that might represent selective essentialities in tRCC, beyond the 118 

fusion itself. We performed gene ontology enrichment (45) on dependencies selectively essential to tRCC cell 119 
lines (defined as ΔChronos ≤ -0.5 between every screened tRCC cell line and either ccRCC cell lines or all 120 
lineages in DepMap, Methods, Supplementary Table S1). Remarkably, pathways related to oxidative 121 
phosphorylation and mitochondrial metabolism were strongly enriched amongst tRCC-selective 122 
dependencies (Fig.2A, Supplementary Fig. S1B-C), and multiple members of biochemical complexes 123 
involved in these processes scored as strong selective dependencies in tRCC cells (Fig.2B-D). These  included: 124 
(1) genes involved in the transcription and translation of mitochondrially-encoded genes (POLRMT: 125 
mitochondrial RNA Polymerase that transcribes mitochondrial DNA (mtDNA); MRPL48: component of the 126 
mitochondrial ribosome (“mitoribosome”); ERAL1: involved in mitochondrial rRNA assembly; NARS2: 127 
mitochondrial asparaginyl tRNA synthetase); (2) genes encoding enzymes in the citric acid (TCA) cycle (SDHA, 128 
SDHB); (3) genes encoding components of the mitochondrial ATP synthase and electron transport chain 129 
(ATP5F1A, ATP5F1D, ATP5F1E, ATP5ME, ATP5PD, CYCS); (4) genes involved in the assembly or biogenesis of 130 
iron-sulfur clusters, which are critical for Complex I, II and III activity within the electron transport chain 131 
(46)(FDX2, HSCB, ISCA1) (Fig.2B, E). Consistent with this screening data, we functionally validated that 132 
knockout of several of these genes (ISCA1, SDHA, MRPL48, POLRMT) selectively impairs the growth of tRCC 133 
cells in assays for cell proliferation, cell viability, and clonogenic capacity (Fig.2F, Supplementary Fig. S2A-134 
D). Altogether, these results strongly validate our recent finding that TFE3 fusions rewire tRCCs toward 135 
oxidative phosphorylation, as opposed to the highly glycolytic metabolism of other kidney cancers (47). 136 

Kidney lineage-defining transcription factors (PAX8, HNF1B) were also strong dependencies in tRCC, 137 
as they are in ccRCC (Fig.1C, Supplementary Fig. S1D). PAX8 is a transcription factor in the paired box family 138 
that is critical for kidney organogenesis and is broadly expressed in renal epithelial cells as well as in renal 139 
parietal cells (48). HNF1B is a homeodomain-containing transcription factor that also plays an important role 140 
in nephron development; mutations in this gene represent the most common monogenic cause of 141 
developmental renal disease (49). Consistent with these genes being lineage dependencies, knockout of 142 
HNF1B and PAX8 was selectively essential to both tRCC and ccRCC cell lines, as previously reported in ccRCC 143 
(50), but had no effect on cancer cell lines of other lineages (Supplementary Fig. S2F-K). Moreover, 144 
dependency of both PAX8 and HNF1B correlated strongly with their expression across the DepMap (HNF1B: ρ 145 
= -0.42, P=1.2e-48; PAX8: ρ = -0.26, P=2.1e-18) and both genes were highly expressed in tRCC and adjacent 146 
kidney-normal tissue, but not in other TFE3-driven malignancies (melanotic kidney tumors, PEComa, ASPS) 147 
that may be of mesenchymal origin (Supplementary Fig. S2F-G). Thus, although tRCCs often display 148 
mesenchymal features distinct from most ccRCCs (51), these results functionally suggest that the cancer is 149 
of a renal epithelial origin. Three genes involved in mevalonate synthesis (PMVK, MVK, MVD) were also strong 150 
dependencies in tRCC and had variable levels of dependency across ccRCC cell lines (Fig.2B-C, 151 
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Supplementary Fig. S2E); given prior reports of perturbed cholesterol biosynthesis in ccRCC, this may also 152 
represent a form of lineage dependency that holds across various types of kidney cancer (52,53). 153 

Finally, we uncovered additional strong dependencies that were shared in two of the three screened 154 
tRCC cell lines, including cell cycle related genes (CDK4), genes involved in hypoxia-inducible factor (HIF) 155 
signaling (EGLN1, VHL), and genes involved in the antioxidant response (TXNL4B, COA5/6, CYC1) 156 
(Supplementary Fig. S1C). These represent additional candidate vulnerabilities that could prove 157 
therapeutically tractable. 158 

Predicting dependencies in tRCC based on transcriptional profile  159 
The relatively small number of tRCC models available for screening coupled with a diversity in TFE3 160 

fusion partners and in co-occurring genetic alterations raises the possibility that some strong dependencies 161 
may hold only in a subset of tRCC cases. We therefore sought to infer the dependency landscape of a cell line 162 
or tumor from its transcriptional profile – a principle that could be broadly applicable since there are many 163 
more tumors profiled by RNA sequencing (RNA-Seq) than there are cell line models amenable to large-scale 164 
screening, for both tRCC and many other rare cancers.  165 

Although it has been suggested that expression profiles may be used to predict vulnerabilities, prior 166 
attempts have been applied primarily to cell line models, have had variable performance in tumor samples 167 
(53–56), and have not typically been applied with the granularity of cancer subtypes. We sought to establish a 168 
machine-learning model to reliably nominate genetic dependencies from cell line models and tumor RNA-Seq 169 
data, with a focus on identifying highly predictable dependencies in rare cancer types for which cell line 170 
models are not readily available for functional screening. Our pipeline involves merging and normalization of 171 
RNA-Seq data from a cell line model or tumor of interest together with reference data (DepMap cell line or 172 
TCGA tumor RNA-seq) followed by use of a machine learning model to predict dependencies; we elected to 173 
use solely transcriptome profiles for dependency prediction given prior data that expression features have 174 
greater predictive power for vulnerabilities than genomic features (54), and to establish the foundation for a 175 
streamlined workflow that could be clinically translated (Fig.3A, Methods).  176 

We first assessed our method on the DepMap dataset; we applied 5-fold cross-validation during the 177 
train-test cycle using RNA-Seq expression features from each cell line to calculate a predicted Chronos score 178 
for each gene. We elected to limit our predictions to highly predictable gene dependencies (defined as R ≥ 0.4 179 
for predicted vs. experimentally observed Chronos score, averaged across the 5 evaluation folds). We found 180 
performance to be maximized with a support vector regression (SVR)-based model (RBF kernel) utilizing the 181 
5000 strongest correlated gene expression features for prediction of each dependency. These criteria enabled 182 
prediction of dependency scores for 657 genes (hereafter termed predictable dependencies, “PD”). The model 183 
was then retrained on the entirety of the DepMap and deployed (Supplementary Fig. S3A-C, Supplementary 184 
Table S3, Methods). 185 

We applied our model to calculate predicted dependency scores for PD genes in the three tRCC cell 186 
lines for which we had obtained a ground truth via genome-scale CRISPR screening in this study (FU-UR-1, s-187 
TFE, UOK109, Supplementary Table S4). We observed a strong correlation between predicted and observed 188 
Chronos scores amongst the 657 PD genes in all of these cell lines (FU-UR-1: R=0.71, P=4.2e-100; s-TFE: 189 
R=0.68, P=1.6e-86; UOK109: R=0.62, P=3.1e-70) (Fig.3B). We also predicted dependency scores in a fourth 190 
tRCC cell line (UOK146), on which we had been unable to obtain high-quality genome-scale CRISPR screening 191 
data owing to technical limitations (Fig.3C, Supplementary Table S4).  192 

We nominated selective dependencies in each of these four tRCC cell lines relative to cancer cell lines 193 
screened in the DepMap by comparing predicted Chronos scores for PD genes in each cell line to 194 
experimentally derived Chronos scores for the same genes in the DepMap. The lineage dependencies HNF1B 195 
and PAX8 were prominently identified as selective in all tRCC cell lines, consistent with our screening data in 196 
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s-TFE, UOK109, and FU-UR-1, above. Mitochondrial superoxide dismutase (SOD2), identified in our screen as 197 
a dependency in all cell lines (Supplementary Table S1, Fig.2B), was also a predicted dependency in two of 198 
three screened cell lines (s-TFE, FU-UR-1, and narrowly missed the cutoff in the third, UOK109). In addition, 199 
two other cell lines were predicted to be selectively dependent on MDM2 (UOK109, UOK146), the E3 ubiquitin 200 
ligase that negatively regulates the p53 tumor suppressor (57).  Furthermore, NFE2L2 and SLC33A1 (which is 201 
synthetically essential with NRF2 activation (58)) were predicted to be a dependency in FU-UR-1 cells (Fig.3C).  202 

We then applied our dependency prediction to tRCC tumors profiled by RNA-Seq in three independent 203 
studies (27,28,59) and again compared predicted Chronos scores to experimentally derived Chronos scores 204 
in the DepMap. Reassuringly, dependencies predicted in tRCC cell lines were generally also predicted to be 205 
selective dependencies in a subset of tRCC tumors, highlighting the applicability of our pipeline across both 206 
cell line models and primary tumor data, and suggesting that existing tRCC models faithfully recapitulate 207 
dependencies that would be present in tRCC tumors (Fig.3D, Supplementary Fig. S3D, Supplementary 208 
Table S4, Methods). 209 

We sought to validate predicted MDM2 dependency in a subset of tRCC cell lines and tumors, given 210 
that multiple small molecules targeting MDM2 are currently being clinically evaluated for cancer indications 211 
(57). Consistent with our predictions, MDM2 knockout selectively impaired viability and clonogenic capacity 212 
in UOK109 and UOK146 cells but not in the other two tRCC cell lines (Fig.3e, Supplementary Fig. S4A). This 213 
effect was phenocopied by the small molecule MDM2 inhibitor, milademetan, which has shown activity in 214 
Phase I clinical trials (60) (Fig.3F). To further investigate the reason for divergent responses to milademetan 215 
across our four tRCC cell lines, we analyzed whole-exome sequencing data in these cell lines. We observed 216 
TP53 mutations in s-TFE and FU-UR-1 cells (Supplementary Fig. S4B), likely explaining the lack of response 217 
to milademetan in these two cell lines. Notably, across 88 tRCC tumors from 3 distinct datasets, selective 218 
MDM2 dependency was predicted in most tumors (82/88 [93.2%] tumors with ΔChronos(Predicted-DepMap Mean) ≤ -219 
0.20, Supplementary Fig. S3D). The higher predicted frequency of MDM2-sensitive tRCC tumors relative to 220 
cell lines may reflect the selection for TP53 inactivation upon prolonged cell culture in vitro; by contrast, 221 
genomic studies have indicated that tRCC tumors are almost always TP53 wild-type (23,61,62). 222 

Finally, we applied our dependency prediction to 20 genes previously reported to be altered in tRCC, 223 
even if they were not included in our list of 657 PD genes (23,44). This analysis predicted KMT2D to be 224 
selectively essential in s-TFE cells relative to other tRCC cell lines (Supplementary Fig. S4C), which we 225 
validated via arrayed CRISPR/Cas9 knockout (Supplementary Fig. S4D-E). Interestingly, KMT2D loss has been 226 
associated with metabolic rewiring toward glycolytic metabolism (63). We have recently shown tRCC cells to 227 
be dependent on OXPHOS and s-TFE cells have a highly OXPHOS-driven metabolic program (47), which may 228 
explain their heightened sensitivity to KMT2D knockout.   229 

Altogether, these data indicate the ability to predict potentially actionable dependencies from 230 
transcriptome profiles of both tRCC cell line models and tumor samples. 231 

MCL1 dependency in alveolar soft part sarcoma 232 
TFE3 fusions drive a spectrum of rare cancers apart from tRCC, including alveolar soft part sarcoma 233 

(ASPS), some endothelial hemangioendotheliomas (EHE), and some perivascular epithelioid cell tumors 234 
(PEComa) (64–66). While these cancers share TFE3 driver fusions, they may differ in terms of the cell of origin 235 
as well as in co-occurring genetic driver alterations. We therefore sought to determine whether the 236 
dependency profile of ASPS differs from that of tRCC. We performed RNA-seq on two ASPS cell lines: ASPS-1 237 
and ASPS-KY, both of which were too slow-growing to be amenable to genome-scale CRISPR screening, and 238 
used our method to predict selective dependencies in ASPS relative to tRCC (Fig.4A-B, Supplementary Table 239 
S4). Similar predictions were performed on published RNA-Seq data from seven ASPS tumors (67).  Although 240 
the dependency profiles of tRCC and ASPS cell lines were largely concordant (R=0.64), several dependencies 241 
were predicted to be selective for ASPS cells versus tRCC, including MCL1 and PRKRA. Conversely, and 242 
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consistent with tRCCs being of renal epithelial origin and ASPS being of a mesenchymal origin, the renal 243 
lineage dependencies PAX8 and HNF1B were not predicted in ASPS (Fig.4A-C, Supplementary Fig. S3D).  244 

We also predicted dependencies in PEComa and EHE, two other sarcomas that can be driven by TFE3 245 
fusions (64,68) and identified vulnerabilities in PD genes that were selective for these malignancies relative to 246 
the cell lines experimentally screened in the DepMap, using the procedure described above. Most selective 247 
dependencies predicted in these two rare cancers were shared with ASPS (e.g. FGFR1, MCL1, PRKAR1A, 248 
PRKRA), including the well validated mesenchymal dependency: GPX4 (69), consistent with all three tumors 249 
being sarcomas (Fig.4C, Supplementary Fig. S5A-C, Supplementary Table S4). 250 

Targeting of MCL1 or PRKRA by three distinct sgRNAs selectively impaired viability in ASPS cells (ASPS-251 
1 and ASPS-KY) relative to tRCC cells (UOK109, FUUR-1, S-TFE) (Fig.4D, Supplementary Fig. S5D-F). Similar 252 
profiles of differential sensitivity were observed using the clinical-grade MCL1 inhibitor murizatoclax (70) 253 
(Fig.4E). To gain additional insights into predictors of MCL1 sensitivity, we identified features predicting MCL1 254 
dependency in our model across DepMap cell lines; the top predictor was low BCL2L1 expression (Fig.4F). 255 
BCL2L1 encodes the anti-apoptotic factor BCL-xL, which has itself been identified as a dependency in a subset 256 
of ccRCC (71). Lower BCL2L1 expression strongly correlated with greater MCL1 dependency (ρ=0.50, P=8.2e-257 
71, Fig.4G). We further analyzed BCL2L1 expression in ASPS cell lines/tumors versus tRCC cell lines/tumors 258 
and kidney cancer-adjacent normal tissue, when available, and observed substantially lower BCL2L1 259 
expression in ASPS relative to tRCC and kidney-adjacent normal tissue (Fig.4H).   260 

Overall, these analyses highlight the fact that tRCC and ASPS harbor distinct selective vulnerabilities, 261 
despite both cancers sharing the same driver fusion; these differences may be linked to a different cell of origin 262 
in each tumor. 263 

Predicting dependencies and therapeutic response across cancer types 264 
We next sought to validate our approach across diverse cancer types. We applied our model to predict 265 

dependency scores for PD genes for 11,373 tumors representing 33 lineages in The Cancer Genome Atlas 266 
(TCGA) (Supplementary Table S4). Reassuringly, when clustered (t-distributed Stochastic Neighbor 267 
Embedding, t-SNE) on the basis of predicted dependency score, TCGA tumors clustered by lineage together 268 
with cell lines experimentally screened in the DepMap (Supplementary Fig. S6A). Dependency prediction in 269 
the TCGA recovered strong predicted lineage dependencies in the expected patterns, including SOX10 in 270 
melanoma (both cutaneous and uveal) (72,73) and CTNNB1 in colorectal cancers (74–76) (Fig.5A). Although 271 
our model predicts dependency scores based on the top 5000 expression features, relative feature weights 272 
may vary widely from gene to gene. In the case of SOX10 predicted dependency, SOX10 expression was 273 
weighted most heavily, with CDH19 feature weight being comparable. Notably, CDH19 is a direct 274 
transcriptional target of SOX10 and plays a critical role in neural crest cell development and migration (77). In 275 
the case of CTNNB1, multiple biologically plausible expression features were linked to β-catenin signaling 276 
predicted dependency, including AXIN2, NKD1, ASCL2, and BMP4 (78–80) (Fig.5B). Our modeling also 277 
predicted CDK4 dependency in a subset of cancers across diverse lineages, notably including breast cancer, 278 
where CDK4/6 inhibitors are approved but reliable single-gene biomarkers have proven elusive (81). Finally, 279 
dependency on glutathione peroxidase 4 (GPX4) was predicted to be most pronounced in mesenchymal 280 
lineages, consistent with prior studies (69) (Fig.5A-B). We conclude that our approach can recover 281 
dependencies predicted by outlier expression of one or two genes (e.g. many lineage dependencies) as well as 282 
those correlated with more complex expression profiles.  283 

We next sought to infer the dependency profiles of cell line models that have not yet been subjected 284 
to unbiased genetic screening. We predicted dependencies in 458 cell lines that were molecularly 285 
characterized in the Cancer Cell Line Encyclopedia (CCLE) effort but which have not yet been subjected to 286 
genome-scale CRISPR screening in the DepMap (82) (Supplementary Table S4). A subset of these cell lines 287 
(restricting to solid tumor lineages with ≥10 cell lines; N=251) were then clustered on the basis of their 288 
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predicted dependency profile, together with 833 cell lines experimentally screened in the DepMap (using 289 
experimentally-derived dependency scores for the latter lines). Reassuringly, cell lines and tumors with 290 
predicted dependency profiles clustered primarily with experimentally screened cell lines of the same lineage 291 
(Fig.5C, Supplementary Fig. S6A). However, there were notable and informative exceptions. For example, one 292 
cell line of mucinous ovarian origin (JHOM2B) clustered together with screened cell lines of bowel lineage; this 293 
was driven by shared dependencies on Wnt pathway members (CTNNB1, TCF7L2) (74), the Wnt-regulated 294 
colon lineage-defining transcription factor SOX9 (83), and KRAS (76) (Supplementary Fig. S6B). Notably, 295 
treatment of mucinous ovarian cancer with gastrointestinal-type chemotherapy regimens is preferred and 296 
associated with better outcomes compared to gynecologic regimens (84). Kidney cancer cell lines also 297 
clustered in distinct groups. While a majority of screened and predicted cell lines of kidney origin clustered 298 
together (Fig.5c), five kidney cancer cell lines, whose dependency scores were predicted, clustered together 299 
with screened rhabdoid-like cell lines from distinct lineages (malignant rhabdoid tumors of the kidney, 300 
extrarenal rhabdoid tumors, embryonal rhabdomyosarcoma, atypical teratoid/rhabdoid tumors (ATRT), and 301 
small cell ovarian cancers (ovarian rhabdoid tumors)) (Fig.5C). This co-clustering was driven by shared 302 
dependencies on polycomb repressive complex 2 (PRC2) subunits (EZH2, EED) (85–89) and transcriptional 303 
activator EP300 (90) (Supplementary Fig. S6C-D). This implies that a tumor’s dependency profile can vary 304 
considerably based on histologic subtype and other factors and may not merely reflect the organ from which 305 
it is derived. 306 

Finally, we explored whether our model could inform response to therapeutic agents with defined 307 
molecular targets. While drugs targeting the mammalian target of rapamycin (mTOR) pathway are approved 308 
and frequently employed in kidney cancer, accurate biomarkers for patient selection have proven elusive (91). 309 
Although MTOR was not included in the list of 657 PD genes, it was predicted with reasonable accuracy during 310 
testing (R = 0.32, averaged from 5-fold cross-validation). We predicted MTOR dependency using tumor RNA-311 
Seq data from patients enrolled in the Checkmate 025 study, a Phase 3 study that compared nivolumab 312 
(immune checkpoint inhibitor) with everolimus (mTOR inhibitor) in patients with clear cell renal-cell carcinoma 313 
(92). Stratifying by predicted MTOR dependency score (median dichotomized), high predicted MTOR 314 
dependency correlated with better overall (P=0.0078) and progression-free survival (P=0.0381) on the 315 
everolimus arm but not the nivolumab arm (OS: P=0.0671, PFS: P=0.9641). Moreover, patients in the 316 
everolimus arm with high predicted MTOR dependency had similar outcomes to those treated with nivolumab 317 
(OS: P=0.3575, PFS: P=0.5949), although nivolumab was superior to everolimus in the overall unselected 318 
population (OS: P=0.0069, PFS: P=0.0846) (Fig.5D, Supplementary Fig. S6E). Dichotomization by predicted 319 
MTOR dependency score predicted overall survival on the everolimus arm better than dichotomization using 320 
any of the other 657 PD genes (Supplementary Fig. S6F). MTOR dependency prediction was driven by multiple 321 
expression features, with the top predictive feature in DepMap (DENND2D expression) also being highly ranked 322 
in our model (rank 80/5000) (Supplementary Fig. S6G). 323 

Together, these results suggest that our approach can be used to both nominate dependencies and 324 
inform response to molecularly-targeted therapies across a wide array of tumor types. 325 

A candidate dependency landscape across rare kidney cancers   326 
Having established the tractability of our approach for nominating dependencies across diverse 327 

cancer types, we turned our attention to defining the landscape of dependencies across kidney cancers, which 328 
comprise a notoriously heterogeneous group of > 40 molecularly distinct subtypes in both adults and children 329 
(13). Many of these cancer types have been poorly characterized, are lacking in cell line models amenable to 330 
high throughput screening and represent unmet medical needs. We reasoned that dependency prediction 331 
could be used to nominate selective dependencies in several of these molecularly-defined entities, in order to 332 
better define the spectrum of dependencies across kidney cancer subtypes. 333 
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By surveying published studies, we collected RNA-Seq data of 851 tumors across 13 kidney cancer 334 
subtypes and used these data to calculate predicted dependency scores for 657 PD genes, as above (Fig.6A, 335 
Supplementary Table S4). These tumors were then clustered based on dependency profile together with 22 336 
renal cancer cell lines from the DepMap (on which dependency scores were experimentally determined). 337 
Group 1 was comprised primarily of ccRCC tumors and most RCC cell lines (which are enriched for clear-cell 338 
type (93)), as well as metabolically divergent chRCC (MD-chRCC) tumors. MD-chRCC have been previously 339 
described as a distinct, clinically aggressive subset of chRCC with a distinctive hypermethylation pattern and 340 
lacking chromosomal losses normally associated with classical chRCC (59). Interestingly, most MD-chRCC 341 
tumors demonstrate sarcomatoid differentiation, which may also be seen in a subset of ccRCC tumors 342 
(59,94).  Group 2 comprised papillary RCC (pRCC type 1 and type 2) as well as a number of diverse entities that 343 
have been historically classified as papillary type 2 RCC (95), including CpG island methylator phenotype RCC 344 
(CIMP-RCC) and fumarate hydratase (FH)-deficient RCC. Finally, Group 3 consisted of oncocytic tumors, 345 
including chRCC and eosinophilic chRCC (Fig.6B, Supplementary Fig. S6H). Thus, in total, this analysis 346 
collapsed 13 distinct subtypes of RCC into three main dependency classes.  347 

We then more carefully interrogated potentially actionable subtype-specific dependencies in kidney 348 
cancer. We performed hierarchical clustering of dependency profiles, restricting to 17 genes selective to at 349 
least one of the three dependency groups, and including an additional 46 genes with known drug targets. 350 
Clustering based on predicted dependency score recapitulated the broad structure observed on t-SNE based 351 
clustering above and lent additional insight into specific pairwise comparisons between subtypes (Fig.6C). For 352 
example, the lineage transcription factors HNF1B and PAX8 were predicted to be very strong dependencies in 353 
ccRCC, papillary type 1 and type 2, and most other RCC subtypes with the notable exception of the oncocytic 354 
tumors (chRCC, eosinophilic chRCC, oncoytoma, and MD chRCC); this is likely consistent with the former 355 
classes of tumors arising from proximal tubule kidney epithelial cells and the latter class arising from 356 
mitochondria-rich cells of the distal nephron (96). Notably, PAX8 and HNF1B vary in expression level 357 
throughout the nephron, and these gene dependencies are highly correlated to expression level (97,98). 358 
Moreover, HNF1B is essential for the development of the proximal but not distal tubule(99) (Fig.6D, 359 
Supplementary Fig. S2).  360 

We also observed differential KEAP1 and NFE2L2 dependency across RCC subtypes (Fig.6E). In 361 
particular, FH-deficient RCC and CIMP-RCC were predicted to be strongly dependent on NFE2L2, consistent 362 
with prior reports of NRF2 pathway activation in these subtypes via methylation of KEAP1 (CIMP-RCC) or 363 
succinylation of KEAP1 (FH-RCC) (100–102). Although KEAP1 loss activates NRF2, which is typically oncogenic 364 
(103), a subset of RCCs across lineages had predicted dependency scores suggestive of KEAP1 dependency. 365 
This is consistent with recent studies demonstrating that cancers may be sensitive to both oxidative stress 366 
(NFE2L2 dependency) and reductive stress (KEAP1 dependency), depending on their underlying metabolic 367 
features (47,104,105). 368 

Other dependencies appeared to reflect differing rates of genomic alterations across RCC subtypes. 369 
For example, DDX3X dependency, a paralog dependency known to be unmasked by loss of the Y-chromosome 370 
encoded paralog DDX3Y (106), was predicted to be among the strongest in pRCC-T1, a tumor type with almost 371 
universal somatic loss of the Y chromosome (LOY) (107); accordingly, DDX3X dependency was nearly identical 372 
between male and female pRCC-T1 samples, but male ccRCC samples (which typically do not show LOY) were 373 
far less dependent on DDX3X, due to paralog buffering from DDX3Y (Fig.6F). Most kidney tumors were 374 
expected to be dependent on MDM2, consistent with the low frequency of TP53 mutations in this lineage (108); 375 
however, TP53 mutant tumors were predicted to be less MDM2 dependent than their lineage-matched TP53 376 
wild-type counterparts (Supplementary Fig. S6I). 377 

Dependencies in selenium metabolism (SEPHS2, SEPSECS, GPX4), which would be predicted to 378 
induce cell death via ferroptosis, were strongest in ccRCC, consistent with prior functional studies in this 379 
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subtype (109). MD-chRCC also shared this profile, consistent with most MD-chRCCs displaying a 380 
mesenchymal signature associated with ferroptosis sensitivity (59,69). Other RCC subtypes also differed in 381 
their predicted dependency on various genes involved in apoptotic cell death (BCL2, MCL1, BCL2L1), with FH-382 
deficient RCC and CIMP-RCC predicted to be particularly dependent on BCL2L1 and  oncocytic tumors more 383 
dependent on BCL2. By contrast to ASPS, as discussed above, few RCCs showed predicted dependency on 384 
MCL1 (Fig.6G). Overall, these analyses suggest subtype differences in vulnerabilities to specific modes of cell 385 
death. 386 

Finally, we sought to nominate dependencies in renal tumors with sarcomatoid and/or rhabdoid  387 
differentiation (S/R RCCs) (Supplementary Table S4); these aggressive features are thought to represent a 388 
dedifferentiation event that can occur in renal tumors of diverse parental histologies (94). Despite being 389 
clinically aggressive, immune checkpoint inhibitors appear to be particularly effective in S/R RCC for 390 
somewhat unclear reasons and additional treatment strategies for this subset of RCC represent an unmet 391 
need (94). Using previously annotated S/R RCCs within the TCGA (94), we identified predicted dependencies 392 
that were selective to S/R RCCs. Dependencies related to PRMT5 function (MAT2A (99) and WDR77) were 393 
prominently identified as S/R RCC-selective. These likely stem from the established synthetic lethal 394 
relationship of PRMT5 and MTAP deletion (110,111); MTAP is frequently co-deleted with CDKN2A, a deletion 395 
event that is strongly enriched in S/R RCCs (23). Additional S/R RCC-selective dependencies include PPP2CA, 396 
the gene encoding protein phosphatase-PP2A. Notably, PP2A inhibitors have been clinically developed and 397 
shown durable anti-tumor activity when combined with immune checkpoint blockade (112,113). Finally, 398 
BCL2L1 dependency is also predicted to be enriched in S/R RCC. BCL2L1, which encodes the BCL-xL 399 
antiapoptotic protein, has recently been reported as a dependency of mesenchymal kidney cancers; 400 
intriguingly, S/R RCCs are known to strongly upregulate epithelial-mesenchymal transition (EMT) programs 401 
(Fig.6H) (71,94).   402 

Notably, S/R RCCs were derived from all RCC groups, with the majority being derived from group 1 403 
(comprised of ccRCCs and MD-chRCCs) (Fig.6GG, Supplementary Fig. S6J). This analysis supports the ability 404 
to recover candidate dependencies associated with the sarcomatoid differentiation state, rather than only 405 
those linked to the lineage from which S/R RCCs are derived. This also suggests that kidney cancers of various 406 
histologies may converge on a dependency profile associated with this sarcomatoid/mesenchymal state. 407 

Overall, we provide a landscape of dependencies in rare kidney cancers that could be used as a 408 
starting point to develop mechanism-inspired therapeutic strategies in these diseases. 409 

Discussion 410 
In this study, we performed genome-scale CRISPR knockout screening in three cell line models of 411 

tRCC, a rare renal tumor not previously included in large scale screening efforts. We identify the TFE3 fusion 412 
as the primary vulnerability in tRCC, consistent with recent genomic studies demonstrating that the fusion 413 
represents the dominant, and often sole, driver event in this cancer (23,25–28,44). Given the dispensability of 414 
TFE3 in normal tissues (114) and in all cancer cell lines screened to date in the DepMap, the TFE3 fusion 415 
represents an attractive and highly selective target in tRCC, albeit challenging from the standpoint of 416 
druggability.  417 

Our study also reveals additional selective vulnerabilities in tRCC, most notably multiple genes 418 
involved in mitochondrial metabolism and oxidative phosphorylation, including components of the citric acid 419 
(TCA) cycle, mitochondrial transcription and translation, and the electron transport chain. These unbiased 420 
screens dovetail remarkably with our recent study demonstrating that TFE3 fusions metabolically rewire 421 
tRCCs towards oxidative phosphorylation (OXPHOS) via transcriptional activation of multiple genes involved 422 
in oxidative metabolism and mitochondrial biogenesis (47).  They are also consistent with the role of wild type 423 
TFE proteins as critical regulators of energy metabolism (115–117). Individual genes within these or related 424 
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pathways may represent more tractable therapeutic targets than the fusion itself and may represent inroads 425 
to modulate critical downstream pathways driven by TFE3.  426 

However, our tRCC screens also highlight a critical limitation of unbiased functional genomics in rare 427 
cancers - namely, the number and availability of suitable models. Over fifteen different TFE3 fusion partners 428 
have been reported (23), but only two distinct fusions were represented in the three cell lines screened in this 429 
study. For example, we found the tRCC cell line UOK146, which harbors the relatively common PRCC-TFE3 430 
fusion (23), to be not technically amenable to genome-scale CRISPR knockout screening. Additionally, while 431 
ASPS is also driven by a TFE3-fusion, available ASPS cell lines are slow growing and challenging to culture at 432 
the scale required for genome-scale screening. Many other rare adult and pediatric malignancies that would 433 
benefit from targeted therapeutics have not been included in unbiased functional screening efforts due to their 434 
rarity or due to existing models being unamenable to screening. 435 

We attempted to bridge this gap by pursuing the alternative approach of predicting a tumor’s 436 
dependency landscape via its transcriptional profile. Recent studies have reported approaches to predict a 437 
tumor’s dependency profile by virtue of its transcriptional and/or genomic features (54,56,118). While each of 438 
these models differs somewhat in approach, all are complementary and formal benchmarking would be 439 
required to hone the most accurate method for predicting tumor vulnerabilities. Our approach utilizes 440 
predictive expression features that can be readily obtained by clinical transcriptome sequencing of tumor 441 
tissue and we suggest that this or a similar approach can be broadly useful to guide treatment selection in rare 442 
cancers, for which there is often no evidence-based standard of care. This approach may also be developed 443 
to therapies that have a clearly defined molecular target (e.g. everolimus) but no robust biomarker in clinical 444 
use.  445 

We predict and validate dependencies across a host of rare cancer types not well-represented in the 446 
TCGA and validate several key examples. Via this approach we identified differential dependencies between 447 
tRCC and ASPS despite both cancers sharing the same driver fusion, with ASPS cells being selectively sensitive 448 
to MCL1 inhibition. Notably, multiple MCL1 inhibitors have advanced clinically; although cardiac toxicity has 449 
proven a challenge to earlier agents, newer MCL1 inhibitors appear not to have this liability (119,120). Our 450 
study suggests that CDK4/6 inhibitors, EGLN1 inhibitors (47), and MDM2 inhibitors represent additional 451 
classes of agents with clinically advanced molecules that could be tested for activity in tRCC or ASPS.  452 

Finally, by applying dependency prediction to a spectrum of kidney cancers, we suggest that kidney 453 
cancer subtypes have notably distinct dependency landscapes. Remarkably, although there are several dozen 454 
histologic types of kidney cancer, many with multiple expression subtypes (13), we find that kidney cancers 455 
collapse into three main groups in dependency space. Intriguingly, S/R RCCs (which can be derived from 456 
various RCC subtypes) span multiple dependency clusters and share a small set of unique dependencies. 457 
Most discovery biology in kidney cancer has to date has focused on ccRCC: while this has resulted in marked 458 
improvements in the treatment of ccRCC over the last decade, these therapies are typically less effective in 459 
non-ccRCCs (121), which may be driven by distinct biology. Dependencies related to energy metabolism 460 
encapsulate this notion: while deficiency in TCA cycle enzymes such as FH and SDHA/B drives tumorigenesis 461 
in glycolytic renal cancers (e.g. FH-RCC and ccRCC), these same genes represent dependencies in high 462 
OXPHOS renal cancers such as tRCC (47). We nominate several potentially actionable dependencies, 463 
including BCL-xL (BCL2L1), DDX3X, MAT2A and NFE2L2 that may represent novel therapeutic targets in 464 
subsets of kidney cancer.  465 

Overall, we suggest that our combined approach of functional screening and dependency prediction 466 
may catalyze precision oncology in many settings, particularly for rare cancers and in many pediatric cancers, 467 
where experimental models may be limited, or where discovery biology efforts are resource-limited by small 468 
commercial markets and modest industry investment.  469 
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Main Figures and Captions 911 
Fig.1 | Genome-scale genetic screening reveals selective essentialities of tRCC cells 912 

 913 

 914 

(A) Workflow for CRISPR screens and analysis to identify tRCC-selective genetic dependencies. 915 

(B-C) Landscape of tRCC-selective dependencies. Mean Chronos score for each gene across the 3 tRCC cell 916 
lines screened in this study is plotted against the Z-scored Chronos score for that gene (Z-score calculated 917 
relative to DepMap ccRCC cell lines in B and relative to all DepMap cell lines in C). Non-essential-genes are 918 
colored in purple while common essential genes are colored in black (42). tRCC-selective dependencies 919 
(defined as Z-score < -2; absolute Chronos score < -0.75) are colored in red.  920 

(D) Log-fold change for individual sgRNAs targeting either TFE3 (E, F, G, H) or fusion partner (A, B, C, D) in tRCC 921 
CRISPR screens. The exons targeted by each sgRNA are indicated in the schematics. For each cell line, the top 922 
schematic represents the exons coding for the oncogenic fusion while the bottom schematic represents the 923 
N-terminal exons of TFE3 not included in the oncogenic fusion. Density plot shows the distribution for LFC of 924 
all sgRNAs assessed in the CRISPR screen in each cell line while vertical lines represent log-fold change for 925 
individual sgRNAs. Note: Figure shows the ASPSCR1-TFE3 fusion in s-TFE cells; the ASPSCR1-TFE3 fusion in 926 
FU-UR-1 cells retains exon 5 of TFE3 exon 5. 927 

(E) Competitive growth assay to assess the effects of TFE3 knockout in two ccRCC lines (786-O, Caki-1) and 928 
three tRCC lines (UOK109, FU-UR-1, s-TFE). Cells expressing Cas9/sgRNA and GFP were mixed in a 1:1 ratio 929 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2024. ; https://doi.org/10.1101/2024.10.24.620074doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.24.620074
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

with parental cells and proportion relative to sgControl cells was calculated at each time point via flow 930 
cytometry. Shown as mean +/- s.d., n=2 biological replicates per condition. P-values were calculated by 931 
Welch’s (two-tailed unpaired) t-test as compared with sgControl samples at the final time point. *P < 0.05, **P 932 
< 0.01, ***P < 0.001, ****P < 0.0001. 933 
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Fig.2 | Validation of selective tRCC dependencies 935 

 936 

 937 

(A) Pathway enrichment (Enrichr) on gene dependencies shared across all three tRCC cell lines (defined as 938 
genes with ΔChronos ≤ -0.5 between every tRCC cell line and DepMap ccRCC mean). 939 

(B) Heat map of tRCC-selective dependencies (defined as genes with ΔChronos ≤ -0.5 between every tRCC 940 
cell line and DepMap ccRCC mean), for selected pathways (remaining genes/pathways shown in 941 
Supplementary Fig. S1B). Chronos scores for individual tRCC cell lines, DepMap RCC cell lines, and average 942 
Chronos score for each of 28 lineages screened in DepMap are shown. The top two rows indicate mean 943 
Chronos scores for essential and non-essential genes in each column, shown for reference.  944 
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(C) Schematic depicting tRCC-selective dependencies that fall within pathways related to mitochondrial 945 
metabolism.  946 

(D) Protein-protein interaction network amongst interacting tRCC-selective gene dependencies (genes with 947 
ΔChronos ≤ -0.5 between every tRCC cell line and DepMap ccRCC mean) involved in mtDNA expression, 948 
OXPHOS, and mevalonate synthesis (STRINGdb). 949 

(E) Distribution of Chronos scores for indicated genes (POLRMT, MRPL48, ISCA1, SDHA, TFE3, ASPSCR1) 950 
across all DepMap cell lines (gray) and tRCC cell lines screened in this study (red). 951 

(F) Relative confluence of non-RCC cells (PC3, H460), and tRCC cells (UOK109, UOK146, FU-UR-1, s-TFE) after 952 
infection with lentivirus expressing Cas9 and either non-targeting control sgRNA, ISCA1 sgRNAs, or SDHA 953 
sgRNAs. Confluence was normalized to day 1, shown as mean +/- s.d., n=6 biological replicates per condition. 954 
P-values were calculated by Welch’s (two-tailed unpaired) t test as compared with sgControl samples for the 955 
last assay day. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 956 
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Fig.3 | A machine-learning model uncovers additional strong dependencies in tRCC subsets 958 

 959 

 960 

(A) Schematic of machine learning approach used to nominate candidate vulnerabilities in cell lines or tumors 961 
based on RNA-Seq profile. 962 

(B) Correlation between observed Chronos score from CRISPR screen performed in this study and Chronos 963 
score predicted by our model, for 645 dependencies across three tRCC cell lines (FU-UR-1, S-TFE, UOK109; 964 
Note: discrepancy in number of genes predicted (N=657) and plotted (N=645) due to imperfect overlap in genes 965 
screened between Avana [DepMap] and Brunello libraries [tRCC screen]). P-values calculated from Pearson’s 966 
correlation test. 967 

(C) tRCC-selective dependencies based on predicted Chronos scores across four tRCC cell lines, including 968 
one line (UOK146) that was not assessed by genome-scale CRISPR screening. In each cell line, predicted 969 
Chronos scores in the tRCC cell line are plotted against mean Chronos score across all DepMap cell lines (as 970 
experimentally determined by genome-scale CRISPR screening). Red: ΔChronos ≤ -0.2; blue: ΔChronos ≥ 0.2 971 
between predicted and DepMap mean. 972 

(D) tRCC-selective dependencies based on mean predicted Chronos scores for 657 genes across tRCC 973 
tumors in three independent cohorts, as compared with mean Chronos score across all DepMap cell lines 974 
(red: ΔChronos ≤ -0.2; blue: ΔChronos ≥ 0.2 between mean predicted and DepMap mean Chronos scores). 975 
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(E) Relative viability of tRCC cells (UOK109, UOK146, FU-UR-1, s-TFE) after CRISPR/Cas9 knockout of MDM2. 976 
Viability is normalized to control sgRNA, shown as mean +/- s.d., n=6 biological replicates per condition. P-977 
values were calculated by Welch’s (two-tailed unpaired) t test as compared with sgControl samples. *P < 0.05, 978 
**P < 0.01, ***P < 0.001, ****P < 0.0001. 979 

(F) Viability of tRCC cell lines treated with indicated concentrations of milademetan (MDM2 inhibitor) and 980 
assayed for cell viability after 3 days with CellTiter-Glo. Viability at each concentration is relative to vehicle-981 
treated cells, shown as mean +/- s.d., n=6 biological replicates. 982 
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Fig.4 | Predicting and validating dependencies in ASPS  984 

 985 

 986 
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(A-C) Selective dependencies in ASPS cell lines(ASPS-1 (A), ASPS-KY (B)) or ASPS tumors ((C), profiled by 987 
RNA-Seq in a prior study (67)) based on their (mean) predicted Chronos scores as compared with mean 988 
Chronos score across all DepMap cell lines (top panels) or tRCC cell lines/TCGA tRCC tumors that were 989 
screened/predicted in this study (bottom panels). Red: ΔChronos ≤ -0.2; blue: ΔChronos ≥ 0.2 between 990 
(mean) predicted Chronos score and DepMap mean (top) or tRCC cell line/TCGA tRCC tumor mean (bottom). 991 

(D) Proliferation of ASPS cell lines transduced with one of 3 distinct sgRNAs targeting MCL1 or a non-targeting 992 
sgRNA control. Shown as mean +/- s.d., n = 6 biological replicates per condition. P-values were calculated by 993 
Welch’s t-test (two-tailed unpaired) as compared with sgControl samples. *P < 0.05, **P < 0.01, ***P < 994 
0.001, ****P < 0.0001. 995 

(E) Viability of ASPS-1 and ASPS-KY and non-ASPS (versus tRCC) cell lines treated with indicated 996 
concentrations of murizatoclax (MCL1 inhibitor) and assayed for cell viability after 3 days with CellTiter-Glo. 997 
Viability at each concentration is relative to vehicle-treated cells, shown as mean +/- s.d., n=3 replicates. 998 

(F) Relative feature importance (ranked across top 5000 features) for RNA predictors of MCL1 Chronos score. 999 
Each point represents an individual feature (see Methods). 1000 

(G) MCL1 Chronos score is plotted against BCL2L1 mRNA expression (log2(TPM+1)) across all DepMap cell 1001 
lines. 1002 

(H) BCL2L1 mRNA expression (log2(TPM+1)) in ASPS tumors, tRCC tumors, and kidney-adjacent normal 1003 
tissue from Wang et al. (67) (left) as well as ASPS cell lines (ASPS-1, ASPS-KY) and tRCC cell lines (FU-UR-1, 1004 
s-TFE, UOK109, UOK146) (right) profiled by RNA-seq are shown. P-values computed by Welch’s (two-tailed 1005 
unpaired) t-test. 1006 
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Fig.5 | A landscape of candidate dependencies across TCGA 1008 

 1009 
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(A) Predicted Chronos scores for SOX10, CTNNB1, CDK4 and GPX4 across tumor types profiled in TCGA; 1011 
tumors grouped by TCGA lineage. 1012 
(B) Relative feature importance (ranked across top 5000 features) for RNA predictors of SOX10, CTNNB1, 1013 
CDK4 and GPX4 Chronos scores. Each point represents an individual feature (see Methods). 1014 
(C) t-SNE projection based on dependency score for cell lines experimentally screened in the DepMap 1015 
(N=833, circle) or cell lines for which dependencies for 657 PD genes were predicted by our model (N=251 1016 
cell lines, cross). Cell lines are colored based on annotated lineage, with 13 common lineages plotted 1017 
(lineages with ≥10 predicted cell lines; hematological lineages and fibroblasts removed). Selected cell lines 1018 
whose dependency predictions diverge from the parental lineage are highlighted.  1019 
(D) Overall survival (OS) for ccRCC patients on clinical trial of nivolumab vs. everolimus (CM-025). From left 1020 
to right: nivolumab vs. everolimus in the overall population; nivolumab vs. everolimus-treated patients with 1021 
high predicted MTOR dependency; nivolumab vs. everolimus-treated patients with low predicted MTOR 1022 
dependency; everolimus-treated patients with high vs. low predicted MTOR dependency. P-values 1023 
calculated by log-rank test. 1024 
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Fig.6 | A landscape of candidate dependencies across rare kidney cancers 1026 
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(A) RNA-Seq data from 851 renal tumor-derived samples was curated from across 4 published datasets 1029 
(59,122–124), representing 13 distinct types of kidney cancer. The number of samples for each kidney cancer 1030 
subtype is shown. 1031 

(B) t-SNE projection based on dependency score for kidney tumors with dependencies predicted by our model 1032 
(N=851, cross) and kidney cancer cell lines experimentally screened in the DepMap (N=22), across 657 PD 1033 
genes. Tumors are colored based on annotated subtype and three groups are outlined. 1034 

(C) Heatmap of predicted Chronos score (Z-scored to DepMap pan-cancer value for screened cell lines) for 1035 
63 curated dependencies, including those selective in one or more subtypes of kidney cancer (relative to 1036 
pan-cancer) or additional actionable dependencies with small molecule inhibitors. Individual kidney tumor 1037 
subtypes are as in Fig.6A-B. Hierarchical clustering is based on genes shown in the heatmap. 1038 

(D) Scatter plot of predicted HNF1B Chronos score versus predicted PAX8 Chronos score for individual 1039 
kidney tumors (N=851), colored by subtype as indicated in Fig.6B. DepMap mean Chronos score for each of 1040 
these genes across experimentally screened cell lines is indicated by dotted lines. 1041 

(E) Box plot of predicted KEAP1 (top) and NFE2L2 (bottom) Chronos score for individual kidney tumors 1042 
(N=851), grouped by subtype indicated in Fig.6A-B. Mean Chronos score in DepMap (experimentally derived) 1043 
for these genes are indicated by dotted lines. All box plots are shown with median, upper and lower quartile 1044 
lines, and extend to [Q1-1.5xIQR, Q3+1.5xIQR]. 1045 

(F) Box plot of predicted DDX3X Chronos score across ccRCC, pRCC-T1, and pRCC-T2 tumors in TCGA 1046 
stratified by annotated sex and loss of chrY (LOY) status (107). Experimentally derived mean Chronos score 1047 
for DDX3X in DepMap is indicated as a dotted line. 1048 

(G) Box plot of predicted GPX4, BCL2, BCL2L1, and MCL1 Chronos score (Z-scored to DepMap pan-cancer) 1049 
for individual kidney tumors (N=851), grouped by subtype indicated in Fig.6A. DepMap mean (Z=0) is 1050 
indicated as a dotted line. Predictions for ASPS, which was experimentally confirmed to be MCL1 dependent 1051 
(Fig.4) are also shown as reference.  1052 

(H) Predicted dependency scores for S/R RCCs vs. non-S/R RCCs in TCGA (94). Difference in mean predicted 1053 
Chronos score between S/R RCCs and non-S/R RCCs is plotted against the difference in mean Chronos 1054 
score between S/R RCCs (predicted) and the DepMap pan-cancer mean. Points are colored based on the 1055 
comparison between S/R RCCs and non-S/R RCCs (blue: ΔChronos ≤ -0.2, P < 0.05; red: ΔChronos ≥ 0.2, P < 1056 
0.05 from Welch’s two-tailed unpaired t-test).  1057 
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Methods 1058 

Cell lines 1059 
H460 (ATCC® HTB-177; RRID:CVCL_0459), PC3 (ATCC® CRL-1435, RRID:CVCL_0035), 786-O (ATCC® CRL-1060 
1932™;   RRID:CVCL_1051), 293T (ATCC® CRL-11268™; RRID:CVCL_0063), Caki-1 (ATCC® HTB-46™;  1061 
RRID:CVCL_0234), UOK109 (Dr. W. Marston Linehan’s laboratory, National Cancer Institute; 1062 
RRID:CVCL_B087), UOK146 (Dr. W. Marston Linehan’s laboratory, National Cancer Institute, 1063 
RRID:CVCL_B123), s-TFE (RIKEN, #RCB4699, RRID:CVCL_R854), ASPS-1 (Dr. Robert H Shoemaker’s 1064 
laboratory, National Cancer Institute; RRID:CVCL_S738), and ASPS-KY (RIKEN, #RCB5683, RRID:CVCL_S737) 1065 
cell lines were cultured at 37°C in DMEM with 10% FBS, 100 U/mL penicillin, and 100 μg/mL Normocin 1066 
(#NC9390718). The FU-UR-1 (Dr. Masako Ishiguro’s laboratory, Fukuoka University School of Medicine, 1067 
RRID:CVCL_6997) cell line was cultured at 37°C in DMEM/F12 (1:1) with 10% FBS, 100 U/mL penicillin, and 100 1068 
μg/mL Normocin. 1069 

Genome-scale CRISPR knockout screens 1070 
For the UOK109, FU-UR-1, and s-TFE cell lines, Cas9-expressing cells were constructed as follows: each 1071 
parental cell line was seeded in 12-well plates (2.5 × 10^5 cells/well) and incubated at 37°C overnight. The 1072 
following day, the medium was replaced, and cells were incubated with lentivirus corresponding to the 1073 
pLX_311-Cas9 plasmid (RRID:Addgene_96924), which encodes the Cas9 protein, and 0.8 μg/mL polybrene. 1074 
After overnight incubation at 37°C, the cells were trypsinized the following day and cultured in selective media 1075 
containing 5 μg/mL blasticidin. After selection, Cas9 expression and activity were confirmed in each 1076 
transduced cell line via western blotting and a Cas9-activity assay as described in a previous reference (125). 1077 

The Broad Institute Brunello sgRNA library (77,441 sgRNAs targeting 19,114 genes with 1,000 non-targeting 1078 
control sgRNAs) was applied for the CRISPR Screen (126,127). UOK109, FU-UR-1, and s-TFE cells were seeded 1079 
into 12-well plates at a density of 1.5/1.25/1.5 x 10^6 cells/well, with 1.2 µg/mL polybrene and virus titrated at 1080 
MOI <0.3 and spun at 1000 xg for 2 hours at 33°C. After spinfection, 1 mL medium was added to each well and 1081 
incubated at 37°C overnight. The following day, all cells were trypsinized and expanded into 15 cm plates at 4 1082 
x 10^6 cells/plate with 4/5/5 µg/mL puromycin for a week. Medium with puromycin was replaced every 3 days. 1083 
After puromycin selection, cells were seeded at 3 x 10^6 cells/plate and replated every 7 days in 15 cm plates 1084 
for 21 days. At 28 days post-infection, cells were collected and stored at -20°C before genomic DNA was 1085 
collected. 1086 

Genomic DNA was collected with Takara NucleoSpin Blood Kits (Macherey-Nagel), following the 1087 
manufacturer’s protocol. Before sequencing, genomic DNA samples were amplified by PCR. 1088 

Lentiviral production 1089 
All sgRNAs were cloned into plentiCRISPRv2 (RRID:Addgene_52961, puromycin resistance) as described 1090 
(128,129). Sequence of primers for sgRNA cloning are listed in Supplementary Table S2. All the constructs 1091 
were confirmed by Sanger sequencing. 1092 

Lentivirus was prepared by transfecting 293T cells with three plasmids: plentiCRISPRv2 1093 
(RRID:Addgene_86153), psPAX2 (RRID:Addgene_12260), and pMD2.G (RRID:Addgene_12259) using 1094 
polyethylenimine (PEI). Media was replaced with standard growth media after 12 hours, and supernatant 1095 
containing the virus was collected 48 hours post-transfection. 1096 

Validation of genome-scale CRISPR-Cas9 screens and dependency predictions 1097 

PC3, H460, Caki-1, 786-O, UOK109, UOK146, FU-UR-1, s-TFE, and ASPS-1 cell lines were transduced with 1098 
lentivirus expressing CRISPR-Cas9 and sgRNA targeting the gene of interest, selected by puromycin, and then 1099 
seeded in 96-well plates for confluence and proliferation assays with cell densities of 400-2,000 cells/well 1100 
depending on the cell line. On days 7-28, depending on the cell line, cell growth medium was removed from 1101 
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the plates and the Cell Titer Glo reagent (Promega, #G7571) was added following the user’s instructions. Plates 1102 
were then shaken at room temperature for 10 minutes. Luminescence was measured on a SpectraMax plate 1103 
reader. For cell confluence assays, cell confluence on each plate was determined using a Celigo Imaging 1104 
Cytometer daily. 1105 

For drug assays, cells were incubated with milademetan (MCE: #HY-101266) or murizatoclax (MCE: #HY-1106 
109184) for 3 days as indicated. Cell Titer Glo assay was measured using a SpectraMax plate reader.  1107 

Competition assay 1108 
Caki-1, 786-O, UOK109, FU-UR-1, and s-TFE were transduced with lentivirus expressing GFP, CRISPR-Cas9, 1109 
and sgRNA (either control sgRNA (098) or sgRNA against TFE3). After 3 days, the GFP-positive rate was 1110 
measured by a Fortessa flow cytometer to ensure it was higher than 90%. Seven days after viral infection, viral-1111 
infected cells were mixed with non-infected parental cells in a 1:1 ratio. Mixed cells were plated in 6-well 1112 
plates. On days 3-24, cells were trypsinized and resuspended in 4% FACS buffer (FBS/PBS), and the GFP-1113 
positive rate was measured by a Fortessa flow cytometer. All flow cytometry data were analyzed with FlowJo 1114 
(RRID:SCR_008520). GFP positive percentage in each condition at each time point was first normalized to 1115 
value in that condition at d0, and then normalized to sgControl. 1116 

Colony Formation Assays 1117 
PC3, H460, Caki-1, 786-O, UOK109, UOK146, FU-UR-1, s-TFE, and ASPS-1 cell lines were transduced with 1118 
lentivirus expressing CRISPR-Cas9 and sgRNA targeting the gene of interest, selected by puromycin, and then 1119 
seeded in 12-well plates at various cell densities of 500-6,000 cells/well depending on the cell line. Media was 1120 
replaced every 7 days. After 10-28 days, medium was aspirated, and cells were fixed and stained with 0.5% 1121 
crystal violet in 25% (volume) methanol solution for about 15 minutes. Stained cells were washed with water 1122 
and air-dried. Plates were scanned with an Epson scanner and quantified using ImageJ (RRID:SCR_003070). 1123 

Chronos Score Calculation 1124 
Log2(fold-changes) in sgRNA abundance on day 28 of the screen were calculated using MAGeCK (130), using 1125 
plasmid DNA as a reference. Exome sequencing data was aligned to hg38 using bwa mem (131), and copy-1126 
number was calculated using PureCN (132), as previously described (44). Chronos was used to normalize 1127 
log2(fold-changes) in sgRNAs with segmental copy-number correction (31). ccRCC cell lines were defined 1128 
based on Cellosaurus NCIt disease type and included: OSRC2, CAKI2, SLR23, KMRC20, UOK101, SLR24, 1129 
KMRC3, CAKI1, TUHR10TKB, SLR26, KMRC1, KMRC2 (RRID:CVCL_2984), SNU349, UMRC3, and RCCFG2. 1130 

Support Vector Regression Model  1131 
Model development and evaluation 1132 

The DepMap (RRID:SCR_017655) 23Q2 expression matrix (converted to log2(TPM+1), https://depmap.org) and 1133 
23Q2 CRISPR-KO dependency score matrix (Chronos-normalized, https://depmap.org) were downloaded and 1134 
subset to shared cell lines. We split these data into 5 equal subsets for 5-fold cross-validation (four training 1135 
folds and evaluation on a validation fold). Expression was Z-scored for each gene. For each gene, a new model 1136 
was trained to predict its dependency score.  1137 

To reduce dimensionality, we first calculated the Pearson correlation coefficient between each feature (i.e. Z-1138 
scored gene expression) and the dependency score of the gene being analyzed in the training data. The top 1139 
predictive features for each gene (ranked by absolute value of Pearson correlation coefficient, 5000 in final 1140 
model [a number that we varied to maximize performance], see Supplementary Fig. S3B) were determined. 1141 

For each gene, we subset the training data to these top features and trained a support vector regression model 1142 
(sklearn.svm.SVR, RBF kernel) to predict dependency scores. We tested a variety of other models from sklearn 1143 
including SVR with a linear kernel, ridge regression, lasso regression, elastic net, and k-nearest neighbors 1144 
regression (Supplementary Fig. S3B). Performance on the validation fold was assessed by Pearson 1145 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2024. ; https://doi.org/10.1101/2024.10.24.620074doi: bioRxiv preprint 

https://depmap.org/
https://depmap.org/
https://doi.org/10.1101/2024.10.24.620074
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

correlation between predicted and observed (i.e. experimentally determined) Chronos scores for each gene 1146 
across all cell lines in the validation fold. We repeated this process four more times (changing the validation 1147 
fold) during cross-validation. Performance metrics were averaged between these five models for each gene. 1148 
SVR with an RBF kernel had the best performance across all models tested with 657 genes being highly 1149 
predictable (defined as R ≥ 0.4 between predicted and observed Chronos scores) (Supplementary Fig. S3b). 1150 
The average Pearson correlation coefficient for predicted vs. observed Chronos score was R=0.16 across 1151 
16845 genes. The correlation between predicted and observed Chronos score across all gene-cancer cell line 1152 
pairs in the test data was R = 0.92. Specifics and code for the developed pipeline as well as scripts for 1153 
interactive visualization of predicted dependencies in this manuscript are available in Github: 1154 
https://github.com/SViswanathanLab/TrPLet. 1155 

Model deployment 1156 

The models for each gene were retrained on the entire DepMap dataset prior to testing on external datasets. 1157 
To calculate approximate coefficients from the model, we used a kernel trick taking the linear combination of 1158 
support vector weighted by dual coefficients from RBF kernel. Broadly, our model was applied to three types 1159 
of data: (1) TCGA tumor RNA-seq, (2) non-TCGA tumor RNA-seq, (3) cell line RNA-seq. (1) For TCGA tumor RNA-1160 
seq, we Z-scored the expression of each gene (log2(TPM+1)) within TCGA and predicted on the resulting 1161 
normalized expression data. Clustering (two-component t-SNE) based on dependency scores (predicted: 1162 
TCGA, experimentally-derived via CRISPR screen: DepMap) using this approach resulted in TCGA tumors 1163 
clustering with screened cell lines from DepMap of the same lineage (see Supplementary Fig. S6A). (2) For 1164 
non-TCGA tumor RNA-seq, we downloaded RNA-seq fastq files or count matrices when present, from the 1165 
Gene Expression Omnibus (GEO; RRID:SCR_005012). Reads were aligned to GENCODE (RRID:SCR_014966) 1166 
v38 transcript reference using STAR/RSEM (133,134). The resulting count matrices were inner joined with the 1167 
TCGA count matrix (135) (https://osf.io/gqrz9/files/osfstorage), and batch corrected using ComBat-seq (136) 1168 
using lineage as a covariate (for this purpose, tRCCs, Wilms’ tumors, CDC, and RMC were classified as "KIRP”; 1169 
ASPS, PEComa, and EHE were classified as “SARC”; ccRCC was classified as “KIRC”). The counts were then 1170 
normalized to gene-level transcripts per kilobase million (TPM), converted to log2(TPM+1), and each gene’s 1171 
expression was then Z-scored (across the combined matrix consisting of the external dataset and TCGA). The 1172 
resulting Z-scored expression in the external dataset was then used for prediction, as described above. (3) For 1173 
cell line RNA-seq, a gene-level normalized expression matrix (log2(TPM+1)) was either downloaded or 1174 
generated from STAR/RSEM. The expression of each gene in the resulting matrix was scaled (Z-scored) using 1175 
the mean/standard deviation calculated when scaling the DepMap expression matrix. The resulting Z-scored 1176 
expression values were used for prediction. Batch correction was forgone in this use-case based on tSNE 1177 
clustering of tRCC cell lines with kidney cell lines in DepMap, and ASPS cell lines with soft tissue and CNS cell 1178 
lines in DepMap based on expression profile (Supplementary Fig. S6K). 1179 

Survival Analysis 1180 
Count matrices from CM-025 (137)  were used to predict MTOR dependency in ccRCC samples. Outcomes 1181 
(overall survival, progression-free survival) between groups were compared using lifelines (138). Blinding, 1182 
randomization not relevant to this study because analysis of these data was retrospective. Analyses were not 1183 
stratified by sex as a biological variable. 1184 

 1185 

 1186 
  1187 
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