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Abstract: The ability to repair injuries among reptiles, i.e., ectothermic amniotes, is similar to that
of mammals with some noteworthy exceptions. While large wounds in turtles and crocodilians
are repaired through scarring, the reparative capacity involving the tail derives from a combined
process of wound healing and somatic growth, the latter being continuous in reptiles. When the
tail is injured in juvenile crocodilians, turtles and tortoises as well as the tuatara (Rhynchocephalia:
Sphenodon punctatus, Gray 1842), the wound is repaired in these reptiles and some muscle and
connective tissue and large amounts of cartilage are regenerated during normal growth. This process,
here indicated as “regengrow”, can take years to produce tails with similar lengths of the originals
and results in only apparently regenerated replacements. These new tails contain a cartilaginous axis
and very small (turtle and crocodilians) to substantial (e.g., in tuatara) muscle mass, while most of
the tail is formed by an irregular dense connective tissue containing numerous fat cells and sparse
nerves. Tail regengrow in the tuatara is a long process that initially resembles that of lizards (the
latter being part of the sister group Squamata within the Lepidosauria) with the formation of an axial
ependymal tube isolated within a cartilaginous cylinder and surrounded by an irregular fat-rich
connective tissue, some muscle bundles, and neogenic scales. Cell proliferation is active in the apical
regenerative blastema, but much reduced cell proliferation continues in older regenerated tails, where
it occurs mostly in the axial cartilage and scale epidermis of the new tail, but less commonly in the
regenerated spinal cord, muscles, and connective tissues. The higher tissue regeneration of Sphenodon
and other lepidosaurians provides useful information for attempts to improve organ regeneration in
endothermic amniotes.

Keywords: reptilia; rhynchocephalia; Squamata; lepidosauria; Sphenodon; tail; autotomy; morpho-
genesis; microscopy

1. Introduction and Overview
1.1. Wound Healing and Regeneration among Reptiles Generally

Extant reptiles represent the modern form of the first amniotes that evolved in the
Upper Carboniferous-Lower Permian [1,2]. It has been hypothesized that when amniotes
evolved a form of direct development, eliminating the larval growth period and metamor-
phic phases of their amphibian ancestors, they also lost a number of genes implicated in
regeneration [3]. The evolution of reptiles from a common ancestor of “basal amniotes”
known as cotylosaurs, resulted in amniotes with a direct embryonic development and
an ectothermic metabolism, initiated in the Upper Carboniferous and the Permian. One
lineage led to synapsids, with another leading to sauropsids, having already been estab-
lished (Figure 1A). Among the sauropsids, independent evolutionary lineages separated
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lepidosaurians from testudines and crocodilians already from the Permian/lower Triassic,
and archosaurians eventually gave rise to birds in the Jurassic.
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Figure 1. (A), Schematic cladogramme indicating the two main amniote radiation paths from basal 
amniotes, i.e., synapsids-mammals (pink) and sauropsids that include reptiles (green) and birds 
(light blue). (B), Table indicating the main organ and tissues undergoing wound healing with 
scarring, regengrow and heteromorphic regeneration in different sub-orders of Reptiles. 

Within the lepidosaurians, the widely used term for the lineage that includes the 
tuatara and the sister-group of squamates is “Rhynchocephalia” whereas Sphenodonti-
dae refers to just one family within this lineage. Squamates, i.e., scaled reptiles, com-
prising lizards, snakes, and amphisbaenians, separated during the Triassic and gave rise 
to reptiles whose living representatives often retain a lizard-like body form [4]. Different 
from pisciform vertebrates, where wounds or injuries are constantly bathed and flushed 
by water, in the terrestrial environment small injuries and larger wounds—as well as 
significant losses of skin, tails or limbs—had to be repaired quickly to avoid water loss 
and microbe infections. Scarring, a rapid process of healing, was and still is the common 
outcome in terrestrial vertebrates [5], a process likely to date back to all Mesozoic sau-
ropsids and therapsid-early mammals, especially in cases that involved losses of large 
organs such as the tail or limbs. 

Although mentioned as early as 1886 by Gadow [6], regenerative capabilities in 
testudines and crocodilians are limited, as indicated in Figure 1B. Injuries in tortoises af-
fect primarily the carapace, the legs, or the tail and can be the result of attacks by large 
predators or rats, of encounters with machinery such as cars, lawn mowers, etc. and of 
exposure to fires, but as observations on Terrapene carolina by Howey & Roosenburg [7] 
and on Trachemys scripta elegans by Negrini et al. [8] show, wound healing in chelonians is 
a very slow process. Freshwater and marine turtles are increasingly at risk of being 
damaged by ships and motor boats. Wound healing and repairs to damaged horny car-

Figure 1. (A), Schematic cladogramme indicating the two main amniote radiation paths from basal
amniotes, i.e., synapsids-mammals (pink) and sauropsids that include reptiles (green) and birds (light
blue). (B), Table indicating the main organ and tissues undergoing wound healing with scarring,
regengrow and heteromorphic regeneration in different sub-orders of Reptiles.

Within the lepidosaurians, the widely used term for the lineage that includes the
tuatara and the sister-group of squamates is “Rhynchocephalia” whereas Sphenodontidae
refers to just one family within this lineage. Squamates, i.e., scaled reptiles, comprising
lizards, snakes, and amphisbaenians, separated during the Triassic and gave rise to reptiles
whose living representatives often retain a lizard-like body form [4]. Different from pisci-
form vertebrates, where wounds or injuries are constantly bathed and flushed by water,
in the terrestrial environment small injuries and larger wounds—as well as significant
losses of skin, tails or limbs—had to be repaired quickly to avoid water loss and microbe
infections. Scarring, a rapid process of healing, was and still is the common outcome in
terrestrial vertebrates [5], a process likely to date back to all Mesozoic sauropsids and
therapsid-early mammals, especially in cases that involved losses of large organs such as
the tail or limbs.

Although mentioned as early as 1886 by Gadow [6], regenerative capabilities in
testudines and crocodilians are limited, as indicated in Figure 1B. Injuries in tortoises
affect primarily the carapace, the legs, or the tail and can be the result of attacks by large
predators or rats, of encounters with machinery such as cars, lawn mowers, etc. and of
exposure to fires, but as observations on Terrapene carolina by Howey & Roosenburg [7] and
on Trachemys scripta elegans by Negrini et al. [8] show, wound healing in chelonians is a
very slow process. Freshwater and marine turtles are increasingly at risk of being damaged
by ships and motor boats. Wound healing and repairs to damaged horny carapaces in
tortoises demonstrate a certain regenerative capacity [9–12] and that some ability exists to
at least partially replace a lost or damaged tail has been reported by Davenport [13] for
Testudo hermanni and Kuchling [14] for Emydura sp.
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Not a great deal of information is available on the duration of the process in chelonians
(Figure 1B), but in Testudo hermanni it took the tail spur six years to regenerate to a length
of 4 mm and required 12 years to reach 8 mm. At that time, it had regained the pattern
and colouration typical of the species. A partial recovery over six years of fire-induced
damage to the carapace of a Testudo hermanni has been reported by Martinez-Silvestre &
Soler-Massana [15]. A bifid tail, described by Mota-Rodrigues & Feitosa-Silva [16] was
present in the river turtle Phrynops tuberosus and that the freshwater turtle Trachemys dor-
bignyi even recovered from spinal cord injury and regained the competence to use its
legs and to walk again, although not as well as before the injury, was demonstrated by
Reherman et al. [17,18].

Repairs to part of the mandible and cutaneous scutes in crocodilians have been
mentioned, Brazaitis [19] (Figure 1B), but information on regenerative processes involving
tails is not extensive, although it has been documented as early as 1937 [20]. Rashid &
Chapman [21] have discussed why it is not always easy to precisely define the tail and
denote the boundary between it and the trunk and have pointed out that “outgrowth of
the tail from the secondary body shares numerous developmental features with limbs”.
However, limb regeneration appears to be absent from all reptiles, while tail regeneration
has, for example, been reported from the Yacare caiman by Dathe [22] and illustrated in a
Caiman crocodilus by Kälin [20] and is, of course, a well-studied phenomenon in Lacertilia.
A recent study by Xu et al. [23] that reviewed the earlier literature on tail regeneration in
crocodilians has shown that long and apparently regenerated tails were present in several
alligators. The regenerates were found to contain mostly irregular, dense connective tissue
around a central rod of cartilage. As the studied specimens were all relatively young
individuals, this suggested that they must have become amputated early in their lives and
that they had then undergone “regengrow” (defined by Alibardi [24] as a combination
involving regen-eration and growth) to replace their lost tail parts).

Even less information on wound repair and injuries, including those to the tail fol-
lowed by some form of recovery or restoration, is available in connection with snakes. But
there is much anecdotal and also some documented information on wound healing avail-
able. After surgically creating 1 cm anteroposteriorly, unsutured linear incisions and one
circular wound 6–8 mm in diameter in three garter snakes (Thamnophis sirtalis perietalis) and
four skin incisions and two excisional wounds 6–8 mm across in a further six snakes, Smith
& Barker [25] reported that the sequence of epidermal regeneration was fundamentally
similar to that of mammals. Henle & Grimm-Seyfarth [26] cite a report of two snakes with
two tails by Redi [27] and refer to a review of axial duplication in snakes by Wallach [28],
who stated that 6.2% of 505 examined snakes had tail duplications. However, it remained
unclear as to whether the snakes had already possessed the tail duplications during the
time they had hatched from the egg or had acquired them later, possibly as a response to
an injury.

Whether shorter tails in snakes actually represent a true form of autotomy or are
the results of amputations incurred during attacks by other animals, followed by some
healing and repair, or whether they had better be referred to as pseudo-autotomies (as
suggested in Costa et al. [29]), is a question still not fully resolved. Incidentally, although
not snakes but equally limbless reptiles, worm lizards of the family Amphisbaenidae
frequently experience tail loss (most likely through injury); yet, regeneration does not
occur [30,31]. On the other hand, the occurrence of secondary cartilage in a non-avian
dinosaur embryo has been reported by Bailleul et al. [32] and to what extent in reptiles,
generally, including Amphisbaenidae, flat bones like those of the skull can be repaired after
damage remains to be demonstrated despite an earlier report by Irwin & Ferguson [33],
who declared that progenitor cells of reptilian dermal bone “are not capable of forming
secondary cartilage”.
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1.2. Focusing on Tail Autotomies in Reptiles

The processes of autotomy and tail regeneration were likely already present in Captori-
nomorphs [34] before rhynchocephalians like Sphenodon and squamates split apart in the
Triassic and these processes were inherited by the two evolutionary lineages of lepidosauri-
ans (Figure 1A) [4]. Since the beginning of their evolution, lizards possessed long tails
from which through the phenomenon of autotomy the distal part could be released [34,35].
Based on the evidence of fossil specimens, lizards have always been in an intermediate level
of the trophic chain, and were potential prey of both the ruling diurnal archosaurians of
the time and nocturnal early mammalian-like reptiles and early mammals [1,2]. Although
speculative, it seems likely that without autotomy that facilitated tail loss under predatory
or fighting activities, lizards could have faced extinction; instead, however, they became
the dominant group of reptiles living today.

In conjunction with autotomy, lizards also evolved a process of regeneration of the
tail as a prominent process of post-embryonic development and differentiation. The
ability of lizards to regenerate the tail is present to different degrees among extant lizard
families [36–38], but can vary even within families [39]. Although an enormous amount of
scientific literature exists on tail regeneration in lizards, rather little is known in connection
with recoveries of other organs and tissues such as skin, scutes, optical nerve, spinal cord,
etc. (Figure 1B) [3,40–42]. A report by Jacyniak & Vickaryous [43] on cardiomyocyte
proliferation in the leopard gecko (Eublepharis macularius) showed that cell cycling by
cardiomyocytes occurred in this species, but that it was not impacted by caudal autotomy.

Controlled and therefore deliberate tail loss has been reported from a variety of
snakes, most notably colubrids, e.g., Dolichophis caspius and Natrix tesselata by Crnobrnja-
Isailoic et al. [44], Xenochrophis piscator by Ananjeva & Orlov [45], and Natriciteres spp. by
Broadley [46]. Caudal autotomy in the eastern garter snake, Thamnophis s. sirtalis was
reported by Cooper & Alfieri [47]. However, regarding convincing evidence that following
autotomy regeneration of lost tails in snakes takes place (if it occurs at all), still needs to
be presented. It seems that in snakes replacing autotomized tails by functional regener-
ates either does not happen at all or is very rare and then restricted to just some families.
Only Loveridge [48] and Sharma [49] reported tail autotomies in snakes with subsequent
regeneration: the former in connection with members of the genus Psammophis spp. (Lam-
prophiidae) and the latter in connection with Amphiesma stolatum (Colubridae). Regarding
amphisbaenian worm lizards, a largely fossorial group of limbless squamates, Gans [30]
states that they are apparently incapable of regenerating lost tails.

However, in the New Zealand tuatara the phenomenon of replacing a lost tail (or a
part of it) does occur. This rhynchocephalian reptile with an ancestry dating back over
220 million years, is a species categorised by the Interational Union for the Conservation
of Nature (IUCN) as being of “least concern (https://en.wikipedia.org/wiki/Tuatara ac-
cessed 28 August 2021). The tuatara is nowadays occurring only in New Zealand, where
it is of cultural significance to the indigenous Maori community as well as to other New
Zealanders. The species is adapted to cold-temperate climate conditions [50,51] and as a
consequence when compared with squamates from warmer climates, most processes in
tuatara require more time. Although tuatara can regenerate variable portions of its tail,
unsurprisingly the regeneration is very slow and because the latter happens contempora-
neously with body growth, it can be considered to represent regengrow [24,52]. Since the
last comprehensive review on lizard caudal autotomy in which tuatara are mentioned is
that of Batemen & Fleming [53] more than ten years ago, it seemed pertinent to produce an
update, specifically focusing on tuatara on account of its pivotal phylogenetic position in
the Rhynchocephalia as a sister-group of the squamates.

2. Caudal Autotomy in Tuatara
2.1. Sample Acquisition and Methodology

Our review and all micrographs are based on the 1988 and 1989 material, which
was obtained with the assistance from the Department of Conservation through a per-
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mit issued by Mr. Ian Govey and from Victoria University’s tuatara culture, headed by
Dr. Mike Thompson. New material for the images in this review were not used and none
of the images, obtained through standard methods explained in detail in all of our earlier
publications, had been published before. There are therefore no copyright issues.

To study how tail autotomy in the tuatara affected the histological and cellular re-
sponses in the regenerate, observations by light and electron microscopy were carried out
and combined with cytochemical analyses. After fixation in 4% or 10% buffered formalde-
hyde, regenerating blastema or 2–4 mm long pieces of the regenerating tail were embedded
in wax, Epon, or LR-white resins for sectioning, using a microtome (for wax) or an ultra-
microtome (for Epon and resins). Sections were stained using Haematoxylin-Eosin, 1%
Toluidine blue, or Palmgren silver stain for nervous and connective fibres. Tissue fixation,
embedding, staining, and sectioning techniques have been basically the same in all of our
previous investigations involving tuatara as well as other reptiles and detailed descriptions
of the histological and ultrastructural preparation methods are given in [42,52].

2.2. Tail Regeneration in the Tuatara Represents a Case of Regengrow

Like numerous species of lizard, the tuatara possesses autonomous fracture planes
in the tail [35,54,55]. The histological analysis of autotomous tail vertebrae of Sphenodon,
designated as pygous vertebrae by Seligmann et al. [56], showed that the splitting or
fracture plane contains small cells resembling blood elements of the bone marrow and
additional flat perichondrial cells or even chondrocytes/chondroblasts in continuity with
the fibro-cartilaginous tissue of the vertebral bone at the splitting surface (Figure 2A–C).
The fibro-cartilage is contacted at the fracture plane by numerous connective fibrils in
separated pre-fracture and post-fracture vertebral bodies. The fibrils give rise to 15–30 µm
thick fibrous bundles crossing the peri-vertebral adipose tissue and are in continuation
with the inter-muscle septa (Figure 2D,E). The latter terminate in the dermis and contact
the basement lamella of the scales, thereby forming the autotomous planes of the tuatara
tail [55], as observed also in lizards [35,57].

The microscopic observation of the cells present in the fracture plane of the vertebrae
indicates that they resemble those described for lizards [35,57], which demonstrates the
presence of stem/pro-cartilaginous cells in this region where also 5BrdU-Long Retaining
Labelled cells (LRC) have been observed [58]. The presence of putative stem elements that
can give rise to new cartilaginous cells explains the production of a large cartilaginous
tube after the tail is autotomized along the fracture (autotomous) plane. The presence
of remaining cartilaginous/chondroblast cells within the caudal vertebrae of Sphenodon,
suggests that cartilage cells for tail regeneration could also derive from the inter-vertebral
region when the amputation occurs at this level or after vertebral ablation [56].

In the study by Alibardi and Meyer-Rochow [52], during the first 4 years and 5 months
of life (47 months in regeneration + 5 months since they hatched = 53 months of life in
total), three young tuatara grew about 25% (snout-vent length, from 7.5 cm to 10.6 cm)
during which time they were autotomized two times to study the regeneration of their tails
(Figure 3). The first tail autotomy was performed on number 1 specimen at about 5 months
after birth, and the sample was collected at 5 months of regeneration (=10 months of age);
a second sample came from another individual at 7 months of regeneration (=12 months
of age), and 3 samples represented 10 months of regeneration (2 re-amputated and one
at the first amputation, but all at an age of the tuatara of 15 months). After 37 months
from the last amputation, the average body lengths in 2 juveniles were15.5 cm (with an
expected snout-vent length of 16.3 cm, the individuals were therefore 0.8 cm shorter than
had been expected). This value corresponded to a loss of 5% total body length but to 24.6%
of tail growth due to the 2 repetitive regenerations (Figure 3, the graph). Because of the
long duration of tail regeneration in the tuatara, it is likely that in addition to the initial
wound healing, blastema formation, and the differentiation of small muscle segments and
an axial cartilage, the slow process of growth contributed to the apparent regeneration
of the tail [52,59,60]. Tail re-regeneration was also studied in the skink Egernia kingii by
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Barr et al. [60]: it was present in 17.2% across three populations and the authors concluded
that “the ability to re-regenerate may minimise the costs to an individual’s fitness associated
with tail loss, efficiently restoring ecological functions of the tail”. Although slower in the
tuatara [61] than in the aforementioned skink, re-regeneration of the tail in tuatara may
provide similar benefits.
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Figure 2. Histological images (stained with Haematoxylin-Eosin in (A–C), and Palmgreen stain in (D,E)) of the caudal
vertebrae of a normal tail in the tuatara (inset in Figure A, Bar, 2 mm). (A), image showing the spinal cord, meninx
(artifactually dislocated after sectioning), and ventrally the vertebral body with the intra-vertebral fracture plane indicated
(arrow), which has artifactually been separated during sectioning. Bar, 100 µm. (B), closer view of fracture plane with
fragments of blue-stained cartilaginous cells (arrows), probably dislocated from the articular surfaces during sectioning. Bar,
100 µm. (C), close-up of the intra-vertebral splitting plane where numerous fibro-cartilaginous/connective cells (arrowheads)
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are present in continuation with the periosteum (arrow). Bar, 50 µm. (D), peri-vertebral region rich in fat cells and loose
connective showing two fibrous bundles (arrows) connecting pre- and post-vertebral bodies at the fracture plane to the
inter-muscle connective septa (arrowheads). The image represents the plane of autotomy of the tail, which continues (not
shown) into the dermis to externally reach the scales. Bar, 100 µm. (E), detail of the fibrous bundles (arrows) connected
to the pre-vertebral and post-vertebral bodies at the fracture or splitting autotomous plane. Bar, 50 µm. Legends: bm,
bone marrow; bo, vertebral bone; crt, cartilage; fp, fracture plane; mx, meninx; pt, post-vertebral body (more caudal) at
the fracture plane; pv, pre-vertebral body (more rostral) at the fracture plane; sc, spinal cord; vb, vertebral body. Note: All
micrographs are based on material obtained in 1988 and 1989 through a permit issued by Mr Ian Govey of the New Zealand
Department of Conservation and Dr Mike Thompson of Victoria University, Wellington (New Zealand). The material was
used in Alibardi and Meyer-Rochow [52,55] and all subsequent publications on tuatara by these authors.
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Figure 3. Growth of the regenerating tail during 47 months associated with body regeneration in
three tuatara (indicated by asterisk of different coloration), received initially at 3 months of age,
autotomized at 5 months of age at about half-distal length of the tail, measured and sampled at
different periods thereafter (see text for further explanations). The ordinate refers to the growth of
the regenerate, while the abscissa refers to time.

If we now compare this finding with a previous study on regenerated tails in Sphenodon,
in which it was calculated that juveniles grow at about 1.14 cm/year [55], we have to note
that in our study we observed a much lower value, namely 0.79 cm/year, based on snout-
vent length, which increased by 3.1 cm in 47 months (3.92 years). This corresponded to an
about 31% lost growth by comparison to 1.14 cm/year, and is therefore much higher than
our calculated 5% and 24.6% figures. Despite the different absolute percentages of body
length loss in the two examples, it appears that repeated tail regeneration did influence
normal growth in Sphenodon. Since the bodies of these juveniles grew about 25% in length
in 47 months (about 4 years), this suggests that the tissues observed in the regenerated tails
must have also grown at a similar rate.

The influence of somatic growth over the years affects all tissues including those in the
regenerating tail [61] and especially muscles and axial cartilage, a process that is indicative
of regengrow (defined earlier in this paper and in Alibardi [24]). Although small muscles
are regenerated during the first year following amputation [52], large muscle masses are



J. Dev. Biol. 2021, 9, 36 8 of 21

observed in the longer regenerated tails of mature individuals [55], and they are equally
regenerated by juvenile stages during the years following tail loss. These large masses of
muscle and cartilaginous tissues have also been observed in two adult individuals that we
have analysed, a male and a female, which presented long-term regenerated tails of 2.8 and
10.4 cm. An older juvenile with a regenerating tail of 1.7 cm, produced from a previous
regenerated tail, also showed a complex tissue organization in the new tail [51,59,62]: see
next paragraph.

Wounds to the limb, like in lizards may heal, but as with lizards, they do not lead to a
regenerate in Sphenodon. This was also observed after accidental injury where a juvenile
lost the anterior left foot but, after 3–15 months only developed a pale and scaled-over
scar covered by very small scales (lower inset in Figure 4A). Although digits also do not
regenerate [56], if a toe clip (a method for identifying individuals that is now generally
avoided) is performed incorrectly only just beneath the base of the claw, then the tissue and
claw do sometimes regenerate with a stub claw (A. Cree, personal communication, 2021).
Other cases of wound healing are not known or have not been described microscopically
in Sphenodon and New Zealand veterinarians, who from time to time have to treat tuatara,
have a saying that “tuatara get sick and recover on tuatara time”, meaning that recovery is
very, very slow (M. Jolly, personal communication 2021).

The question, of course, arises what the benefits to tuatara could have been to evolve
and maintain the ability to autotomize its tail and grow a new one, even if the regrowth
takes a very long time [60]. The high frequency of tail regeneration, estimated by one of us
(LA) on the basis of field observations on Stephens Island to be around 80%, suggests that
the loss of the tail is a common event in this species. These days tail loss is probably primar-
ily due to predation attempts of adult individuals on juveniles, attacks by large centipedes
such as Cormocephalus rubriceps on very small tuatara, and fighting during courtship among
adults [61]. Predation by flighted predators such as harriers and kingfishers is also known
and until its extinction in 1914, predation by the Laughing Owl Ninox (Sceloglaux) albifacies
most likely occurred as well.

But in the past—for at least 20 million years—tuatara had to cope with more formidable
predators, among them being large flightless birds such as Aptornis otidiformis in the North
Island and A. defossor in the South Island known as adzebills [63]. These extinct predators
appear to have been by and large diurnally active [63] and that may have been a factor
why tuatara, despite possessing an eye dominated by photoreceptive cones characteristic
of diurnal species Meyer-Rochow et al. [64], became a largely nocturnal predator with
vision adapted to very low light intensities [65,66]. It is obvious that the nocturnal lifestyle,
however, did not eliminate the need for tail autotomy, but whether regeneration has always
been as slow as it is now or was faster in the past is difficult to ascertain.
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Figure 4. Gross aspect (A) and histology of regenerating tail ((B–E), Toluidine blue stain). (A), juvenile of about 4 years of 
age with regenerated tail (arrowhead). Bar, 1 cm. In the upper inset (Bar, 1 mm) a blastema of about 2 months is shown. 
The scar (arrowhead) depicted in (A) lower inset formed after about 3 months following limb amputation. (B), blastema 
at about 3 months with a loose connective covered by a thick wound epidermis. Bar, 10µm. This schematic inset shows a 
blastema with the regions shown in (B–E). (C), proximal area of cross-sectioned conical blastema of 10 months 
post-autotomy showing three pro-muscle aggregates (arrows) separated by forming connective septa. A dense dermis is 
present beneath the cornified epidermis. Bar, 50µm. (D), detail of a muscle bundle at 10 months post-autotomy. The ar-
row indicates a myotube in cross-section. Bar, 10µm. (E), cross sectioned central cartilaginous cylinder surrounding the 

Figure 4. Gross aspect (A) and histology of regenerating tail ((B–E), Toluidine blue stain). (A), juvenile of about 4 years of
age with regenerated tail (arrowhead). Bar, 1 cm. In the upper inset (Bar, 1 mm) a blastema of about 2 months is shown.
The scar (arrowhead) depicted in (A) lower inset formed after about 3 months following limb amputation. (B), blastema at
about 3 months with a loose connective covered by a thick wound epidermis. Bar, 10 µm. This schematic inset shows a
blastema with the regions shown in (B–E). (C), proximal area of cross-sectioned conical blastema of 10 months post-autotomy
showing three pro-muscle aggregates (arrows) separated by forming connective septa. A dense dermis is present beneath
the cornified epidermis. Bar, 50 µm. (D), detail of a muscle bundle at 10 months post-autotomy. The arrow indicates a myotube
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in cross-section. Bar, 10 µm. (E), cross sectioned central cartilaginous cylinder surrounding the ependymal canal in proximal
regions of a cone of 7 months post-autotomy. Arrows point to the outer and inner perichondria. Bar, 50 µm. Legends:
bl, blastema; cs, connective septa (forming intermuscle); de, dermis; ep, ependymal canal; mx, meninge; nt, normal tail
(stump containing vertebrae and spinal cord); rca, regenerated cartilage; we, wound (regenerating) epidermis. Note: All
micrographs are based on material obtained in 1988 and 1989 through a permit issued by Mr Ian Govey of the New Zealand
Department of Conservation and Dr Mike Thompson of Victoria University, Wellington (New Zealand). The material was
used in Alibardi and Meyer-Rochow [52,59,60,62].

2.3. Histology of Regenerating and Regenerated Tails in the Tuatara

A summary of our earlier studies is presented in this paper, but more detailed infor-
mation on specific aspects of the processes involved in regenerating different tissues is
available from our previously published and more detailed analyses [51,58,59,62,67–70].
After tail autotomy or amputation the stump heals very slowly and to complete re-
epithelialization (at 23–24 ◦C) about 1 month is required. A regenerative blastema is
visible from about 2–3 months (Figure 4A, upper inset), but in the following months from
then on the stump grows considerably more slowly (Figure 3). At about 3 years (37 months)
from the second amputation, the tail has grown, but is much shorter than the original, often
with a club-like shape (Figure 4A). An amputated limb forms a scar after 3 months from
the amputation, but it does not grow into a limb even after 10–15 months, and does not
regenerate any further (Figure 4, lower inset).

Microscopic investigations show that the wound (regenerating) epidermis covering
the blastema of 1–2 mm is multilayered and forms an initially soft corneous layer, while
underneath loose connective tissue is present containing mainly fibroblasts, blood ves-
sels, sparse nerves, and blood cells (Figure 4B). In regenerating cones of 3–6.5 mm at
5–10 months also some pro-muscle aggregates are recognizable in the more proximal re-
gions close to the original tail. Here they form, just like in lizards, 12–16 very small muscle
groups identifiable in cross section, each one made up of a limited number of myotubes
(15–30; Figure 4C,D). Most of the regenerating cones at 10–15 months post-amputation are
composed of connective tissue containing fibrocytes and numerous collagen fibrils with
irregular orientation. In the central part of the cones of 3–6.5 mm in length (Figure 3), a
cartilaginous cylinder is formed that shows flat chondroblasts at the external and internal
periphery, as observed in longitudinal and cross-sections (Figure 4E).

Inside the cartilaginous tube a loose meninx with numerous blood vessels and a
simple spinal cord are regenerated (Figures 4E and 5A). At 5 months of regeneration the
spinal cord is formed by ependymal cells, most of which appear as elongated tanicytes
terminating into the external basal lamina. The pale spaces among tanicytes are occupied
with axons and neuropilar elongations, while rare glial and neuronal cells are present.
Among the fibrous connective tissue located outside the cartilaginous cylinder, various
amyelinic and myelinated nerves are present, and their terminations reach the apex of the
regenerating tail at 5–10 months of tail regeneration (Figure 5B,C). Numerous fat cells are
formed in the proximal regions of regenerating 3–6.5 mm large cones.

After 37 months from the last collection (the last sampling done on 2 out of the initial
3 specimens), the regenerated tail appeared to consist mainly of irregular dense connective
tissue, with large accumulations of fat cells around the central cartilaginous tube where
calcification is predominantly noticeable among internal isogenic groups (Figure 5D–F).
Flat chondroblasts likely forming a perichondrium are seen in the inner and outer periphery
of the cartilage, while only tanicytes with a pseudostratified organization are present in
the regenerated spinal cord. Segmental muscles remain limited in these regenerated tail
of about 3 years, but the 2–3 amputations carried on during this period (Figure 3) may
have stimulated excessive fibrosis. This is also indicated by the histological analyses of
regenerated tails from older specimens of unknown age [52].
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regenerated tail of unknown age. Arrows indicate intra-cartilaginous areas of calcification/degeneration. Arrowheads 
indicate the fibrous connective contacting the perichondrium. Bar, 50µm. (E) longitudinal section of axial cartilage in an 
old regenerate of unknown age. The outer perichondrium is indicated by arrowheads. Bar, 20µm. The upper inset (Bar, 
10µm) details the pseudostratified ependymal epithelium. The lower inset (Bar, 50µm) instead shows the apical end of 
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Figure 5. Histology of regenerating tail (A,B,F) Toludine blue stain; (D,E) Palmgreen stain). (A) cross-sectioned ependymal
tube showing the elongation of ependymal tanicytes ending on the basement membrane (arrows). Arrowheads point to glial
cells detached from the ependymal epithelium. Bar, 10 µm. (B), cross-sectioned myelinated (arrows) nerve at 10 months
regeneration. Bar, 10 µm. The schematic drawing shows the indicated positions of the figures. (C), longitudinal section of
myelinated nerve 10 months post-autotomy. Bar, 10 µm. (D), cross section of the cartilaginous tube in a long regenerated
tail of unknown age. Arrows indicate intra-cartilaginous areas of calcification/degeneration. Arrowheads indicate the
fibrous connective contacting the perichondrium. Bar, 50 µm. (E) longitudinal section of axial cartilage in an old regenerate
of unknown age. The outer perichondrium is indicated by arrowheads. Bar, 20 µm. The upper inset (Bar, 10 µm) details the
pseudostratified ependymal epithelium. The lower inset (Bar, 50 µm) instead shows the apical end of the cartilaginous tube,
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close to the connective tissue of the tip of the regenerated tail. (F), numerous fat cells (arrows) are present around the
cartilaginous tube. Bar, 20 µm. Legends: ca, regenerated cartilage; cc, central canal; cnt, connective (fibrous) tissue;
e, epidermis of neogenic apical scale; ep, ependymal epithelium; epi, epinevrio; mx, meninx; np, areas occupied from
axons and neuropile; nt, normal tail (stump);rca, regenerated cartilage; rm, regenerating muscles/myomeres. Note: All
micrographs are based on material obtained in 1988 and 1989 through a permit issued by Mr Ian Govey of the New Zealand
Department of Conservation and Dr Mike Thompson of Victoria University, Wellington (New Zealand). The material was
used in Alibardi and Meyer-Rochow [52,58,59,62].

In a smaller individual, a regenerating tail of 1.7 cm shows small muscle aggregates
formed by multinucleated myotubes that exhibit a “leaf-like shape” in the flat plane of the
section, as myotubes are attached with a central connective myoseptum and 2 external
myosepta (Figure 6A,B). Very large myotomes are instead observed in the other two large
specimens of unknow age, possessing long regenerated tails (2.8 and 10.4 cm), as has also
been illustrated in other cases (see Figures 10 and 11 in: [55]). Old regenerate/regengrow
tails also contain large deposits of peri-cartilaginous fat, and more externally substantial
muscle bundles with a high innervation score, as observed using the Palmgreen silver
staining method for nerve fibres. The latter staining evidences an external innervation of
myotubes, starting from nerve fibres crossing the external and internal connective septa
and penetrating inside the myotubes or the muscle fibres in more proximal myomeres of
the regenerated/regengrow tail (Figure 6D,E).

Large segmental myomeres occupy extensive areas of regenerated tail at 2.5–10 cm
from the tip of the new tail. They give rise to over 20 muscle bundles in cross section
whose dimensions decrease from proximal regions toward the apex (Figure 7A, inset).
In his study, Ali [55] observed about 40 bundles of “regenerated” muscles, which did,
however, exhibit smaller dimension than the original intrinsic and extrinsic tail muscles.
As indicated above, it is likely that these large segmental muscles derive from a long
process of growth superimposed on the initial regeneration of pro-muscle aggregates,
observed in the early regenerating tail. The structure of the large myomeres maintains
the original leaf-like shape in a flat plane, with a thick, central connective septum and
two peripheral septa to which the muscle fibres are attached (Figure 7A–C). Although the
precise three-dimensional shape of these segmental muscles remains un-determined, it
appears that the terminal cones of one muscle segment insert into at least one, perhaps even
two, successive myomeres, forming an acute zig-zag conformation (Figure 7A,B,D,E; see
also: [55]). In both longitudinal and cross sections of the regenerated tail, numerous variably
thick inter-muscle connective septa contact the fibrous periosteum of the cartilaginous
tube (Figure 7E,F). This anatomical connection or arrangement suggests that muscle and
axial skeleton are mechanically integrated, and even that muscle contraction (after nerve
impulse registration in the regenerated/grown muscles) is transmitted to the axial skeleton,
although the tail in tuatara appears quite stiff and little capable of bending.
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ichondrium. Bar, 50µm. The schematic drawing shows the indicative positions of the following figures. (B), detail on a 
forming, leaf-like myomere, with an axial intermuscle connective (arrows) and external limiting connective septa (ar-
rowheads). Bar, 10µm.(C), tangential longitudinal section of the axial cartilage surrounded by fat connective tissue in an 
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Figure 6. Histology of regenerating tail of unknown age (A,B) Haematoxylin-eosin stain; (C–E), Palmgreen stain). (A), mid-
apical region showing a distinctly cellular cartilage with outer and inner peripheries (arrows) representing the perichon-
drium. Bar, 50 µm. The schematic drawing shows the indicative positions of the following figures. (B), detail on a forming,
leaf-like myomere, with an axial intermuscle connective (arrows) and external limiting connective septa (arrowheads). Bar,
10 µm.(C), tangential longitudinal section of the axial cartilage surrounded by fat connective tissue in an old (age unknown)
regenerating tail. Arrows indicate the fibrous layer in contact with the perichondrium. Bar, 50 µm. (D), detail showing
nerve fibres coursing within the outer connective septum (arrows) and other nerves entering the myofibres (arrowheads).
Bar, 10 µm. (E), additional details of nerve endings from peripheral (arrow) and central myoseptum (double arrow) entering
myofibres (arrowheads). Bar, 10 µm. Legends: cal, beginning of cartilage calcification; ep, ependyma; fat, connective tissues
rich in fat cells; mx, meninx; my, multinuclear myotubes/myofibres; rca, regenerated cartilaginous tube; v, blood vessels.
Note: All micrographs are based on material obtained in 1988 and 1989 through a permit issued by Mr Ian Govey of the
New Zealand Department of Conservation and Dr Mike Thompson of Victoria University, Wellington (New Zealand). The
material was used in Alibardi and Meyer-Rochow [52,58,62].
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Figure 7. Images derived from different areas of old regenerated tails of unknown age (A–D), Haematoxylin-Eosin stain;
(E,F), Palmgren stain). (A), detail of regenerated muscles with outer myoseptum (arrows) and inner myoseptum (arrowhead).
Bar, 50 µm. The schematic drawing shows the positions of the following figures. (B), detail to show the leaf-like organization
of regenerated muscles. The arrow shows a muscle cone of a myomer that is inserted in the following myomer through the
central myoseptum. Bar, 50 µm. (C), detail of multinucleated muscle fibres attached to the central and lateral (arrow) myosepta.
Bar, 10 µm. (D), cross sectioned muscle bundles close to the tail stump showing the central myoseptum (arrowhead), the lateral



J. Dev. Biol. 2021, 9, 36 15 of 21

myosepta (arrows) that are in continuation (double arrow) with a fibrous bundle connected to the central cartilaginous tube.
Bar, 50 µm. (E), other details showing more clearly the fibrous connections (arrows) between intermuscle connective tissue
and the circular fibrous tissues (arrowhead) contacting the cartilaginous tube. Bar, 50 µm. (F), longitudinal section showing
numerous fibrous bundles (arrows) connecting the cartilaginous tube with surrounding tissues, including muscles (here not
included/visible). Bar, 50 µm. Legends: cmi, central connective myoseptum; de, dermis; my, myofibres; nt, normal tail
(stump); pc, pericartilaginous connective tissue; rca, regenerating cartilage; sca, scales (neogenic). Note: All micrographs are
based on material obtained in 1988 and 1989 through a permit issued by Mr Ian Govey of the New Zealand Department of
Conservation and Dr Mike Thompson of Victoria University, Wellington (New Zealand). The material was used in Alibardi
and Meyer-Rochow [51,58].

3. Immunohistochemical Considerations
Cell Proliferation in Old Regenerated Tails Supports the Concept of Regengrow

In order to determine whether cell proliferation is active and regengrow continues in
old regenerated tails, we have studied the main sites of proliferation in the three old regen-
erated tails found in nature and available to us [52,58,59,62] (Figures 8 and 9). From other
sections obtained from the previously utilized material, a method to retrieve immunore-
activity has been used on wax-embedded tissues in order to detect PCNA (Proliferation
Cell Nuclear Antigen) labelled nuclei. Longitudinal sections of regenerated tails were
de-waxed, rinsed in water, immersed in 0.1 M citrate buffer at pH 5.6, and then treated in a
microwave oven for 5–6 min for antigen retrieval. Following that procedure, the sections
were incubated with a mouse antibody against PCNA (Sigma, Burlington, MA, USA),
rinsed and immunolabelled with anti mouse-TRITC (red) or-FITC (green), counterstained
for nuclei using the blue fluorescent DAPI, and observed under a fluorescent microscope.

PCNA-labelled nuclei were few in number and mainly observed in the epidermis
and at the periphery of the axial cartilaginous tube; they were only occasionally detected
in other tissues (Figure 8). In the regenerated scales, few labelled nuclei were visible in
the basal layer of the outer scale surface (dorsal longer side of scales), and sparse and
infrequently labelled nuclei were seen associated with the surface of segmental muscles or
even inside the long regenerated muscle fibres (Figure 8A–C). Numerous PCNA-labelled
cells were instead present in the external and internal surfaces along the cartilaginous tube,
where smaller and flat chondroblasts were present. Labelling, however, became less intense
and disappeared altogether in the central part of the cartilage (Figure 8D,E).

Control sections did not show labelled cells (Figure 8F). Few PCNA-labelled nuclei
were also observed in the apical regenerating ependymal tube, localized inside the car-
tilaginous cylinder (Figure 8G). Labelled nuclei were rarely observed in the connective
and adipose tissues present around the cartilaginous cylinder, in blood vessels and nerves.
Therefore, the two main sites of proliferation, i.e., the external regions of the cartilaginous
tube and scales, indicate that growth is very low but still active in some of the tissue of the
old regenerating tails, a process likely also present in the skeletal-muscle apparatus of the
remaining body, thus sustaining the idea that a process of regengrow is involved in the tail
regeneration of tuatara juveniles and young individuals [52] as it is in other reptiles with
continuous growth, Xu et al. [23,24].

The PCNA observations were supported by the use of another cell proliferation marker
antibody (KI67-3E6, from Hybridoma Bank, Iowa City, IA, USA). After antigen retrieval,
the sections revealed sparse labelled cells (nuclei) in the epidermis of neogenic scales
(Figure 9A), and occasionally labelled nuclei within regenerated myofibres (Figure 9B).
More frequent labelling was observed in the cartilaginous cylinder, especially in the un-
calcified external and internal (perichondrial) regions (Figure 9C). Furthermore, the apical
ependymal tube and ampulla showed small numbers of labelled nuclei (Figure 9D). Sparse
nerves and various blood vessels and capillaries also contained labelled cells in the en-
dothelium (Figure 9E), but control sections showed no labelled cells (Figure 9F). Therefore
it appears that the cartilage maintains the highest proliferation in the regenerated tail,
followed by the epidermis (this varies according to the period within the shedding cy-
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cle), ependymal canal, blood vessels, and muscles, indicating that these tissues undergo
slow growth.
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Figure 8. Immunofluorescence using the PCNA antibody. (A), neogenic scale located near the tail stump with sparse
labelled cells (arrows). Bar, 10 µm. The schematic inset shows the position of the following images. (B), Cross-sectioned
proximal muscles. Arrows show two labelled cells. Bar, 10 µm. (C), obliquely-sectioned muscle fibres (outlined by dots)
with labelled nuclei (arrows). Bar, 10 µm. (D), external part of the cartilaginous cylinder with labelled flat chondroblasts
(arrows) especially abundant in the perichondrium. Bar, 50 µm. (E), detail of labelled cells (arrows) in the perichondrium.
Bar, 20 µm. (F), immunonegative control sections (CO) of cartilaginous cylinder. Bar, 50 µm. (G), detail on the ependyma of
medio-proximal region showing few labelled nuclei (arrows) Bar, 10 µm. Legends: cc, central canal; de, dermis; my, myofibres/
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myotubes; nt, normal tail (stump); per, perichondrium; rca, regenerated cartilage. Note: All micrographs are based
on material obtained in 1988 and 1989 through a permit issued by Mr Ian Govey of the New Zealand Department of
Conservation and Dr Mike Thompson of Victoria University, Wellington (New Zealand). The material was used in Alibardi
and Meyer-Rochow [67].
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Figure 9. Immunostaining using the proliferation marker antibody (KI-67). (A), epidermis (dashes underline the basal layer)
of proximal scale (arrows point some labelled nuclei). Bar, 10 µm. The schematic inset shows the position of the following
images. (B), proximal muscles with few labelled nuclei (arrows). Bar, 10 µm. (C), external part of the cartilaginous cylinder
with few labelled cells (arrows) in the perichondrion and inside isogenic groups. Bar, 20 µm. (D), medium-apical ependyma
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with few labelled nuclei (arrows). Bar, 10 µm. (E), small blood capillary with various labelled endothelial cells (arrows). Bar,
10 µm. (F), immunonegative control section of external region of the cartilage and perichondrion. Legends: cc, central canal;
de, dermis; ep, ependymal epithelium; my, myofibre; nt, normal tail (stump); per, perichondrium; rca, regenerated cartilage;
we, wound epidermis (corneous layer). Note: All micrographs are based on material obtained in 1988 and 1989 through
a permit issued by Mr Ian Govey of the New Zealand Department of Conservation and Dr Mike Thompson of Victoria
University, Wellington (New Zealand). The material was used in Alibardi and Meyer-Rochow [67].

An observation well worth investigating in the tuatara is whether epithelial prolif-
eration near the onset of ecdysis might not contribute to an accelerated production of
cells associated with the wound left by the autotomized tail. A scenario such as that has
been reported by Smith & Barker [25], who state that “in the few snakes in which the
proliferative stage of ecdysis occurred between wounding and necroscopy, this acceleration
seemed to occur.” These authors speculate that hormonal manipulation to induce ecdysis
could possibly be a means to promote a faster wound repair in squamates. To test this
hypothesis in the slowly growing tuatara would be quite a challenge.

4. Conclusions and Outlook

In conclusion, the formation and acquisition of the complex anatomy of the regener-
ated tail in S. punctatus, although simpler in view of its ramification and functional range
by comparison with the original tail, not only requires a long time; it also lags behind in
comparison with the normal growth of this reptile when not yet fully grown to adult size.
This process is herewith indicative of regengrow [24,52]. The initial regeneration and tissue
organization of the blastema [71], associated with the tuatara’s continuous growth during
its lifetime, a feature of its longevity actually doubted by Dawbin [72], determines the size
increases of numerous tissues in the new tail. It can lead to hypertrophy in muscles and
growth for the continuous appositional addition of chondroblasts for lengthening the axial
cartilage and for the replacement of cartilaginous cells that degenerate during calcification
in the central region of the cartilaginous tube [52].

The new tail appears to function mainly as a fat repository and as a mechanically
functional appendage for balanced locomotion. The tail is also likely to be important for
behavioural displays and aggressive encounters, especially in males [61,67]. As among
lizards, wound healing and tissue growth in the tuatara provide us with important infor-
mation on the generally limited capacity for regeneration in amniotes, this information
also addresses future interventions aiming to increase healing processes and to decrease
scarring in amniotes. This includes humans, and a better understanding of the role that the
integument plays as a microbial barrier and protector against injury can result from a more
detailed understanding of what happens to the regenerating integument in the tuatara as
an extant representative of the earliest amniotes [73,74].

The study of regenerative events can also help to determine evolutionary scenarios. It
was, for example, shown that dorsal crest scales and those of the tail spines of the tuatara
represent different specializations and have different roles to play [67]. Tail ridge scales and
those of the crest spines possess the typical epidermal organization of lepidosaurians with
a complete beta-layer, mesos region, and alpha-layer to which in agreement with [75–79]
and Alibardi & Meyer-Rochow [42] new keratin and corneous proteins are added and
incorporated. This condition corresponds to a post-shedding epidermal phase, i.e., the
most common stage found when sampling scales at random in both tuatara and lizards.
Modern birds, too, possess scales on their legs, but a molecular and cellular comparison
of the chicken’s scutate scales with alligator scales by Wu et al. [79] led these authors
to conclude that avian scales and reptilian scales may use different molecular circuits to
regulate development and morphogenesis. Besides the processes in the skin, the different
calcification pattern of the regenerated axial cartilage between tuatara and lizards [77,80]
also remains largely unexplained, but the formation of new cartilage in the outer and
inner parts of the axial cartilaginous tube (Figure 5D,E, Figure 8D,E and Figure 9C) further
indicates that a process of regengrow is active in S. punctaus.
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