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Abstract: Highly porous Au–Pt urchin-like bimetallic nanocrystals have been prepared by a one-pot
wet-chemical synthesis method. The porosity of urchin-like bimetallic nanocrystals was controlled by
amounts of hydrazine used as reductant. The prepared highly porous Au-Pt urchin-like nanocrystals
were superior catalysts of electrochemical methanol oxidation due to high porosity and surface active
sites by their unique morphology. This approach will pave the way for the design of bimetallic
porous materials with unprecedented functions.
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1. Introduction

The Noble metals are active and stable materials that can be applied to various electro-
catalysis [1–5]. Recently, noble metal-based nanocrystals (NCs) have been widely studied
owing to their unique physical and chemical properties, which are different from those
of their parent metals in bulk [6–9]. In particular, Pt-based NCs have been extensively
investigated as a potential candidate material for various electrochemical reactions includ-
ing electrochemical fuel oxidation, oxygen reduction, sensing, and hydrogen evolution
by water splitting [10–14]. Meanwhile, given Au is catalytically more inert than other
metals, bimetallic materials prepared by integrating Au into active metals exhibit excel-
lent catalytic performances in various electrochemical reactions [15,16]. In this context,
recently developed Au–Pt bimetallic NCs show distinct catalytic effects compared with
single Pt and Au NCs, which has aroused fundamental interest for enhanced functionalities
and catalysis applications [17–19]. In particular, Au–Pt bimetallic NCs exhibit enhanced
electrocatalytic performance in fuel oxidation reactions in polymer electrolyte membrane
fuel cells (PEMFC) because surface Au atoms can suppress the formation of carbonaceous
molecules, which can be strongly adsorbed on the surface of NCs [16,20–22]. To fully
exploit the advantages of bimetallic NCs for electrocatalysis, highly porous structures are
promising candidates due to their high-surface area-to-volume ratios [23–27]. Therefore,
the development of a facile strategy for the synthesis of highly porous Au–Pt bimetallic
NCs is significant for achieving enhanced electrocatalytic performance. Nevertheless, the
strategy for preparing Au–Pt bimetallic NCs with controlled shapes is still challenging.

Herein, we report a simple strategy for the synthesis of highly porous, urchin-like
bimetallic Au–Pt NCs (Au–Pt HP-UNCs) by manipulating the reduction kinetics of Au and
Pt precursors by controlling the amount of hydrazine used as reductant. Hydrazine has
shown stronger reducing capability than convectional reductants such as ascorbic acid and
citric acid, which are widely used for the synthesis of noble metal NCs. Due to the high
reducing power of hydrazine, both Au and Pt precursors can be expected to grow rapidly,
thereby enabling the formation of bimetallic Au–Pt HP-UNCs. Metallic, porous, urchin-like
nanostructures can provide not only large surface area but also numerous surface active
sites, which are significant for electrochemical applications. Unique properties of the pre-
pared bimetallic Au–Pt HP-UNCs provide them with enhanced activity toward methanol
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oxidation reaction (MOR). Additionally, incorporating Au in Pt materials increases the
electrochemical stability compared with commercial Pt/C, which reveals the promising
potential of the bimetallic Au–Pt HP-UNCs as catalysts in direct methanol fuel cell systems.

2. Materials and Methods
2.1. Chemicals

Tetrachloroauric(III) acid trihydrate (HAuCl4, 99.9%), potassium tetrachloroplati-
nate(II) (K2PtCl4, 99.0%), cetyltrimethylammonium chloride solution (CTAC, solution in
water, 25 wt%), hydrazine monohydrate (64.0–65.0%), KOH (≥85%), methanol (≥99.8%),
and Nafion resin solution (5 wt%) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Pt/C (40 wt%, average Pt particle size = 3 nm) was purchased from Alfa Aesar
(Haverhill, MA, USA). Deionized water (18.2 MΩ cm) was employed to prepare the reaction
solutions.

2.2. Synthesis of Au–Pt HP-UNCs

In a typical synthesis of Au–Pt HP-UNCs, 1.0 mL of HAuCl4 (5 mM) and 1.0 mL of
K2PtCl4 (5 mM) were added into 5 mL of CTAC (50 mM), and then 50 µL of hydrazine
(200 mM) was added into the mixture and sonicated for ~1 min. The resulting mixture was
kept at 100 ◦C for 1 h in a conventional oven. Subsequently, the products were collected by
centrifugation and washed two times with ethanol.

2.3. Synthesis of Rounded Au–Pt UNCs

In a typical synthesis of rounded Au–Pt UNCs, 1.0 mL of HAuCl4 (5 mM) and 1.0 mL
of K2PtCl4 (5 mM) were added into 5 mL of CTAC (50 mM), followed by addition of 2.0 mL
of hydrazine (200 mM). The resulting mixture was sonicated for ~1 min and then kept
at 100 ◦C for 1 h in a conventional oven. Subsequently, the products were collected by
centrifugation and washed two times with ethanol.

2.4. Electrocatalysis

Electrochemical measurements were conducted in a three-electrode cell using a Bio-
Logic EC-Lab SP-300 (Bio-Logic SAS, Claix, France). Pt wire and Hg/HgO (1 M NaOH)
were used as the counter and reference electrodes (ALS Co., Tokyo, Japan), respectively. All
electrochemical data were obtained at room temperature. To prepare the working electrode,
10 mL of catalyst ink containing 1 mg of Pt according to inductively coupled plasma-
optical emission spectrometry (ICP-OES) was dropped onto a glassy carbon electrode
(GCE, diameter: 5 mm) and then dried at room temperature. The dried GCE was cleaned
electrochemically by 50 potential cycles between −0.857 and 0.393 V vs. Hg/HgO at a scan
rate of 50 mV s−1 in 0.1 M KOH. Electrolyte solutions were purged with N2 gas for 30 min
before performing electrochemical experiments. CVs of all the catalysts were obtained
between −0.857 and 0.393 V vs. Ag/AgCl at a scan rate of 50 mV s−1 in 0.1 M KOH or
0.1 M KOH/0.5 M methanol.

2.5. Characterization

Transmission electron microscopy (TEM) and scanning electron microscopy (SEM)
images of the prepared catalysts were obtained using JEOL JEM-2100F, and JEOL JEM-
7610F microscopes (JEOL Ltd., Tokyo, Japan), respectively. ICP-OES measurements were
performed using a Spectroblue-ICP-OES (AMETEK Inc., Berwyn, PA, USA). X-ray diffrac-
tion (XRD) measurements were conducted on a Rigaku D/MAX2500 V/PC diffractometer
(Rigaku, Tokyo, Japan).

3. Results and Discussions

The synthetic procedures for Au–Pt HP-UNCs are shown in Figure 1. Au–Pt HP-UNCs
were produced by reducing Au and Pt precursors in a reaction mixture including hydrazine
and CTAC as reductant, and surfactant, respectively.
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Figure 1. Schematic illustration for Au–Pt HP-UNCs and rounded Au–Pt UNCs.

Typically, a HAuCl4/K2PtCl4 mixture in a molar ratio of 1:1, CTAC, and hydrazine
were added into deionized water, and the reaction mixture was heated at 100 ◦C for 1 h.
Figure 2a,b display typical scanning electron microscopy (SEM), and transmission electron
microscopy (TEM) images of the products, respectively, in which highly porous UNCs with
average branch thickness of 6.2 ± 0.9 nm and average diameter size of 37.4 ± 5.5 nm can
be observed as major products. Figure 3a,b show the high porosity of the UNCs from con-
siderably porous dendritic branches and the fast Fourier transform (FFT) pattern obtained
from a square region of a highly porous UNC reveals that the synthesized nanostructures
are highly crystalline (Figure 3c). In addition, a d-spacing of 2.32 Å is observed between
adjacent lattice fringes, which corresponds to the (111) planes of face centered cubic (fcc)
Au–Pt (Figure 3d) [25] and demonstrates the Au–Pt bimetallic nature of the HP-UNCs.
Noticeably, the high-resolution TEM (HRTEM) image displayed in Figure 3d shows many
low-coordinated surface atoms at the branches of the Au–Pt HP-UNCs, which can serve as
highly efficient active sites for electrochemical fuel oxidation reaction [26].
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Figure 2. (a) SEM and (b) TEM images of Au–Pt HP-UNCs.

To check the morphological and compositional structure of the products, high-angle
annular dark-field scanning TEM (HAADF-STEM) and corresponding elemental map-
ping images (Figure 4a) and the compositional line profile on a single highly porous
UNC (Figure 4b) were obtained by HAADF-STEM energy dispersive X-ray spectroscopy
(HAADF-STEM-EDS). HAADF-STEM image of the Au–Pt HP-UNCs reveals the formation
of branches with high porosity (Figure 4a). Meanwhile, the elemental mapping of Au and
Pt and the compositional line profile on a single highly porous UNC demonstrate that the
synthesized HP-UNCs is an Au–Pt alloy, in which Au is more abundant than Pt at the
inner region of the NCs. Whereas, most surfaces of the HP-UNCs including branches are
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composed of Pt. The higher Au content in the inner part of the HP-UNCs is ascribable
to the higher reduction potential of the Au precursor (AuCl4−, 1.002 V) compared with
that of the Pt precursor (PtCl42−, 0.755 V) [28]. Therefore, the nucleation of Au can be
expected to occur initially by dominant reduction of Au ions and, then, HP-UNCs are
formed by subsequent coreduction of residual Au and Pt precursors on the preformed Au
seeds. Furthermore, the XRD pattern of the products exhibits diffraction peaks attributed
to fcc Au and Pt references, which demonstrates the Au–Pt bimetallic nature (Figure 5).
Based on Scherrer equation, the crystalline size of the HP-UNCs was determined to be
6.56 nm. The Au/Pt ratio of the entire HP-UNCs was determined to be 58:42 by ICP-OES.
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Controlling the concentration of hydrazine is important for the formation of Au–Pt
HP-UNCs. By evaluating the morphological change in Au–Pt NCs obtained in the presence
of different amounts of hydrazine (Figure 6), we found that highly porous nanostructures
were produced for a certain amount of hydrazine in the reaction mixture. The standard
synthesis of the Au–Pt HP-UNCs was performed using 50 µL of hydrazine (200 mM). In
contrast, large spherical NCs with an average size of 55.9 ± 9.5 nm were obtained when
using 10 µL of hydrazine (200 mM), while keeping the other reaction conditions unchanged
(Figure 6a,e). The formation of large spherical NCs can be attributed to a slow reduction
rate of the metal precursor in the presence of a low concentration of hydrazine. Upon
increasing the amount of hydrazine (200 mM) to 0.2, 2.0, and 5.0 mL, UNCs with rounded
branches were formed (Figure 6b–d,f–h). However, their porosity was slightly lower than
that of the standard Au–Pt HP-UNCs. To further investigate the morphological features of
the porous products, the rounded UNCs produced in the presence of 2.0 mL of hydrazine
(200 mM) were subjected to TEM analysis (Figure 7a,b). TEM images reveal that the porosity
of the rounded UNCs is lower than that of standard Au–Pt HP-UNCs. The FFT pattern
obtained from a square region of a rounded UNC shows high crystallinity of rounded
UCNs (Figure 7c). Notably, an Au–Pt alloy nature can be observed in the entire NCs
according to the compositional line profile on a single rounded UNC (Figure 7d). Taken
together, these results suggest that hydrazine is an effective reductant for the synthesis of
highly porous NCs and controlling the hydrazine concentration enables the tuning of the
porosity and compositional structure of Au–Pt UNCs.

Nanomaterials 2021, 11, x FOR PEER REVIEW 5 of 10 
 

 

 
Figure 5. X-Ray Diffraction (XRD) pattern of Au–Pt HP-UNCs and rounded Au–Pt UNCs. The 
positions of Au and Pt were taken from the JCPDS database. 

Controlling the concentration of hydrazine is important for the formation of Au–Pt 
HP-UNCs. By evaluating the morphological change in Au–Pt NCs obtained in the pres-
ence of different amounts of hydrazine (Figure 6), we found that highly porous nanostruc-
tures were produced for a certain amount of hydrazine in the reaction mixture. The stand-
ard synthesis of the Au–Pt HP-UNCs was performed using 50 μL of hydrazine (200 mM). 
In contrast, large spherical NCs with an average size of 55.9 ± 9.5 nm were obtained when 
using 10 μL of hydrazine (200 mM), while keeping the other reaction conditions un-
changed (Figure 6a,e). The formation of large spherical NCs can be attributed to a slow 
reduction rate of the metal precursor in the presence of a low concentration of hydrazine. 
Upon increasing the amount of hydrazine (200 mM) to 0.2, 2.0, and 5.0 mL, UNCs with 
rounded branches were formed (Figure 6b–d,f–h). However, their porosity was slightly 
lower than that of the standard Au–Pt HP-UNCs. To further investigate the morphological 
features of the porous products, the rounded UNCs produced in the presence of 2.0 mL 
of hydrazine (200 mM) were subjected to TEM analysis (Figure 7a,b). TEM images reveal 
that the porosity of the rounded UNCs is lower than that of standard Au–Pt HP-UNCs. 
The FFT pattern obtained from a square region of a rounded UNC shows high crystallinity 
of rounded UCNs (Figure 7c). Notably, an Au–Pt alloy nature can be observed in the entire 
NCs according to the compositional line profile on a single rounded UNC (Figure 7d). 
Taken together, these results suggest that hydrazine is an effective reductant for the syn-
thesis of highly porous NCs and controlling the hydrazine concentration enables the tun-
ing of the porosity and compositional structure of Au–Pt UNCs. 

 
Figure 6. SEM images of Au–Pt NCs produced by (a,e) 10 μL, (b,f) 0.2 mL, (c,g) 2.0 mL, and (d,h) 
5.0 mL of hydrazine (200 mM). 
Figure 6. SEM images of Au–Pt NCs produced by (a,e) 10 µL, (b,f) 0.2 mL, (c,g) 2.0 mL, and (d,h)
5.0 mL of hydrazine (200 mM).



Nanomaterials 2021, 11, 112 6 of 10Nanomaterials 2021, 11, x FOR PEER REVIEW 6 of 10 
 

 

 
Figure 7. (a) TEM images of rounded Au–Pt UNCs. (b) TEM; and (c) high-magnification TEM im-
ages of a rounded Au–Pt UNC. The insets in (c) show an FFT pattern obtained from a rounded 
Au–Pt UNC. (d) Cross-sectional compositional line profiles of a rounded Au–Pt UNC. 

To investigate the influence of the porosity of the Au–Pt HP-UNCs on the electrocat-
alytic performance, MOR was selected as a model reaction. Electrocatalytic activities of 
the rounded Au–Pt UNCs and commercial Pt/C toward MOR were also measured to pro-
vide comparison. During the electrochemical measurements, the catalysts loaded on a 
GCE used as a working electrode were scanned between −0.857 and 0.393 V versus 
Hg/HgO in N2-saturated 0.1 M KOH or 0.1 M KOH/0.5 M methanol solutions. Figure 8a 
displays the CVs of the Au–Pt HP-UNCs, rounded Au–Pt UNCs, and commercial Pt/C 
catalysts. Electrochemically active surface areas (ECSAs) of the catalysts were determined 
using the hydrogen underpotential deposition (HUPD) analysis of the catalysts to be 21.7, 
21.8, and 20.0 m2 g−1 for the Au–Pt HP-UNCs, rounded Au–Pt UNCs, and Pt/C catalysts, 
respectively. Although the size of the Au–Pt HP-UNCs is larger than that of the Pt/C cat-
alysts (average diameter size: 5.4 ± 0.7 nm), their comparable ECSAs can be attributed to 
the high porosity of the dendritic branches. Figure 8b shows the CVs of the different cat-
alysts obtained in 0.1 M KOH/0.5 M methanol. Peaks observed between −0.3 to 0.2 V vs. 
Hg/HgO can be attributed to oxidation of methanol on the surface of the catalysts. On the 
reverse scan, small peaks ascribable to the oxidation of adsorbed CO intermediate were 
observed at −0.4 to 0 V versus Hg/HgO for the Au–Pt HP-UNCs, rounded Au–Pt UNCs, 
and Pt/C catalysts. Apparently, the Au–Pt HP-UNCs show the largest MOR activity 
among the catalysts tested. Mass activities of the Au–Pt HP-UNCs, rounded Au–Pt UNCs, 
and Pt/C catalysts are 1759, 1509, and 579 mA mg−1, respectively (Figure 8b,c). Moreover, 
the current density of the Au–Pt HP-UNCs is the highest among the different catalysts. 
The specific current density normalized by ECSAs of the Au–Pt HP-UNCs was deter-
mined to be 8.17 mA cm−2, which is roughly 1.19 and 2.91 times higher than those of the 
rounded Au–Pt UNCs (6.87 mA cm−2), and Pt/C catalysts (2.81 mA cm−2), respectively (Fig-
ure 8d,e). The enhanced electrocatalytic activity of the Au–Pt HP-UNCs can be ascribed 
to their highly porous morphology, which provides larger active sites. Additionally, the 

Figure 7. (a) TEM images of rounded Au–Pt UNCs. (b) TEM; and (c) high-magnification TEM images
of a rounded Au–Pt UNC. The insets in (c) show an FFT pattern obtained from a rounded Au–Pt
UNC. (d) Cross-sectional compositional line profiles of a rounded Au–Pt UNC.

To investigate the influence of the porosity of the Au–Pt HP-UNCs on the electro-
catalytic performance, MOR was selected as a model reaction. Electrocatalytic activities
of the rounded Au–Pt UNCs and commercial Pt/C toward MOR were also measured to
provide comparison. During the electrochemical measurements, the catalysts loaded on
a GCE used as a working electrode were scanned between −0.857 and 0.393 V versus
Hg/HgO in N2-saturated 0.1 M KOH or 0.1 M KOH/0.5 M methanol solutions. Figure 8a
displays the CVs of the Au–Pt HP-UNCs, rounded Au–Pt UNCs, and commercial Pt/C
catalysts. Electrochemically active surface areas (ECSAs) of the catalysts were determined
using the hydrogen underpotential deposition (HUPD) analysis of the catalysts to be 21.7,
21.8, and 20.0 m2 g−1 for the Au–Pt HP-UNCs, rounded Au–Pt UNCs, and Pt/C catalysts,
respectively. Although the size of the Au–Pt HP-UNCs is larger than that of the Pt/C
catalysts (average diameter size: 5.4 ± 0.7 nm), their comparable ECSAs can be attributed
to the high porosity of the dendritic branches. Figure 8b shows the CVs of the different
catalysts obtained in 0.1 M KOH/0.5 M methanol. Peaks observed between −0.3 to 0.2 V
vs. Hg/HgO can be attributed to oxidation of methanol on the surface of the catalysts.
On the reverse scan, small peaks ascribable to the oxidation of adsorbed CO intermediate
were observed at −0.4 to 0 V versus Hg/HgO for the Au–Pt HP-UNCs, rounded Au–Pt
UNCs, and Pt/C catalysts. Apparently, the Au–Pt HP-UNCs show the largest MOR ac-
tivity among the catalysts tested. Mass activities of the Au–Pt HP-UNCs, rounded Au–Pt
UNCs, and Pt/C catalysts are 1759, 1509, and 579 mA mg−1, respectively (Figure 8b,c).
Moreover, the current density of the Au–Pt HP-UNCs is the highest among the different
catalysts. The specific current density normalized by ECSAs of the Au–Pt HP-UNCs was
determined to be 8.17 mA cm−2, which is roughly 1.19 and 2.91 times higher than those of
the rounded Au–Pt UNCs (6.87 mA cm−2), and Pt/C catalysts (2.81 mA cm−2), respectively
(Figure 8d,e). The enhanced electrocatalytic activity of the Au–Pt HP-UNCs can be ascribed
to their highly porous morphology, which provides larger active sites. Additionally, the
presence of undercoordinated atoms in the Au–Pt HP-UNCs can effectively promote the
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electrochemical oxidation of methanol, thereby, enhancing the MOR activity compared
with that of the rounded Au–Pt UNCs. Meanwhile, both types of Au–Pt UNCs exhibit
better electrocatalytic activity than the Pt/C catalysts. This significant enhancement can be
attributed to the presence of Au and Pt promoting the removal of carbonaceous poisoning
intermediates such as CO from the surface of NCs. In addition, the forward/backward
current (If/Ib) ratios of Au-Pt HP UNCs and Pt/C were compared to estimate the CO
tolerance of the nanostructures. The Au-Pt HP-UNCs (4.78) showed higher If/Ib ratio
than Pt/C (4.11), which demonstrates the enhanced CO tolerance of Au-Pt HP-UNCs due
to formation of Au-Pt bimetallic nanostructures. This high tolerance for such poisoning
intermediates may be due to the ligand effect, which is associated with the modification of
the electronic structures of Au and Pt by formation of Au–Pt bimetallic structures [29–31].

Nanomaterials 2021, 11, x FOR PEER REVIEW 7 of 10 
 

 

presence of undercoordinated atoms in the Au–Pt HP-UNCs can effectively promote the 
electrochemical oxidation of methanol, thereby, enhancing the MOR activity compared 
with that of the rounded Au–Pt UNCs. Meanwhile, both types of Au–Pt UNCs exhibit 
better electrocatalytic activity than the Pt/C catalysts. This significant enhancement can be 
attributed to the presence of Au and Pt promoting the removal of carbonaceous poisoning 
intermediates such as CO from the surface of NCs. In addition, the forward/backward 
current (If/Ib) ratios of Au-Pt HP UNCs and Pt/C were compared to estimate the CO toler-
ance of the nanostructures. The Au-Pt HP-UNCs (4.78) showed higher If/Ib ratio than Pt/C 
(4.11), which demonstrates the enhanced CO tolerance of Au-Pt HP-UNCs due to for-
mation of Au-Pt bimetallic nanostructures. This high tolerance for such poisoning inter-
mediates may be due to the ligand effect, which is associated with the modification of the 
electronic structures of Au and Pt by formation of Au–Pt bimetallic structures [29–31]. 

 
Figure 8. CVs obtained with various catalysts in (a) 0.1 M KOH and (b,c) 0.1 M KOH/0.5 M metha-
nol at a scan rate of 50 mV s–1. Catalytic activities of different catalysts normalized by (b) mass of 
metal, and (c) ECSAs of catalysts. (d) Catalytic activities of various catalysts. 

The electrochemical stabilities of the Au–Pt HP-UNCs and rounded Au–Pt UNCs 
were estimated through accelerated durability test and compared with that of commercial 
Pt/C catalysts. Working electrodes, including the catalysts, were scanned between −0.85 
and 0.3 V in N2-saturated 0.1 M KOH/0.5 M methanol. During the measurement, the de-
crease in mass activity of the catalysts was monitored for 500 cycle intervals. An attenu-
ated decrease in the MOR activity of both Au–Pt HP-UNCs and rounded UNCs compared 
with that of Pt/C was observed (Figure 9). CVs of the catalysts obtained after 500 cycles 
show mass activities of 588, 850, and 349.7 mA mg−1 for Au–Pt HP-UNCs, rounded Au–Pt 
UNCs, and Pt/C catalysts, respectively, which indicate losses of 66.8%, 43.8%, and 72.5% 
in mass activity, respectively (Figure 9d). Enhanced electrocatalytic stabilities of the Au–
Pt HP-UNCs and rounded Au–Pt UNCs compared to Pt/C can be attributed to the Au–Pt 
bimetallic structures. It is generally accepted that bimetallic catalysts including Au pos-
sess high tolerance to poisoning intermediates formed during electrochemical fuel oxida-
tion [32,33]. Therefore, many bimetallic catalysts have shown enhanced catalytic stability 

Figure 8. CVs obtained with various catalysts in (a) 0.1 M KOH and (b,c) 0.1 M KOH/0.5 M methanol
at a scan rate of 50 mV s−1. Catalytic activities of different catalysts normalized by (b) mass of metal,
and (c) ECSAs of catalysts. (d) Catalytic activities of various catalysts.

The electrochemical stabilities of the Au–Pt HP-UNCs and rounded Au–Pt UNCs were
estimated through accelerated durability test and compared with that of commercial Pt/C
catalysts. Working electrodes, including the catalysts, were scanned between −0.85 and
0.3 V in N2-saturated 0.1 M KOH/0.5 M methanol. During the measurement, the decrease
in mass activity of the catalysts was monitored for 500 cycle intervals. An attenuated
decrease in the MOR activity of both Au–Pt HP-UNCs and rounded UNCs compared
with that of Pt/C was observed (Figure 9). CVs of the catalysts obtained after 500 cy-
cles show mass activities of 588, 850, and 349.7 mA mg−1 for Au–Pt HP-UNCs, rounded
Au–Pt UNCs, and Pt/C catalysts, respectively, which indicate losses of 66.8%, 43.8%, and
72.5% in mass activity, respectively (Figure 9d). Enhanced electrocatalytic stabilities of
the Au–Pt HP-UNCs and rounded Au–Pt UNCs compared to Pt/C can be attributed to
the Au–Pt bimetallic structures. It is generally accepted that bimetallic catalysts including
Au possess high tolerance to poisoning intermediates formed during electrochemical fuel
oxidation [32,33]. Therefore, many bimetallic catalysts have shown enhanced catalytic
stability compared with monometallic catalysts toward electrocatalytic reactions [34]. Con-
sidering this, it seems reasonable to assume that the higher stability of the Au–Pt UNCs
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stems from the presence of Au atoms, which reduce the adsorption of the poisoning inter-
mediates. Interestingly, although the catalytic activity of the rounded Au–Pt UNCs was
lower than that of the Au–Pt HP-UNCs, the former showed higher stability than the latter
(Figure 9d). This might be due to the fact that the alloy surface of the rounded Au–Pt
UNCs contains more Au atoms than the surface of the Au–Pt HP-UNCs, which is mainly
composed of Pt. The high Au content in the surface of the Au–Pt UNCs could enhance the
removal capability for poisoning intermediates by decreasing the adsorption energy of the
intermediates. Therefore, the Pt surface atoms in the Au–Pt rounded UNCs can effectively
function as MOR catalytic sites, thus, resulting in enhanced electrocatalytic stability of the
Au–Pt rounded UNCs.
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4. Conclusions

In summary, we developed an efficient synthesis procedure for the production of
Au–Pt HP-UNCs with undercoordinated surface atoms. The shape of the Au–Pt UNCs
was largely dependent on the concentration of hydrazine used as reductant. The pre-
pared Au–Pt HP-UNCs exhibited outstanding electrocatalytic performance toward MOR
in comparison to their round counterparts and commercial Pt/C catalysts. The unique mor-
phology and surface of the Au–Pt HP-UNCs can account for the enhanced electrocatalytic
activity. These findings highlight that the precise control of the morphology and compo-
sition of metal NCs can lead to enhanced electrocatalytic performance in electrochemical
oxidation reactions.
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