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Massively parallel reporter assays (MPRAs) enable high-throughput functional evaluation
of numerous DNA regulatory elements and/or their mutant variants. The assays are
based on the construction of reporter plasmid libraries containing two variable parts, a
region of interest (ROI) and a barcode (BC), located outside and within the transcription
unit, respectively. Importantly, each plasmid molecule in a such a highly diverse library is
characterized by a unique BC–ROI association. The reporter constructs are delivered
to target cells and expression of BCs at the transcript level is assayed by RT-PCR
followed by next-generation sequencing (NGS). The obtained values are normalized to
the abundance of BCs in the plasmid DNA sample. Altogether, this allows evaluating
the regulatory potential of the associated ROI sequences. However, depending on
the MPRA library construction design, the BC and ROI sequences as well as their
associations can be a priori unknown. In such a case, the BC and ROI sequences,
their possible mutant variants, and unambiguous BC–ROI associations have to be
identified, whereas all uncertain cases have to be excluded from the analysis. Besides
the preparation of additional “mapping” samples for NGS, this also requires specific
bioinformatics tools. Here, we present a pipeline for processing raw MPRA data
obtained by NGS for reporter construct libraries with a priori unknown sequences of
BCs and ROIs. The pipeline robustly identifies unambiguous (so-called genuine) BCs
and ROIs associated with them, calculates the normalized expression level for each
BC and the averaged values for each ROI, and provides a graphical visualization of the
processed data.

Keywords: massively parallel reporter assay, MPRA, reporter constructs, region of interest, barcodes, next-
generation sequencing, NGS data processing, pipeline

INTRODUCTION

Although numerous regulatory elements have been identified in eukaryotic genomes (Narlikar and
Ovcharenko, 2009; Taher et al., 2011; Kellis et al., 2014), so far there is no complete understanding
of why these elements are active in specific cell types and at specific levels. Accordingly, the effect
of a particular mutation within a regulatory element can be hardly predicted, especially for a
particular cell type (1000 Genomes Project Consortium et al., 2015; Albert and Kruglyak, 2015;
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Rojano et al., 2019). The recent development of massively parallel
reporter assays (MPRAs) allows high-throughput functional
characterization of native transcriptional regulatory elements
(first of all, enhancers and promoters) as well as their mutant
variants (reviewed in Haberle and Lenhard, 2012; Inoue and
Ahituv, 2015; Trauernicht et al., 2020; Mulvey et al., 2021). In
an MPRA, regions of interests (ROIs), e.g., putative enhancers or
promoters, together with unique barcodes (BCs) are assembled
into reporter constructs to obtain MPRA plasmid libraries
that consist of thousands or even millions of individual
molecules (Kheradpour et al., 2013; Kwasnieski et al., 2014;
van Arensbergen et al., 2019). Specific MPRA libraries can also
be packaged in lentiviruses to deliver reporter constructs into
the target genome (O’Connell et al., 2016; Inoue et al., 2017;
Maricque et al., 2017; Gordon et al., 2020).

From the structural point of view, BCs are always placed
within the transcription unit [usually in the 5′ or 3′ untranslated
region (UTR)], whereas ROIs are typically outside this unit
(Figure 1A). As a result, the BC sequences are present in
the reporter mRNA molecules and, thus, allow quantitative
evaluation of the regulatory effects caused by their cis-paired ROI
variants using next-generation sequencing (NGS) (Figure 1B
and Supplementary Figure 1). For that, cells of interest are
transfected by an MPRA plasmid library or transduced by
a lentiviral MPRA library, and subsequently, transcriptional
activity levels of barcoded reporters are assessed on episomal
plasmids and/or after stable integration of the constructs
at random or specific genomic loci (Melnikov et al., 2012;
Sharon et al., 2012; Kheradpour et al., 2013; White et al.,
2013; O’Connell et al., 2016; Tewhey et al., 2016; Ulirsch
et al., 2016; Maricque et al., 2017; Inoue et al., 2019).
More specifically, the “expression” and “normalization” samples
are prepared by PCR amplification of the BC sequences
from cDNA synthesized on total RNA isolated from the
transfected/transduced cells and the plasmid DNA used to
transfect cells or total DNA isolated from the transduced cells,
respectively. These samples are subjected to NGS to determine
the normalized expression level of each BC, which is calculated
as the ratio between the BC abundance in the expression and
normalization samples.

It should be noted that ROIs can be either (i) preselected
native, mutant, and/or synthetic sequences (e.g., minimal core
elements of enhancers and promoters) usually of the same length
(Melnikov et al., 2012; Sharon et al., 2012; Kheradpour et al.,
2013; Smith et al., 2013) or (ii) somehow experimentally enriched
genomic fragments, random genomic fragments, or synthetic
sequences of varying length (Mogno et al., 2013; Verfaillie et al.,
2016; van Arensbergen et al., 2017). In particular cases, the ROI
can be just a fixed segment within the cloned regulatory element
(Patwardhan et al., 2009; Vvedenskaya et al., 2015; Omelina et al.,
2019). On the other hand, BCs are most frequently sequences of
fixed length between 9 and 20 nucleotides (nts) (Kwasnieski et al.,
2012; Melnikov et al., 2012; Patwardhan et al., 2012; Mogno et al.,
2013; Verfaillie et al., 2016).

Depending on the MPRA library design, the ROI and BC
sequences as well as their associations can be either a priori
known or not. Completely predetermined MPRA libraries are

generated by using sequences synthesized on custom high-
density DNA microarrays (Patwardhan et al., 2009; Melnikov
et al., 2012; Sharon et al., 2012; Kwasnieski et al., 2014). MPRA
libraries with unknown sequences of ROIs and BCs are made
by cloning randomly sheared genomic fragments or pooled
synthetic DNA fragments or by PCR-mediated mutagenesis
and/or by cloning oligonucleotides containing randomized
stretches of nucleotides (Patwardhan et al., 2012; Mogno et al.,
2013; Vvedenskaya et al., 2015; Verfaillie et al., 2016; van
Arensbergen et al., 2017; Kircher et al., 2019; Omelina et al.,
2019). In some cases, the ROI sequences are predetermined
although associated BCs are not known in advance (Smith et al.,
2013; O’Connell et al., 2016; Tewhey et al., 2016; Grossman
et al., 2017; Gordon et al., 2020). For the libraries that are not
completely predetermined, there is a need to identify cloned ROI
and/or BC sequences as well as their associations. Hereafter, the
procedure of finding unique BC–ROI associations is referred
to as “mapping” by analogy with the thousands of reporters
integrated in parallel (TRIP) experiments (Akhtar et al., 2013,
2014). The mapping is typically done by PCR amplification of
BC–ROI regions of MPRA constructs followed by Illumina NGS
(Patwardhan et al., 2012; Mogno et al., 2013; Tewhey et al.,
2016; Omelina et al., 2019). Importantly, associations of the same
BC with different ROI sequences are excluded from the further
analysis although the association of the same ROI with different
BCs allows revealing and excluding the possible influence of
particular BC sequences on the measurements.

The MPRAdecoder pipeline described in this study was
developed for the processing of NGS data generated for MPRA
libraries with a priori unknown sequences of ROIs and BCs,
for example, those cloned by the usage of oligonucleotides
with randomized stretches of nucleotides. The pipeline (i)
robustly identifies unambiguous (hereafter genuine) BCs and
their mutant variants as well as associated ROIs, (ii) calculates
the normalized expression level for each genuine BC and the
averaged values for each ROI, and (iii) provides a graphical
visualization of the processed data. The functionality of the
pipeline was demonstrated using a data set obtained for an
MPRA library designed to study the effects of sequence variations
located at a certain distance downstream of the transcription
termination site (TTS) of the eGFP reporter on its expression at
the transcription level.

MATERIALS AND METHODS

Preparation of the MPRA Mapping,
Expression, and Normalization Samples
and Illumina NGS
The MPRA plasmid library, in which random-sequence BC
and ROI are separated by an 83-nt fixed-sequence region and
located, respectively, in 3′ UTR and downstream of the TTS
of the eGFP reporter, was generated earlier (Omelina et al.,
2019). The wild-type and mutant deltaC (Boldyreva et al., 2021)
reporter plasmids carrying specific 20-nt BCs were constructed
by standard molecular cloning procedures and verified by
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FIGURE 1 | Structure of MPRA constructs and samples. (A) Schematic representation of typical MPRA reporter constructs with two variable regions, the region of
interest (ROI) and barcode (BC). An enhancer element may be missing in particular MPRA constructs. The ROI is usually located outside the coding sequence,
whereas the BC must be within the transcribed unit to ensure measurements of the ROI influence on the reporter expression level. TSS, transcription start site; TTS,
transcription termination site; UTR, untranslated region. (B) Schematic showing the experimental steps involved in the preparation of MPRA samples and their
structures. Note that the normalization and expression samples have identical structures; the mapping sample is required only for MPRA libraries in which BC–ROI
associations are not predetermined. mCP, constant part present in the sequence of the mapping sample; neCP, constant part present in the sequence of the
normalization/expression sample.

sequencing. An equimolar pool of two such wild-type and two
deltaC mutant plasmids was mixed in a 1:99 molar ratio with the
MPRA plasmid library. Immortalized human embryonic kidney
(HEK293T) cells were obtained from ATCC (United States)
and were maintained and transfected as described previously
(Boldyreva et al., 2021).

The mapping samples were prepared according to a previously
reported two-round conventional PCR procedure that prevents
the formation of chimeric products (Omelina et al., 2019). Briefly,
primers specific to the ends of fixed sequences mCP1 and mCP3
(Figure 1B and Table 1) were used, and a specific, custom-
designed 8-nt index along with other sequences necessary for
Illumina NGS was introduced in the PCR products of each

sample replicate. The normalization samples were obtained in
the same way, using primers specific to the ends of fixed
sequences neCP1 and neCP2 (Figure 1B and Table 1) and 2.5
ng of the plasmid library as a template. To prepare expression
samples, BCs were amplified as specified above but using 1/20
of cDNA prepared from the transfected cells as described earlier
(Boldyreva et al., 2021) as a template. Phusion High-Fidelity
DNA Polymerase (Thermo Fisher Scientific) was used for all
amplification reactions. All obtained PCR products were purified
on spin columns, mixed together, and sequenced on an Illumina
MiSeq instrument as 151-nt single-end reads. Notice that the
read length was shorter than the amplified plasmid fragments
for all samples. Therefore, there was no need to remove Illumina
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adapter sequences from the reads. Finally, to prepare an example
data set, a representative subset of the reads was randomly
selected from the obtained fastq file. A copy of this subset was
demultiplexed using Cutadapt (Martin, 2011).

Pipeline Code and Documentation
Availability
The MPRAdecoder pipeline source code written in Python, the
example data set, and the corresponding expected outputs as
well as detailed documentation are publicly available on GitHub
repository1.

Hardware and Software Requirements
The MPRAdecoder installation and analyses were performed
on a computer with an Intel R© CoreTM i7-3770 processor,
31.4 Gb RAM, Linux Ubuntu 14.04 64-bit system, and
Python version 3.8.6.

RESULTS

Overview of the MPRAdecoder Pipeline
A workflow of the MPRAdecoder pipeline is shown in Figure 2.
Briefly, after providing details of a particular MPRA data set
to be analyzed, the pipeline parses the input fastq file(s) and
demultiplexes them if required. Next, all expected parts of
the mapping, normalization, and expression reads are detected,
particularly the sequences of BCs and ROIs. Then, a list of BCs
common for all samples is generated with the assumption that
some BCs have zero counts in the expression data. After that,
genuine BCs and their mutant variants as well as associated

1 https://github.com/Code-master2020/MPRAdecoder

ROIs are identified. Finally, the data are averaged over expression
and normalization replicates, normalized, and averaged over
ROIs, and the results are visualized in different plots. Below,
these steps are described in more detail with the help of the
example MPRA data set.

Characteristics of the Example Data Set
To demonstrate the capabilities of the MPRAdecoder pipeline,
we used a data set consisting of two biological replicates of
mapping, normalization, and expression samples obtained using
an MPRA library, in which the BC and ROI (both cloned by
using oligonucleotides containing fully randomized sequences)
are located in 3′ UTR and downstream of TTS, respectively (the
option is shown at the bottom of Figure 1A), being separated
by 83 nts of fixed sequence (Omelina et al., 2019). The samples
were sequenced as 151-nt single-end reads on the Illumina
MiSeq platform and were indexed with custom-designed 8-nt
sequences located at the beginning of the reads (Figure 1B).
Important features of the data set are listed in Table 1. Note
that the BC sequences were in forward and reverse-complement
orientations in the mapping and normalization/expression
samples, respectively. In addition, about 1% of the reads in each
sample contained four unique 20-nt BCs associated with spiked-
in reference constructs; the TTCCAAGTGCAGGTTAGGCG
and TGTGTACGGCTTGCTCTCAA sequences tagged the wild-
type construct, whereas GAGCCCGGATCCACTCCAAG and
TGTCACGTCAGCTAACCCAC sequences marked the deltaC
mutant construct that is characterized by a higher expression
level than the wild-type one (Boldyreva et al., 2021). The
substantially longer length of the BC (18 nts) compared to the
ROI (8 nts) ensures that each ROI is associated with multiple
different BCs in a representative large plasmid library. This allows

TABLE 1 | Specific features of the example MPRA data set.

Parta Length, nts Strandb Sequence Note

“Mapping” sample

index 8 Plus AGCGAGCT, CTGCACGT Fixed

mCP1 17 Plus GACACTCGAGGATCGAG Fixed

BC 18c Plus (N)18 Random

mCP2 83 Plus GAGTTGTGGCCGGCCCTTGTGACTGGGAAAACCCTGGCGTAAAT
AAAATACGAAATGACTAGTCATGCGTCAATTTTACGCAT

Fixed

ROI 8 Plus (N)8 Random

mCP3 17d Plus TTAACGTACGTCACAATATGATTATCTTTCTAGGGe Fixed

“Normalization” and “Expression” samples

index 8 Plus CCTATGGT, AACGTCGT, ACAATTCG, TACTTGTC Fixed

neCP1 39 Minus CGCCAGGGTTTTCCCAGTCACAAGGGCCGGCCACAACTC Fixed

BC 18c Minus (N)18 Random

neCP2 86d Minus CTCGATCCTCGAGTGTCACCTAAATCGTATGCGGCCG
CGAATTCTTACTTGTACAGCTCGTCCATGCCGAGAGTGATCCCGGCGGC
GGTCACGAACTCCAGCAGGACe

Fixed

a In the order of presence in the sample (starting from immediately after the Illumina forward sequencing primer).
bOrientation relative to the plasmid reporter construct, except the index introduced during PCR amplification.
cThe length of the BCs present in the spiked-in reference constructs was 20 nts (see the text for details).
dThe expected length of the fragment of the component in 151-nt single-end reads; the length is shorter by 2 nts for the reads containing reference 20-nt BCs.
eThe complete sequence of the component in the PCR amplified sample is shown; the fragment expected in 151-nt single-end reads is underlined.
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FIGURE 2 | Schematic overview of the MPRAdecoder pipeline. The optional steps are marked by an asterisk. The steps at which the pipeline saves intermediate or
final results are marked by gray.

controlling the potential influence of individual BC sequences on
the studied phenomenon.

Specifying Characteristics of an MPRA
Data Set to Be Analyzed
The information on the input MPRA data set is provided in
the two complementary forms. First, most details, such as

(i) names and lengths of all expected parts in the mapping
and normalization/expression reads for each MPRA library
(including indexes), (ii) sequences of the predetermined
parts (including indexes and optional reference BCs),
(iii) relative orientation of BC sequences in mapping and
normalization/expression reads, (iv) a maximum allowed error
rate and the Phred quality score threshold for different parts,
(v) a minimum number of read counts required for a BC
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and a BC–ROI association, and (vi) settings for identification
of genuine BCs and associated ROIs, are specified in the
configuration file. A detailed description of this file is available on
the GitHub page of this project. Second, a user has to manually
input the following details in the command prompt: (vii) names
of the appropriate fastq file(s) and their locations as well as a
location for output files, (viii) a number of replicates of each
sample for each MPRA library, (ix) names of indexes used for
sample multiplexing and (x) information on whether the fastq
file(s) should be demultiplexed by the pipeline.

MPRA Data Demultiplexing by Pairwise
Sequence Alignment
The pipeline is able to process either fastq files that are already
demultiplexed, for example, by the Illumina software, or fastq files
containing custom-designed index sequences at the beginning
of the reads. In the latter case, detection of a predetermined
index sequence in each read is performed using a pairwise
sequence alignment tool from Biopython (Cock et al., 2009).
For that, all index sequences specified in the configuration file
are aligned, one by one, against the beginning of a read. The
following alignment scoring system is used: +1 for a match, 0
for a mismatch, and –1 for an indel. If the maximum alignment
score is higher than or equal to the threshold value (calculated
as the index length - the maximum allowed error rate + 1 for
each insertion) and the Phred quality score for each base (Cock
et al., 2010) is higher than a threshold (equal to 10 for the example
data set), the corresponding index sequence is considered to
be identified; otherwise, the read is discarded. To generate the
example data set, 8-nt index sequences differing from each other
by at least 2 nts were used as suggested for the short (5–10 nts)
predefined BCs (Patwardhan et al., 2009; Sharon et al., 2012).
At the same time, the maximum allowed error rate was set
to ∼10% based on our experience with PCR-amplification and
subsequent NGS of predetermined sequences under experimental
conditions identical to those used in this study (including the
quality of oligonucleotide primers). Together, these factors ensure
that one allowed single-base mutation (substitution, deletion,
or insertion) in the index sequence cannot lead to an error
in its identification. At the end, the reads are divided into an
appropriate number of groups based on the detected indexes.

Identification of the BC and ROI
Sequences in the Reads
Detection of the mCP1, mCP2, mCP3, neCP1, neCP2 (Figure 1B
and Table 1), and reference BC sequences in the reads is
performed for each replicate of each sample by using the pairwise
sequence alignment approach described above for the index,
taking into account location(s) of the preceding part(s), which
can be already identified (e.g., the mCP1/neCP1) or just estimated
(e.g., the BC). Sequences of BCs and ROIs are defined as spacers
between the appropriate constant parts. By default, the Phred
quality scores are ignored for the mCP1, mCP2, mCP3, neCP1,
and neCP2 sequences. For the BCs (including the reference ones)
and ROIs, the quality score for each base should be higher than a
threshold (e.g., set to 10 for the example data set); otherwise, reads

are discarded from the downstream analysis. More specifically,
in the case of the mapping reads, the process includes the
following sequential steps. First, the mCP1 sequence is detected.
Second, if sequences of the reference BCs are specified in the
configuration file, the reads with such BCs are identified and
excluded from the subsequent structural analysis. This is done
because the functional sequences (e.g., wild-type or deltaC in
the example data set) associated with the reference BCs might
be located outside the ROI (e.g., within the mCP2 sequence as
in the example data set). Third, the mCP2 sequence is detected,
and the sequence between mCP1 and mCP2 is recognized as the
BC if its length is within the range set in the configuration file
(e.g., ≥16 and ≤20 nts for the example data set). Fourth, the
mCP3 sequence is identified, and the sequence between mCP2
and mCP3 is recognized as the ROI if its length is within the
range defined in the configuration file (e.g., ≥7 and ≤9 nts
for the example data set). In the case of the normalization and
expression reads, the last step is omitted. Lastly, if the ROI
and/or BC sequences are in reverse-complement orientations
in the mapping or normalization/expression samples (this is
specified in the configuration file), they are converted to their
forward counterparts.

Data Filtering and Generation of a List of
Unique BCs
At the next step, the number of supporting reads for each BC
(with a random or reference sequence) is counted for each
replicate of all samples. Then, these numbers are divided by the
total number of effective reads (i.e., those that passed all filters
described above) in a replicate and multiplied by 1 × 106 to
calculate the reads per million (RPM) values. After that, unique
BC–ROI associations and BCs are assessed for reproducibility
and robustness. Although preliminary results can be obtained
using single replicates of the mapping, normalization, and
expression samples, at least two replicates of each sample are
strongly recommended. Under such conditions, only the BC–
ROI associations that are revealed with at least m raw read
counts (e.g., one for the example data set) in at least two out
of any available number of replicates of the mapping data are
retained for further analysis. Also, only the BCs with n raw read
counts (e.g., three for the example data set) in each replicate
of the normalization data are kept. For the expression data, the
threshold read count e is set by default to zero, as some BCs might
be present with very low frequency or even completely absent in
the reporter transcripts due to the properties of particular ROI
sequences. The threshold values m, n, and e are arbitrarily set in
the configuration file. Finally, a list of BCs that are common for
all samples is generated considering that some BCs might have
zero counts in some or all replicates of the expression data.

Identification of Genuine BCs
Oligonucleotides with a totally randomized part (characterized by
an equal representation of all four nucleotides at each position)
of 15–20 nts in length can ensure cloning of ∼1 × 109 to
1 × 1012 unique BCs, some of which might be different from
each other just at one position. However, in practice, the size of

Frontiers in Genetics | www.frontiersin.org 6 May 2021 | Volume 12 | Article 618189

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-618189 May 11, 2021 Time: 13:2 # 7

Letiagina et al. MPRAdecoder Pipeline

FIGURE 3 | Identification of genuine BCs, their mutant variants, and associated ROIs. (A) The clustering of similar BC sequences is achieved by their decomposition
into overlapping k-mers and by the subsequent pairwise alignment of BCs that share identical k-mers. At the top, three BCs are shown as an example. K-mers
(6-mers) shared by BC1 and BC2 and by BC1 and BC3 are indicated by red and green arrows, respectively. At the bottom, the pairwise sequence alignment of the
candidate similar BC sequences is depicted. The BC1 and BC2 are recognized to be similar because their sequences differ from each other only at two positions
(≤the maximum allowed error rate). BC1 and BC3 are considered to be different because their sequences differ from each other at three positions (>the maximum
allowed error rate) even though these BCs share more common k-mers than the BC1 and BC2. (B) Identification of genuine BCs. One cluster of seven similar BCs
along with the associated ROI sequences is shown as an example. BC1 is the most abundant BC (as in A) and the ROI sequence, which is associated with it most
frequently (n1 > n4 and n1 > n7), is considered as the putative ROI for the cluster. By default, if the putative ROI is supported by at least 90% of normalized read
counts calculated for all ROI sequences found in the cluster, the BC1 becomes genuine. Otherwise, the entire cluster is excluded from the subsequent analysis.
Optionally (indicated by an asterisk), if mismatches within the ROI are permitted (e.g., a difference at one position could be allowed for the example data set), then
normalized read counts for the putative ROI and its allowed mutants are summed. Notice that differences between the ROI sequences associated with similar BCs
should be allowed with caution, especially for very short ROIs. Dashed horizontal lines separate different groups of ROIs: the putative sequence, its allowed mutants,
and all other sequences. Gray arrowheads denote mismatches in both panels.

a typical MPRA plasmid library is significantly less (by orders of
magnitude) than the theoretical values. Nevertheless, in MPRA
data sets, BCs with similar sequences do appear, partly due
to errors introduced during PCR amplification and NGS steps.
Thus, there is a need to find similar BC sequences, group them,

and identify the genuine BCs in each such group (referred to
below as a cluster). Two BC sequences are considered to be
similar if they differ at no more than s positions (by substitutions,
deletions, and/or insertions), where s is equal to the maximum
allowed error rate for this part. By default, up to two mismatches
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FIGURE 4 | Representative plots generated by the pipeline. (A) Distribution and correlation of normalized expression values for the entire MPRA library. At the top,
density plots of normalized expression values obtained for genuine BCs in each of the two replicates are shown. At the bottom, the correlation of these values
between the replicates is visualized as regular (left) and density (right) scatterplots. In the left scatterplot, the regression line and 99% confidence intervals are shown
in green; r and ρ denote Pearson’s correlation coefficient and Spearman’s rank correlation coefficient, respectively. (B) Genuine BC length distribution for the entire
MPRA library. (C) Histogram and a kernel density estimation of normalized expression values for the entire MPRA library that were averaged over replicates and
normalized to the wild-type reference construct. The expression levels of the wild-type and the deltaC mutant references are indicated by red and green vertical lines,
respectively. (D) Distribution of the genuine BC number per ROI for the entire MPRA library. (E) Effect of the BC sequences on normalized expression values as
estimated by using a subset of the ROIs, each associated with more than one BC. For each such ROI, only two different BCs, which are randomly assigned to
groups “1st BC” and “2nd BC” are used for the comparison (for the ROIs associated with three or more BCs, only two of them are randomly sampled). At the top,
density plots of normalized expression values obtained for BCs from the groups “1st BC” and “2nd BC” are shown. At the bottom, the correlation of these values
between the groups is visualized as regular (left) and density (right) scatterplots. The rest of the description of the left scatterplot is as in (A). (F) Distribution of
normalized expression values of genuine BCs, each associated with the ROI of the wild-type (WT) sequence. For (A–F), it is worthwhile noting that the plots shown
were generated by using the entire fastq file obtained (see section “Materials and Methods”), from which the example data set was randomly sampled.

are allowed for BCs of the example data set, as suggested
previously (Akhtar et al., 2013).

Because identification of similar BCs by the means of
alignment approaches is rather time-consuming, especially for
thousands or even millions of sequences to compare (Song
et al., 2014; Zielezinski et al., 2017), the MPRAdecoder
pipeline first preselects candidate BCs for their subsequent
pairwise sequence alignment (Figure 3A). The preselection
is achieved by decomposing all unique BC sequences into
overlapping k-mers and then revealing BCs that share identical

k-mers (Haubold, 2014; Zielezinski et al., 2017). The length
of k-mers (e.g., six for the example data set) is calculated
as the BC length/(s+ 1) rounded down to the nearest whole
number. Next, BCs sharing each particular k-mer are directly
compared by using the pairwise sequence alignment (see
above), taking into account their normalized read counts
(RPM values). Then, similar BCs are grouped into clusters,
and a number of quality control steps are applied to ensure
the absence of overlap between the clusters (ambiguous
cases are removed).
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After that, for each cluster, it is verified whether the most
abundant ROI associated with the most abundant BC is
supported by the majority of normalized read counts obtained
for all ROI sequences present in a cluster (Figure 3B). As a
default setting, an arbitrary cutoff at ≥ 0.9 (specified in the
configuration file) is used, similar to earlier studies (Akhtar et al.,
2013; Mogno et al., 2013). If the criterion is not satisfied, probably
due to associations of the same BC with different ROIs during the
cloning by a chance or formation of chimeric molecules during
PCR amplification of the mapping samples (Omelina et al., 2019),
the entire cluster is excluded from the downstream analysis. If the
criterion is satisfied, the most abundant BC and all other BCs are
recognized as genuine and its mutant variants, respectively (the
appropriate information is saved in a tab-delimited text file), and
the RPM values of all BCs in such cluster are summed for each
replicate of each sample. Eventually, all genuine BC sequences are
different from each other by at least s + 1 position(s) (e.g., three
for the example data set).

Data Normalization and Visualization
Once genuine BCs are identified, their RPM values in the
normalization and expression replicates are averaged. Next, for
each genuine BC, the normalized expression value is calculated
as a ratio between its expression and normalization RPM values.
Then, if reference constructs were spiked in the plasmid library,
the pipeline can further normalize data by dividing them by
the value obtained for one of these references (specified in the
configuration file; e.g., for the wild-type construct in the case of
the example data set). After that, values obtained with different
genuine BCs but for the same ROI sequence are averaged. The
raw and normalized read counts per unique BC–ROI association
for each replicate of the mapping samples and per unique BC
for each replicate of the expression and normalization samples,
the RPM values averaged over these replicates as well as the
ultimate expression values obtained for genuine BCs after each
step of the data normalization and averaging are saved as tab-
delimited text files. Also, the important details of data processing
are reported in additional files. Among them are the numbers of
allowed mismatches in the expected parts of the reads; the list
of input fastq files used for a run; and statistics on (i) total and
effective read counts per fastq file, (ii) numbers of unique and
genuine BCs, and (iii) numbers of genuine BCs per ROI.

Finally, the pipeline generates a number of plots to help
evaluate data quality and interpret the results (Figure 4). In
particular, the reproducibility of the measurements between the
replicates of the expression and normalization samples, the
potential influence of the BC sequences on the measurements,
and the sequence peculiarities of the ROIs with different
properties are visualized.

Performance of the Pipeline
The pipeline can process 1 million reads of a non-demultiplexed
fastq file in ∼20 min using the hardware and software specified
in Materials and Methods. For larger data sets, the processing
time can be estimated by assuming a linear dependence on
the read number.

DISCUSSION

MPRAs are becoming widely used as an effective tool to
assess functionality of cis-regulatory DNA elements in a high-
throughput manner (Ernst et al., 2016; Rabani et al., 2017;
Mattioli et al., 2019; Shigaki et al., 2019; Choi et al., 2020; Davis
et al., 2020; Ireland et al., 2020; King et al., 2020; Klein et al.,
2020; Morgan et al., 2020; Renganaath et al., 2020). In addition,
several modifications to the approach have been described that
broaden its applicability (Rosenberg et al., 2015; Shen et al., 2016;
Safra et al., 2017). Accordingly, to simplify the design of the
MPRA experiments as well as to analyze their results, a number
of bioinformatics pipelines have been developed, the majority of
which were, however, so far validated primarily for studies with
predetermined sequences of both ROIs and BCs or, at least, ROIs
(Georgakopoulos-Soares et al., 2017; Ghazi et al., 2018; Kalita
et al., 2018; Ashuach et al., 2019; Myint et al., 2019; Niroula et al.,
2019; Gordon et al., 2020; Qiao et al., 2020; Yang et al., 2021).

The MPRAdecoder pipeline is primarily intended for the
processing of data obtained for MPRA libraries generated using
oligonucleotides with randomized stretches of nucleotides for
cloning the ROI and BC sequences. Such libraries are most
suitable for the investigation of the properties of all possible
sequence variants within a certain small region of a regulatory
element. Considering the current capabilities of NGS as well as
the necessity for several different BCs per ROI, the length of the
region that can be subjected to saturation mutagenesis is in the
range of 8–10 nts. The need for multiple BCs per ROI is dictated
by the following two main factors. First, the BC sequences
themselves might influence the measurements performed (Ernst
et al., 2016; Ulirsch et al., 2016; Figure 4F), most probably due
to occasional occurrence of binding sites for specific DNA- or
RNA-binding proteins or microRNA in them. Therefore, in order
to identify and exclude such cases, it is necessary to analyze
each ROI sequence in combination with different BCs. Second,
mutations may appear in both the ROI and BC sequences due
to errors in PCR amplification and NGS although the frequency
of such events was previously estimated to be relatively low (the
error rate per nt ≤ 0.3%) (Pfeiffer et al., 2018; Ma et al., 2019). At
the same time, all possible variants of the short ROI sequence are
expected to be present in a high-quality MPRA library, making
identification of mutant ROI variants in the reads practically
impossible. However, the use of multiple BCs for each ROI allows
detecting outliers, which can be, in particular, caused by mutated
ROI sequences, and excluding them from the analysis.

Multiple BCs per ROI can be simply ensured by a longer
sequence of the BCs compared to the ROIs (e.g., 18 and 8 nts,
respectively, in the example MPRA library). In addition, such
design allows excluding as much as possible mutant or just very
similar BC sequences from the analysis. Namely, only such BCs
(referred to as genuine) (Akhtar et al., 2013; Omelina et al., 2019)
are used, which sequences differ from each other by at least a
certain number of nts. For example, when predefined BCs up to
20 nts in length are used, the difference between each pair of them
of at least at two to three positions is typically set (Patwardhan
et al., 2009; Sharon et al., 2012). For BCs with random sequences
of 16 nts in length, the minimum difference at three positions
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also provides reliable measurements (Akhtar et al., 2013, 2014).
In our case, we linked the allowed error rate in the BC sequences
(as well as in all other parts of the reads, except for the ROI, in
which we do not allow errors by default) with the experimentally
determined error rate detected for fixed sequences amplified and
sequenced in same conditions. Note that with the ROI length of 8
nts, a total of 48 = 65,536 sequence variants are possible, whereas
the BC length of 18 nts provides 418 = 68,719,476,736 variants.
Of the latter, obviously, not all can be genuine BCs (satisfy the
Levenshtein distance ≥ 3) (Faircloth and Glenn, 2012; Hawkins
et al., 2018), but nevertheless, each ROI can be associated with
more than enough number of different BCs.

The use of oligonucleotides with randomized stretches of
nucleotides to clone the ROIs and BCs as well as regular
primers to amplify the mapping, normalization, and expression
samples means that the following considerations should be
taken into account during the processing of raw MPRA
data. First, although synthetic oligonucleotides are purified by
polyacrylamide gel electrophoresis (PAGE) or high-performance
liquid chromatography (HPLC), their actual length in the
preparation may vary due to the presence of deletions (more
often) and insertions (less often) (Figure 4B). Second, our
experience shows that most errors found in the reads come from
imperfection in oligonucleotide primer synthesis and purification
(however, this could strongly depend on a supplier). Therefore,
substitutions, deletions, and insertions are quite possible in
the sequences of the ROIs and BCs as well as in the regions
of the constant parts flanking them (that were generated by
oligonucleotides used at the plasmid library cloning step). The
same is true for the edges of PCR-amplified products, which
are introduced by appropriate primer pairs. Along with the
general drop in the quality of sequencing toward the end of
the reads, this is the main reason why we allow a fairly high
percentage of errors (∼10%) in all expected parts of the reads. The
described issues with the use of synthesized oligonucleotides are
generally consistent with previous studies (Faircloth and Glenn,
2012; Hawkins et al., 2018). In addition, considering the possible
variation in the BC length, especially its shortening (Figure 4B),
it seems reasonable to equip the reference constructs that can be
spiked into an MPRA library with slightly longer BC sequences
(e.g., 20 nts in the example MPRA library). This could minimize
the chance of accidental coincidence of sequences of the reference
BC and a random BC.

Because many of the pipeline settings are arbitrary (set in
the configuration file), it is important to note the following.
First, of course, it is possible to set the allowed error level for
all expected parts of reads to 0%; however, in the case of the
example data set, this leads to a decrease in the number of
genuine BCs by more than two times compared with the default
settings described above. Second, because it is well known that
the quality of sequencing gradually decreases toward the end of
the reads, it seems appropriate to map the mCP3 and neCP2
regions in the reads not completely, but only by their beginnings.
In particular, the use of only 10 instead of 17 nts for mCP3
and 20 instead of 86 nts for neCP2 for the example data set
ultimately makes it possible to detect more than∼1.5 times more
genuine BCs with the error level in all parts of the reads set to

0%, but this gives only negligible gain (<0.1%) with the default
settings described above. Third, the difference in the number
of minimum reads, in which unique BCs should be detected in
replicates of the mapping and normalization samples (parameters
m and n), is associated with the fact that, when performing
the mapping procedure, it is more important to identify the
fact of different BC–ROI association(s) although data from the
normalization samples are eventually quantified. Moreover, both
of these parameters, as well as the parameter e, which determines
the minimum number of reads for each unique BC in replicates
of the expression samples, largely depend on both the complexity
of a particular MPRA library (the number of unique clones in it)
and the sequencing depth of the samples. Fourth, the threshold
level of 0.9 controlling the identification of genuine BCs can be
increased if necessary. This parameter is also highly dependent
on the expected number of unique BC–ROI associations in the
samples and their sequencing depth.

Although it is strongly recommended to obtain at least
two biological replicates of the mapping, normalization, and
expression samples, we notice that the pipeline nevertheless can
process single replicates of these samples as well. This option
can be useful when performing pilot experiments for a quick
and preliminary evaluation of the results. Also, it is possible to
load raw data obtained for different MPRA libraries into the
pipeline simultaneously.

Finally, the results obtained for the example data set
(Figure 4C) indicate that sequence variations in the region
located after the TTS (which is not present in mature mRNA
molecules) are able to substantially influence the reporter
transcript level. This suggests a potentially high regulatory
potential of the sequences located at the 3′-ends of genes, which
has not yet been systematically studied.
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