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Abstract 
The brain connectivity of resting-state fMRI (rs-fMRI) represents an intrinsic state 

of brain architecture, and it has been used as a useful neural marker for detecting 

psychiatric conditions as well as for predicting psychosocial characteristics. However, 

most studies using brain connectivity have focused more on the strength of functional 

connectivity over time (static-FC) but less attention to temporal characteristics of 

connectivity changes (FC-variability). The primary goal of the current study was to 

investigate the effectiveness of using the FC-variability in classifying an individual’s 

pathological characteristics from others and predicting psychosocial characteristics. In 

addition, the current study aimed to prove that benefits of the FC-variability are reliable 

across various analysis procedures. To this end, three open public large resting-state 

fMRI datasets including individuals with Autism Spectrum Disorder (ABIDE; N = 1249), 

Schizophrenia disorder (COBRE; N = 145), and typical development (NKI; N = 672) 

were utilized for the machine learning (ML) classification and prediction based on their 

static-FC and the FC-variability metrics. To confirm the robustness of FC-variability 

utility, we benchmarked the ML classification and prediction with various brain 

parcellations and sliding window parameters. As a result, we found that the ML 

performances were significantly improved when the ML included FC-variability features 

in classifying pathological populations from controls (e.g., individuals with autism 

spectrum disorder vs. typical development) and predicting psychiatric severity (e.g., 

score of autism diagnostic observation schedule), regardless of parcellation selection 

and sliding window size. Additionally, the ML performance deterioration was significantly 

prevented with FC-variability features when excessive features were inputted into the 

ML models, yielding more reliable results. In conclusion, the current finding proved the 

usefulness of the FC-variability and its reliability. 
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Introduction 
The resting-state based functional connectivity is considered as a representation 

of the individual’s stable neural foundation that determines how individual responds to 

task-specific demands or environments (Cole et al., 2014; He, 2013; Smith et al., 2013). 

Indeed, this intrinsic functional connectivity pattern carries considerable promise as a 

tool in providing potential neural markers for various range of human behaviors 

including mental disorders as everyone has their own unique intrinsic patterns with a 

fairly high stability across time (Cole et al., 2014; Finn et al., 2015; Noble et al., 2017; 

Taxali et al., 2021; Termenon et al., 2016). At the early stage of human functional 

connectivity (FC) studies, researchers commonly adopted static measures of 

connectivity (static-FC), in which pairwise correlation (e.g., Pearson correlation) 

between time-series of each brain regions is calculated. However, as the static method 

uses entire BOLD signals in connectivity calculation, it does not consider temporal 

dynamics of neural communications that spontaneously changes over time (Chang & 

Glover, 2010; Chang et al., 2013). However, recent studies have demonstrated that the 

spontaneous signal changes significantly linked to the physiological underpinnings of 

information processing in the brain (Allen et al., 2018; Matsui et al., 2019; Tagliazucchi 

et al., 2012; Thompson et al., 2013) such that that temporal dynamics of FC in 

hemodynamics is significantly correlated with the calcium-imaging based FC measure 

which is a more direct measure of neuronal activations (Matsui et al., 2019). 

Recently, time-varying or dynamic-FC has gained attention to consider the 

temporal characteristics in estimation of functional connectivity as a promising substitute 

(Calhoun et al., 2014; Cohen, 2018; Hutchison et al., 2013; Preti et al., 2017). Typically, 

the dynamic-FC is estimated by using a sliding-window method which calculate FC 

within a smaller time window, the window slides to the next time, and this procedure is 

repeated, yielding many subsets of connectivity patterns. Thus, the dynamic approach 

can preserve the temporal dynamic information of connectivity across time. The derived 

dynamic-FC can be used in two approaches mostly to identify temporal features of FC 

(Fong et al., 2019). The ‘state-based’ approach distinguishes several dynamic states by 

identifying repeated spatial dynamic-FC profiles using clustering algorithms such as k-

means clustering (Weng et al., 2020) and evolutionary clustering (Deshpande & Jia, 
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2020). In contrast, the ‘edge-based’ approach which is more focused on the temporal 

features of each dynamic-FC (Preti et al., 2017), indicating connectivity stability over 

time quantified by using standard deviation (Chen et al., 2017; Falahpour et al., 2016; 

Kucyi & Davis, 2014; Kucyi et al., 2013; Li et al., 2018), concordance coefficient (L. Li et 

al., 2020), and mean square successive difference (MSSD; Chen et al., 2021).  

Recent functional connectivity studies using the ‘edge-based’ approach have 

highlighted that the temporal variability characteristic, namely functional connectivity 

variability (FC-variability; Elton & Gao, 2015; Kucyi & Davis, 2014), can be more 

sensitive in classifying disorders compared to the static approach. For example, studies 

of consciousness with FC-variability showed that spontaneous FC patterns are related 

to the stream of cognitive processes rather than random fluctuations which was shaped 

by anatomical connectivity in anesthetized animals (Barttfeld et al., 2015; Hudetz et al., 

2015; Hutchison et al., 2014) and humans (Kucyi & Davis, 2014). In psychiatric 

disorders, it was revealed that different FC-variability patterns for autism spectrum 

disorder (Chen et al., 2017; Chen et al., 2021; Falahpour et al., 2016; Guo et al., 2020; 

Harlalka et al., 2019; Kim et al., 2021; Y. Li et al., 2020; Mash et al., 2019), epilepsy (Li 

et al., 2018), schizophrenia (Supekar et al., 2019), ADHD (Wang et al., 2018), and 

depressive disorders (Chen et al., 2022). The FC-variability has further yielded cognitive 

applications in attention and arousal of caffeine intake. The attentional ability was 

associated with more stable FC-variability between brain networks (Fong et al., 2019) 

and the higher arousal after caffeine dose was represented as increasing in FC-

variability (Rack-Gomer & Liu, 2012). 

However, the benefits of FC-variability have not been studied enough. For 

instance, to examine the benefits, one thing needed is to compare static-FC and FC-

variability. Only a few studies have compared static-FC and FC-variability (Fong et al., 

2019; Wang et al., 2018). Since the studies only focused on specific functional domains 

such as attention, it is still unclear whether FC-variability can contribute to explaining 

other cognitive functions. Furthermore, previous studies have used different procedures 

such as neuroimage preprocessing, defining brain regions (i.e., brain parcellation 

selection), and dynamic-FC calculation. As shown in the previous study, parcellation 

selection can affect static-FC and dynamic-FC calculation (Bryce et al., 2021), and 
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different time window sizes of the sliding-window approach also can affect the 

calculated dynamic-FC (Zalesky & Breakspear, 2015). It is necessary to examine 

beneficial effect of the FC-variability in multiple functional domains using a consistent 

procedure. 

In this study, we systematically investigated the benefits of FC-variability across 

various domains such as group classification and individuals’ characteristics prediction 

using three large open-public rs-fMRI datasets: ABIDE, COBRE, and NKI (see Methods 

section). The robust benefits of FC-variability inclusion in the group classification and 

prediction model were also demonstrated by varying analytic procedures including 

different brain parcellation schemes at both regional and network levels including AAL2 

(Rolls et al., 2015), Schaefer200 (Schaefer et al., 2018), and LAIRD (Laird et al., 2011) 

atlases and sliding-window sizes from 60 sec. to 120 sec. In addition, that the 

classification and prediction results would reveal additional important brain regions 

which have been overlooked when the static-FC was used solely. 

 
Methods 
Resting-state fMRI data 

Resting-state functional MRI data were obtained from publicly available datasets 

including the Autism Brain Imaging Data Exchange I & II (ABIDE; Di Martino et al., 

2017; Di Martino et al., 2014), the Center for Biomedical Research Excellence 

(COBRE1) and the enhanced Nathan Kline Institute (NKI)-Rockland (Nooner et al., 

2012). The datasets were initially downloaded through the Mind Research Network’s 

collaborative informatics and neuroimaging suite (COINS; Landis et al., 2016). In the 

main analyses, this study only included individuals with T1 structural images, more than 

100 volumes in echo-planar imaging (EPI) images, full-coverage of cerebral cortex, and 

without severe head motions (FD < 0.25 mm). In ABIDE II, the longitudinal collections 

(UCLA_long, UPSM_long) were excluded because the same subjects participated in the 

ABIDE I. As a result, the ABIDE consisted of 537 autism spectrum disorder (ASD) 

individuals (age: 15.9 ± 8.2, 75 females) and 712 typical development (TD; 15.4 ± 7.8, 

 
1 http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html 
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185 females). The COBRE consisted of 71 schizophrenia (38.1 ± 13.9, 14 females) and 

74 control (35.8 ± 11.6, 23 females). The NKI, a developmental dataset across the 

lifespan had 672 individuals ranging from 6 to 83 years of age (40.5 ± 20.6, 429 

females). There were no significant differences in age within each dataset (ABIDE: p = 

0.22, COBRE: p = 0.28).  

Given that previous findings that the connectivity estimation is not markedly 

affected by sampling rates (Huotari et al., 2019; Nomi et al., 2017), the BOLD time-

series of the ASD dataset (ABIDE) was resampled to 0.33 Hz (i.e., TR = 3000 ms; 

Huotari et al., 2019) to set the same sliding-window size of dynamic-FC estimation as 

the ABIDE was collected with various sampling rates2. The schizophrenia dataset 

(COBRE) and the developmental dataset (NKI) had identical sampling rates between 

group samples (e.g., ASD vs. TD), 0.5 Hz and 0.7 Hz respectively, the time-series for 

those datasets was not resampled. Additional demographic information is available at 

https://osf.io/xd3fe/. 

Preprocessing 

Structural and functional images were preprocessed using the FMRIB software 

library (FSL; Jenkinson et al., 2012) with ICA-AROMA (Pruim et al., 2015). The 

structural image was skull-stripped and segmented to tissue mask (CSF/WM/GM) after 

bias-field correction. The functional data were preprocessed including first ten volumes 

cut, motion correction, 5-mm smoothing, slice-timing correction, intensity normalization, 

ICA denoising (corrected mean FD; ABIDE: 0.025 mm, COBRE: 0.182 mm, NKI: 0.025 

mm), band-pass filtering (0.001 – 0.08 Hz) and regressing out CSF/WM signal. The 

functional images were then normalized to the standard MNI 2-mm brain template 

through the non-linear transformation using the ANTs (Avants et al., 2014).  

Functional connectivity for static and dynamic levels 

 
2 http://fcon_1000.projects.nitrc.org/indi/abide 
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Figure 1. Overview of the analytical process in the current study. The BOLD signals 
were extracted from resting-state fMRI using AAL2, Schaefer200 atlases, and LAIRD 
network atlas. The signals were then used to calculate static-FC and moment-to-
moment variability of dynamic-FC (MSSD). After the lasso regression to select a subset 
of components (feature selection), the selected features were utilized to classify groups 
using support vector machine or predict individuals’ characteristics using support vector 
regression. 
 

In the main functional connectivity analysis, BOLD time-series was first extracted 

from all regions using a structure-based atlas (AAL2; Rolls et al., 2015), a rs-fMRI-

based atlas (Schaefer200 with Yeo 7networks; Schaefer et al., 2018), and a network-

level atlas (Laird et al., 2011). Several functional data that does not fully cover 

cerebellum regions in the data acquisition, and thus the cerebellum ROIs were excluded 

for further analyses, resulting in 94 AAL2 ROIs. Schaefer200 atlas covered cerebral 

areas. Similarly, ‘noise’ networks from LAIRD were excluded resulting in 18 networks.  

For the static-FC estimation, robust correlation method was adopted using 

‘robustfit’ function in MATLAB 2018a with the iterative reweighted least squares to 

minimize the potential impact of outliers in the connectivity estimation (Choi et al., 2012; 

Kinnison et al., 2012; Shen et al., 2017). By selecting two different brain regions 

iteratively, a set of pairwise connectivity was estimated. Finally, the estimated 
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connectivity was then Fisher z-transformed for subsequent machine learning 

classification and prediction. 

For the dynamic-FC and subsequent FC-variability estimation (i.e., edge-based 

approach), we used a sliding-window approach with robust correlation. FCs were 

calculated for each 60s-sliding window. To quantify the degree of variability, the mean 

square successive difference approach (MSSD; Von Neumann et al., 1941) was 

adopted to minimize the influence of gradual shifts of fMRI signal (Uddin, 2020). The 

MSSD was calculated by subtracting the dynamic-FC value of a given sliding window at 

t from t+1, squaring the result and finally averaging the squared values (see equation 1). 

The MSSDs were z-score normalized. 

 

𝛿! = ∑ (𝑥"#$ − 𝑥")!%&$
"'$ /(𝑛 − 1)   (Equation 1) 

 

Although there is no gold standard in choice of sliding window size and previous 

studies used different size (e.g., 30s - 100s; Please see Fig S1 in Leonardi & Van De 

Ville, 2015; Preti et al., 2017; Shirer et al., 2012; Zalesky & Breakspear, 2015), 60s size 

was selected here as it is between the most commonly used window lengths. In the 

supplementary document, we also provided additional results repeated with different 

sizes of sliding window (90s and 120s) to confirm the robustness of the current findings. 

The results using the longer window sizes were consistent with the results of main 

finding (see Supplementary Table 1-4). 

Feature selection 
The FC estimations at both static and dynamic levels yielded n×n matrices of 

overall connectivity strength over time (i.e., static-FC) and FC-variability (i.e., MSSD), 

where n is the number of ROIs (e.g., 94 for the AAL2). Since the matrices were 

diagonally symmetric, only lower triangle part of the matrices was used for further 

analyses. 

The static-FC and/or FC-variability was then put into lasso regression for 

selecting informative features (Kassraian-Fard et al., 2016). In the absence of the 

selected features, when predicting PANSS scores, elastic-net (α = 0.5) was used to 

secure more features. There were three models and subsequent machine learning (ML) 
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results were compared: 1) static-FC, 2) FC-variability, and 3) appended the static-FC 

and the FC-variability (i.e., combined). 

A lambda parameter, the strength of regularization, was determined using 200 

grid-search with 5-fold cross-validation with 10 iterations using the ‘lassoglm’ function in 

MATLAB. Still, there is a possibility of missing informative features from the lasso 

regression, we first used the ‘smallest lambda’ of 200 grid-search (i.e., least stringent 

criteria). Static-FC and/or FC-variability features whose non-zero lasso regression 

coefficients were inputted into the subsequent support vector machine (SVM) or support 

vector regression (SVR) in the order of magnitude of the coefficients. This procedure 

allows to control the number of features as well as estimate the benefits of FC-variability 

overall. 

In addition, the ‘optimal’ lambda was also determined as the mean across 10 

iteratively calculated lambda values which minimized the deviance of 5-fold cross-

validation (Teipel et al., 2017) to demonstrate the benefits when specific lambda 

parameters were selected. Similarly, after the optimal lambda was set, the features 

whose non-zero coefficients were used to train subsequent machines.  

Machine learning classification and prediction 

The SVM was adopted to classify the ASD and the TD in the ABIDE and the 

schizophrenia and the control in the COBRE. The SVR was used to predict individuals’ 

characteristics. Since not all participants had available scores, subsets of datasets were 

used for prediction. We used representative variables to predict from the datasets: For 

the ASD, autism diagnostic observation schedule (ADOS; Lord et al., 2000, N = 377); 

For the schizophrenia, total positive and negative scores from positive and negative 

syndrome scale (PANSS; Kay et al., 1987, N = 69); For the NKI dataset, participants’ 

age was used (N = 672; see Supplementary Figure 2). The ML analyses were 

conducted by using MVPA-Light toolbox (Treder, 2020) and LIBSVM (Chang & Lin, 

2011).  

The SVM or SVR results were evaluated by 5-fold cross-validation with 100 

iterations. To evaluate the overall performance of SVM, the area under curve (AUC) 

metric was used since the metric is independent of changes to the classifier threshold. 

For the SVR predictions, the mean squared error (MSE) was used to evaluate 
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prediction performance. Since the main results using the smallest lambda produced line 

graphs as a function of number of features, secondary AUC from the line graphs were 

calculated for statistical testing. The statistical tests to compare the secondary AUCs of 

static-FC, MSSD, and the combined were performed using permutation test with 5000 

iterations with Bonferroni correction. The classification results using the optimal lambda 

in the feature selection were also tested. Example codes are available at 

https://osf.io/xd3fe/. 

 

Results 

Group classifications 

As shown in Figure 2, the additional MSSD features (i.e., ‘combined’) increased 

SVM classification performances overall. The line graphs show overall classification 

performances with the smallest lambda in the feature selection stage, and the bar 

graphs show corresponding secondary AUCs. Except for one classification between 

 

 
Figure 2. Group classification results for each pathological group using the support 
vector machine (SVM) with static-FC, MSSD, and the combined features. The 
classification performances were evaluated by the area under curve (AUC) first. Higher 
AUC means better classification performance. The line graphs on the left side represent 
overall classification performance as a function of the number of features when the 
smallest lambda was used in the feature selection stage. The bar graphs on the right 
side indicate the corresponding secondary AUC from the line graphs for statistical 
testing. The error bars are standard deviation (SD). (A) classification results of autism 
spectrum disorder and typical development. Regardless of brain parcellation, including 
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FC-variability (i.e., combined) reached higher classification performances and the 
performances were more reliable. (B) classification results of schizophrenia disorder 
and the control. The ‘combined’ features showed slightly higher classification 
performances, but the amount of increased AUCs was small. 
Table 1 

Overall group classification performance using SVM 

 

Autism Spectrum Disorder (ABIDE) Classification 

Parcellation static-FC MSSD combined Permutation 

AAL2 0.934 (± 

0.0001) 

0.936 (± 

0.0001) 

0.957 (± 

0.0000) 

p < .001 

Schaefer200 0.966 (± 

0.0001) 

0.966 (± 

0.0000) 

0.972 (± 

0.0000) 

p < .001 

LAIRD 0.658 (± 

0.0001) 

0.610 (± 

0.0006) 

0.672 (± 

0.0005) 

p < .001 

     

Schizophrenia Disorder (COBRE) Classification 

Parcellation static-FC MSSD combined Permutation 

AAL2 0.967 (± 

0.0005) 

0.972 (± 

0.0004) 

0.965 (± 

0.0005) 

p < .001 

Schaefer200 0.981 (± 

0.0004) 

0.983 (± 

0.0003) 

0.984 (± 

0.0003) 

p < .001 

LAIRD 0.800 (± 

0.0028) 

0.896 (± 

0.0016) 

0.933 (± 0.001) p < .001 

 

Note: Classification performances were evaluated by using the area under curve (AUC) 
first and then secondary AUCs from line graphs were calculated for statistical testing. 
Each cell represents the mean of secondary AUC ± SD. ‘Permutation’ means the 
permutation test results between the static-FC and the combined. 

 

the schizophrenia and the control using the AAL2 atlas, all classification performances 

demonstrated benefits of including FC-variability (all p < .001; Table 1). Even in the 

exceptional case, the secondary AUC was almost identical (static-FC: 0.967, combined: 
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0.965). Since the static-FC already had a high classification performance, perhaps there 

was no room for further performance increase. Furthermore, the results implied that 

including FC-variability caused more reliable classification performance. If too many 

features which might include less-informative features were inputted into the SVM, the 

classification performances tended to worse due to the features’ complexity when the 

static-FC or MSSD features were used solely. In contrast, the performances of the 

‘combined’ were increased reliably. The increased classification performances by 

including FC-variability were consistent when the optimal lambda was used in the 

feature selection (Supplementary Figure 1). We also identified some features of FC-

variability that contributed to classifying the groups by scrutinizing the weights of SVM 

(Supplementary Figure 3, 4).  

Predictions of individuals characteristics 

The SVR results also revealed that including the FC-variability was helpful to 

predict individuals’ characteristics. Across all SVR results, the ‘combined’ showed 

significantly lower secondary AUC than that of static-FC (all p < .001; See Figure 3 and 

Table 2). These results suggested that psychiatric symptoms are associated with FC-

variability partially, which has been largely overlooked. Similar to the classification 

results, the predictive results were more reliable when FC-variability features were 

added. This was consistent when the optimal lambda was used (Supplementary Figure 

1). The weights of SVR were presented in Figure 4 and Supplementary Figure 5-8. 
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Figure 3. Prediction results using the support vector regression (SVR) with static-FC, 
MSSD, and the combined features. The predicted variables included (A) ADOS and (B) 
total scores of positive symptoms and (C) negative symptoms of PANSS. The prediction 
performances were evaluated by mean squared error (MSE) first. Lower MSE means 
better prediction. The line graphs on the left side represent overall prediction 
performance as a function of the number of features when the smallest lambda was 
used in the feature selection stage. In addition, the combined showed more reliable 
predictive results. The bar graphs on the right side indicate the corresponding 
secondary AUC from the line graphs for statistical testing. The error bars are standard 
deviation (SD). 
 

Table 2 

Overall predictive performance using SVR 

 

Autism Spectrum Disorder - ADOS 

Parcellation Static-FC MSSD Combined Permutation 

AAL2 0.254 (± 

0.0006) 

0.213 (± 

0.0005) 

0.185 (± 

0.0005) 

p < .001 

Schaefer200 0.166 (± 

0.0005) 

0.140 (± 

0.0004) 

0.141 (± 

0.0004) 

p < .001 
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Autism Spectrum Disorder - ADOS 

LAIRD 0.548 (± 

0.0023) 

0.507 (± 

0.0024) 

0.508 (± 

0.0021) 

p < .001 

     

Schizophrenia Disorder – PANSS(positive) 

Parcellation Static-FC MSSD Combined Permutation 

AAL2 0.150 (± 

0.0016) 

0.141 (± 

0.0015) 

0.128 (± 

0.0015) 

p < .001 

Schaefer200 0.069 (± 

0.0003) 

0.068 (± 

0.0004) 

0.054 (± 

0.0003) 

p < .001 

LAIRD 0.358 (± 

0.0045) 

0.407 (± 

0.0055) 

0.327 (± 

0.0039) 

p < .001 

     

Schizophrenia Disorder – PANSS(negative) 

Parcellation Static-FC MSSD Combined Permutation 

AAL2 0.149 (± 

0.0010) 

0.141 (± 

0.0011) 

0.123 (± 

0.0009) 

p < .001 

Schaefer200 0.074 (± 

0.0004) 

0.072 (± 

0.0004) 

0.069 (± 

0.0004) 

p < .001 

LAIRD 0.512 (± 

0.0075) 

0.389 (± 

0.0052) 

0.228 (± 

0.0027) 

p < .001 

 

Note: Prediction performances were evaluated by using mean squared error (MSE) first 
and then secondary AUCs from line graphs were calculated for statistical testing. Lower 
secondary AUC means better SVR prediction performance. Each cell represents the 
mean of secondary AUC ± SD. ‘Permutation’ means the permutation test results 
between the static-FC and the combined. 
 

Identifying important FC-variability features 

We investigated which FC-variability was important for the classifications and 

predictions. As a useful example, Figure 4 shows the weights of SVR which predicted 

the ADOS score with the optimal lambda. Other weights results are presented in the 
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Supplementary Figure 3-8. Since the main aim of this analysis is to identify which FC-

variability is informative when it was added to static-FC, we interpret the weights of the 

‘combined’. In each weight matrix in Figure 4, the left square represents static-FC parts 

and the right square represents FC-variability parts. It should be noted again that these 

features were used simultaneously for the feature-selection and the subsequent ML 

(i.e., combined). More contributing features (weight > 0.3 or < -0.3) were colored red. 

Most importantly, the patterns of weights were different between static-FC and FC-

variability, implying that FC-variability has independent and additional information than 

static-FC. In AAL2, many FC-variability between ROIs within frontal areas and 

orbitofrontal cortex (OFC) contributed to predict the ADOS score. Other brain regions 

were also involved such as amygdala, insula, caudate, postcentral gyrus, paracentral 

gyrus, inferior temporal areas, and occipital areas. Similarly, contributing FC-variability 

was dispersed across many lobes when Schaefer200 atlas was used. Interestingly, 

when we reviewed red-colored Schaefer features in the context of Yeo 7 networks which 

the developers had identified, the contributing FC-variability features were more derived 

from between-network ROIs (15/17) than the static-FC features (10/17). Although this 

pattern was not tested statistically, the LAIRD network atlas result supported the pattern 

by showing that numerous between-network FC-variability was important to predict the 

ADOS score.  
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Figure 4. Weights of SVR which predicted the ADOS score. Notably, the weight patterns 
of FC-variability were different from the pattern of static-FC, suggesting that FC-
variability has some independent and additional information. In each matrix, left square 
represents static-FC parts and right square represents FC-variability parts. More 
contributing features (weight > 0.3 or < -0.3) were colored red. Due to its enormous 
number of features, the weights of Schaefer200 atlas are presented here partially. 
Whole weight matrix is presented in Supplementary Figure 5. 
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Discussion 
To understand brain’s functional system, the static-FC has been widely used to 

estimate FC between brain regions but resulted in not reflecting connectivity 

fluctuations. The Dynamic-FC, thus, has been suggested as a promising method to 

capture FC fluctuation across time and has proved that the brain has several mental 

states even when external stimuli are absent. However, much fewer studies utilized the 

FC-variability and few studies compared the static-FC and the FC-variability (Fong et 

al., 2019; Wang et al., 2018). This study aimed to demonstrate the benefits of FC-

variability and to prove that the benefits are consistent across various cognitive domains 

and analytic procedures. 

First, the current study classified the ASD and the TD using the ABIDE and 

classified the schizophrenia and the control using the COBRE. Regardless of 

parcellation selection, including the FC-variability increased classification performance 

mostly (Figure 2, Supplementary Figure 1). In addition, FC-variability was also beneficial 

to predict individuals’ characteristics including ADOS, PANSS, and age. The beneficial 

effects were robust across various analytic procedures again. In sum, these results 

suggested that FC-variability may be relevant to various cognitive domains and can be 

informative across various analytic procedures. Second, we also identified which 

components of FC-variability were informative for classifying and predicting (Figure 4 

and Supplementary Figure 3-8). In general, a similar number of features of FC-

variability compared to the static-FC showed a high contribution to classification and 

prediction. Furthermore, It is also noteworthy that the contributing FC-variability was in 

the different locations implying that the FC-variability has independent information in 

comparison to the static-FC.  

Compared to the previous findings that utilized FC-variability, the current findings 

of classification were somewhat different. For instance, Y. Li et al. (2020) reported that 

the FC-variability of inferior frontal gyrus (opecular part) - post cingulate cortex was 

significantly different between the ASD and the TD; that FC-variability was not replicated 

in the current study, we observed several significant OFC-related FC-variability when we 

reviewed the ‘combined’ feature (Supplementary Fig 3). Similarly, for the schizophrenia 

classification, Supekar et al. (2019) suggested a triple-network saliency model that 
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emphasized dynamic cross-network interactions between salience network, central 

executive network, and default mode network. In the current result, FC-variability of 

Rectus – Amygdala and anterior OFC – Occipital area contributed to classify the groups 

(Supplementary Figure 4). Due to the absence of research associating FC-variability 

and psychiatric scores including ADOS and PANSS, however, these results could not be 

compared with previous findings. We speculate that the main reason of discrepancy 

was that we used both static-FC and FC-variability and then FC-variability features 

which had redundant information were less noticeable. Nevertheless, we believe that 

including more independent and informative features is crucial to utilize neuroimages in 

psychiatric field such as connectome-based predictive modeling (CPM; Liu et al., 2022; 

Tian & Zalesky, 2021). Another possibility of discrepancy was that we adopted robust 

correlation method to estimate static-FC and FC-variability. In our empirical 

comparisons, the robust method significantly increased static-FC performance 

(Supplementary Fig 9).  

Recent studies imply that different gene expressions can be a factor that drives 

the different degree of FC-variability across individuals (Barber et al., 2021; Liu et al., 

2019). Specifically, Liu et al. (2019) estimated FC-variability brain maps from rs-fMRI of 

Human Connectome Project and UK Biobank, compared them with gene expression 

profiles from Allen Human Brain Atlas3, and found that FC-variability had a significant 

relationship with two groups of gene expressions: one was synaptic plasticity processes 

such as action potential, ion transportation and hormone secretion. Such gene 

expressions affect synaptic transmission processes especially at the molecular level 

and are related to fast FC changes (Arnsten et al., 2010). Another was structural 

plasticity such as the formation, development, and reorganization of presynaptic and 

postsynaptic constructs. These processes also influence synaptic plasticity and 

subsequent FC, such as cGMP-mediated signaling regulates synaptic plasticity. 

(Kleppisch & Feil, 2009). Such neuroplasticity has been linked to psychiatric disorders 

including ASD and schizophrenia (Bernardinelli et al., 2014), our conjecture is that the 

 
3 http://human.brain-map.org 
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current informative FC-variability features reflected several genetic alterations of 

psychiatric disorders. 

Finally, we would like to note some suggestions which should be addressed in 

the future studies. The current study demonstrated the robustness of FC-variability 

benefits regardless of time window sizes of sliding-window approach which is most 

widely used. However, there are several recently developed methods to calculate 

dynamic-FC such as dynamic conditional correlation (DCC; Choe et al., 2017; Lindquist 

et al., 2014) and edge-centric time series (Faskowitz et al., 2020; Zamani Esfahlani et 

al., 2020), and such methods should be compared in the context of FC-variability. 

Furthermore, we used three widely used atlases including structure-based (AAL2), 

functional-based (Schaefer), and network-based (LAIRD) atlases. Our results 

demonstrated that FC-variability is beneficial regardless of atlas selection, but there is a 

possibility that the benefits can be increased when the brain is parcellated into regions 

showing homogeneous FC-variability degree. Most recently, a few studies developed 

brain atlas considering FC-variability (Fan et al., 2021; Peng et al., 2022), it would be 

worthwhile to compare it with the conventional atlases.   

We demonstrated the benefits of FC-variability across many cognitive domains, 

analytic variants, and datasets. Adding FC-variability not only increased ML 

performances also resulted in more reliable results. We suggest that many 

psychological and transdiagnostic research field such as connectome-based predictive 

modeling utilize FC-variability and hope that the findings may shed light on 

neuroimaging field. 
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Supplementary Figure 1. ML results using the optimal lambda at the feature selection 
stage. (A-B): Group classification results using SVM with static-FC, MSSD, and the 
combined features. The classification performances were evaluated by AUC. Higher 
AUC means better classification performance. The results show that including FC-
variability (i.e., combined) resulted in higher classification performance. (C-E): 
Predictive results using SVR. Performances were evaluated by MSE. Lower MSE 
indicates better prediction. Null results mean no feature was selected at the feature 
selection stage. Again, including FC-variability increased predictive performance. The 
error bars are standard deviation (SD). 
 

 

 

 
Supplementary Figure 2. Individuals’ age prediction using NKI dataset and SVR. Lower 
values mean better predictive performance. (A) predictive performance with smallest 
lambda. The bar graphs on the right side show the corresponding secondary AUC of the 
line graphs. (B) predictive performance with the optimal lambda. Mostly, including FC-
variability was beneficial to predict age. One exception was the overall predictive 
performance (i.e., secondary AUC) when the LAIRD atlas was used due to better 
performances of static-FC at some points. However, including FC-variability still showed 
more reliable predictive performance compared to the static-FC solely. 
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Supplementary Figure 3. Weights of SVM which classified the autistic participants and 
the typical development (TD). In each matrix, left square represents of static-FC parts 
and right square represents FC-variability parts. More contributed features (weight > 0.3 
or weight < -0.3) are colored red. The most contributing FC-variability features of AAL2 
were Frontal_Inf_Orb - OFCpost, Rolandic_Oper - Insula, OFCant - Angular, OFCpost - 
Heschl, Lingual - Parietal_Sup, and Occipital_Mid - Angular. In the Schaefer200 result, 
many contributing features were associated with ROIs within somatomotor, control, 
default mode networks. In LAIRD network level, FC-variability of SMA – Visual3, 
Visuospatial – Visual 3 was informative to classify the groups. 
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Supplementary Figure 4. Weights of SVM to classify the schizophrenia and the control. 
In each matrix, left square represents of static-FC parts and right square represents FC-
variability parts. More contributed features (weight > 0.3 or weight < -0.3) are colored 
red. Compared to other classification and predictions, less features contributed to 
classify the schizophrenia and the control. Nonetheless, some pairs contributed to the 
classification such as Rectus – Amygdala, OFCant – Occipital_Sup (AAL2). In LAIRD 
network level, some FC-variability showed high contributions additionally; Limbic – 
Visuospatial, SMA – Visual3, and Visuospatial – Visual3. In Schaefer200, any feature 
was not prominent to classify the groups. 
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Supplementary Figure 5. Weights of SVR to predict ADOS scores of autistic individuals. 
In each matrix, left square represents of static-FC parts and right square represents FC-
variability parts. More contributed features (weight > 0.3 or weight < -0.3) are colored 
red. Many FC-variability between ROIs within frontal areas and orbitofrontal cortex 
(OFC) contributed to predict the ADOS score. Other brain regions were also involved 
such as amygdala, insula, caudate, postcentral gyrus, paracentral gyrus, inferior 
temporal areas, and occipital areas. 
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Supplementary Figure 6. Weights of SVR to predict PANSS (positive total) scores of 
schizophrenic individuals. In each matrix, left square represents of static-FC parts and 
right square represents FC-variability parts. More contributed features (weight > 0.3 or 
weight < -0.3) are colored red. Importantly, several FC-variabililty were associated with 
the positive symptoms: Occipital_Mid – Caudate, OFClat – Amygdala, OFCant – 
Pallidum, Cingulate_Post – Hippocampus (AAL2). In the network level, limbic network 
and OFC-related network showed high contributions.  
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Supplementary Figure 7. Weights of SVR to predict PANSS (negative total) scores of 
schizophrenic individuals. In each matrix, left square represents of static-FC parts and 
right square represents FC-variability parts. More contributed features (weight > 0.3 or 
weight < -0.3) are colored red. No features were selected when the optimal lambda and 
Schaefer200 atlas were used. Interestingly, in general, the negative symptoms were 
more associated with the FC-variability than the static-FC. In AAL2, Precentral – 
Rectus, Rectus – Lingual, Frontal_Inf_Oper – Pareital_Sup, Frontal_Sup_Medial – 
Temporal_Pole, and Parietal_Inf – Temporal_Pole was involved. In the LAIRD, limbic, 
OFC, and motor networks showed high contributions to predict the negative symptoms. 
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Supplementary Figure 8. Weights of SVR to predict individuals’ age from the NKI 
dataset. In each matrix, left square represents of static-FC parts and right square 
represents FC-variability parts. More contributed features (weight > 0.3 or weight < -0.3) 
are colored red. Compared to the previous three psychiatric symptom predictions, much 
more FC-variability features were related to the individuals’ age, suggesting that the 
ageing process is not limited to the changes of some brain regions. Importantly, most of 
contributing FC-variability features to predict age did not overlap with the contributing 
static-FC features. 
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Supplementary Figure 9. Comparison of robust correlation and Pearson correlation 
when classifying ABIDE (autism vs typical development) dataset with static-FC solely. 
The robust correlation method showed significantly higher classification performance 
than Pearson correlation.  
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Supplementary Table 1 

Group classification performance with various sliding-window sizes (smallest lambda) 

 

Autism Spectrum Disorder (ABIDE) Classification 

Sliding-window size: 60s 

Parcellation static-FC MSSD combined Permutation 

AAL2 0.934 (± 

0.0001) 

0.936 (± 

0.0001) 

0.957 (± 

0.0000) 

p < .001 

Schaefer200 0.966 (± 

0.0001) 

0.966 (± 

0.0000) 

0.972 (± 

0.0000) 

p < .001 

LAIRD 0.658 (± 

0.0001) 

0.610 (± 

0.0006) 

0.672 (± 

0.0005) 

p < .001 

Sliding-window size: 90s 

AAL2 0.934 (± 

0.0001) 

0.925 (± 

0.0001) 

0.951 (± 

0.0001) 

p < .001 

Schaefer200 0.966 (± 

0.0001) 

0.961 (± 

0.0001) 

0.971 (± 

0.0001) 

p < .001 

LAIRD 0.658 (± 

0.0007) 

0.610 (± 

0.0007) 

0.685 (± 

0.0006) 

p < .001 

Sliding-window size: 120s 

AAL2 0.934 (± 

0.0001) 

0.925 (± 

0.0001) 

0.951 (± 

0.0001) 

p < .001 

Schaefer200 0.966 (± 

0.0001) 

0.965 (± 

0.0001) 

0.970 (± 

0.0000) 

p < .001 

LAIRD 0.658 (± 

0.0007) 

0.604 (± 

0.0007) 

0.678 (± 

0.0006) 

p < .001 

     

Schizophrenia Disorder (COBRE) Classification 

Sliding-window size: 60s 

Parcellation static-FC MSSD combined Permutation 
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Autism Spectrum Disorder (ABIDE) Classification 

AAL2 0.967 (± 

0.0005) 

0.972 (± 

0.0004) 

0.965 (± 

0.0005) 

p < .001 

Schaefer200 0.981 (± 

0.0004) 

0.983 (± 

0.0003) 

0.984 (± 

0.0003) 

p < .001 

LAIRD 0.800 (± 

0.0028) 

0.896 (± 

0.0016) 

0.933 (± 0.001) p < .001 

Sliding-window size: 90s 

AAL2 0.967 (± 

0.0005) 

0.977 (± 

0.0004) 

0.969 (± 

0.0005) 

p < .001 

Schaefer200 0.981 (± 

0.0003) 

0.977 (± 

0.0004) 

0.983 (± 

0.0003) 

p < .001 

LAIRD 0.801 (± 

0.0021) 

0.855 (± 

0.0021) 

0.909 (± 

0.0012) 

p < .001 

Sliding-window size: 120s 

AAL2 0.967 (± 

0.0004) 

0.974 (± 

0.0004) 

0.975 (± 

0.0004) 

p < .001 

Schaefer200 0.981 (± 

0.0004) 

0.985 (± 

0.0003) 

0.980 (± 

0.0005) 

p < .001 

LAIRD 0.800 (± 

0.0027) 

0.846 (± 

0.0024) 

0.890 (± 

0.0015) 

p < .001 

     

 

Note: Classification performances were evaluated by using the area under curve (AUC) 

first and the secondary AUC was calculated to evaluate overall performance. Each cell 

represents the mean of secondary AUC ± SD. Higher values indicate better overall 

performance. ‘Permutation’ means the permutation test results between the static-FC 

and the combined. 
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Supplementary Table 2 

Predicting individuals’ characteristics performance with various sliding-window sizes 

(smallest lambda) 

 
 

Autism Spectrum Disorder – ADOS 

Sliding-window size: 60s 

Parcellation static-FC MSSD combined Permutation 

AAL2 0.254 (± 

0.0006) 

0.213 (± 

0.0005) 

0.185 (± 

0.0005) 

p < .001 

Schaefer200 0.166 (± 

0.0005) 

0.140 (± 

0.0004) 

0.141 (± 

0.0004) 

p < .001 

LAIRD 0.548 (± 

0.0023) 

0.507 (± 

0.0024) 

0.508 (± 

0.0021) 

p < .001 

Sliding-window size: 90s 

AAL2 0.260 (± 

0.0007) 

0.203 (± 

0.0005) 

0.203 (± 

0.0005) 

p < .001 

Schaefer200 0.167 (± 

0.0005) 

0.140 (± 

0.0003) 

0.138 (± 

0.0006) 

p < .001 

LAIRD 0.517 (± 

0.0022) 

0.501 (± 

0.0021) 

0.501 (± 

0.0018) 

p < .001 

Sliding-window size: 120s 

AAL2 0.261 (± 

0.0008) 

0.203 (± 

0.0005) 

0.186 (± 

0.0004) 

p < .001 

Schaefer200 0.164 (± 

0.0004) 

0.149 (± 

0.0003) 

0.148 (± 

0.0003) 

p < .001 

LAIRD 0.409 (± 

0.0013) 

0.472 (± 

0.0020) 

0.448 (± 

0.0018) 

p < .001 

     

Schizophrenia Disorder – PANSS(positive) 

Sliding-window size: 60s 
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Parcellation static-FC MSSD Combined Permutation 

AAL2 0.150 (± 

0.0016) 

0.141 (± 

0.0015) 

0.128 (± 

0.0015) 

p < .001 

Schaefer200 0.069 (± 

0.0003) 

0.068 (± 

0.0004) 

0.054 (± 

0.0003) 

p < .001 

LAIRD 0.358 (± 

0.0045) 

0.407 (± 

0.0055) 

0.327 (± 

0.0039) 

p < .001 

Sliding-window size: 90s 

AAL2 0.158 (± 

0.0016) 

0.146 (± 

0.0015) 

0.137 (± 

0.0015) 

p < .001 

Schaefer200 0.067 (± 

0.0003) 

0.070 (± 

0.0005) 

0.062 (± 

0.0004) 

p < .001 

LAIRD 0.360 (± 

0.0042) 

0.357 (± 

0.0044) 

0.285 (± 

0.0033) 

p < .001 

Sliding-window size: 120s 

AAL2 0.146 (± 

0.0012) 

0.164 (± 

0.0022) 

0.118 (± 

0.0012) 

p < .001 

Schaefer200 0.065 (± 

0.0003) 

0.080 (± 

0.0005) 

0.057 (± 

0.0002) 

p = 0.186 

LAIRD 0.319 (± 

0.0039) 

0.399 (± 

0.0048) 

0.289 (± 

0.0035) 

p < .001 

     

Schizophrenia Disorder – PANSS(negative) 

Sliding-window size: 60s 

Parcellation static-FC MSSD Combined Permutation 

AAL2 0.149 (± 

0.0010) 

0.141 (± 

0.0011) 

0.123 (± 

0.0009) 

p < .001 

Schaefer200 0.074 (± 

0.0004) 

0.072 (± 

0.0004) 

0.069 (± 

0.0004) 

p < .001 
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LAIRD 0.512 (± 

0.0075) 

0.389 (± 

0.0052) 

0.228 (± 

0.0027) 

p < .001 

Sliding-window size: 90s 

AAL2 0.170 (± 

0.0021) 

0.128 (± 

0.0015) 

0.140 (± 

0.0016) 

p < .001 

Schaefer200 0.075 (± 

0.0005) 

0.069 (± 

0.0004) 

0.069 (± 

0.0005) 

p < .001 

LAIRD 0.460 (± 

0.0054) 

0.302 (± 

0.0035) 

0.296 (± 

0.0039) 

p < .001 

Sliding-window size: 120s 

AAL2 0.168 (± 

0.0019) 

0.177 (± 

0.0019) 

0.152 (± 

0.0016) 

p < .001 

Schaefer200 0.076 (± 

0.0004) 

0.083 (± 

0.0004) 

0.073 (± 

0.0004) 

p < .001 

LAIRD 0.466 (± 

0.0056) 

0.351 (± 

0.0052) 

0.231 (± 

0.0028) 

p < .001 

     

Neurodevelopmental (NKI)- Age 

Sliding-window size: 60s 

Parcellation static-FC MSSD combined Permutation 

AAL2 0.166 (± 

0.0003) 

0.145 (± 

0.0004) 

0.125 (± 

0.0002) 

p < .001 

Schaefer200 0.125 (± 

0.0002) 

0.109 (± 

0.0003) 

0.098 (± 

0.0002) 

p < .001 

LAIRD 0.535 (± 

0.0016) 

0.631 (± 

0.0018) 

0.572 (± 

0.0018) 

p < .001 

Sliding-window size: 90s 

AAL2 0.164 (± 

0.0004) 

0.168 (± 

0.0004) 

0.130 (± 

0.0002) 

p < .001 
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Schaefer200 0.130 (± 

0.0003) 

0.127 (± 

0.0003) 

0.110 (± 

0.0002) 

p < .001 

LAIRD 0.529 (± 

0.0014) 

0.625 (± 

0.0019) 

0.573 (± 

0.0014) 

p < .001 

Sliding-window size: 120s 

AAL2 0.165 (± 

0.0003) 

0.189 (± 

0.0005) 

0.132 (± 

0.0003) 

p < .001 

Schaefer200 0.125 (± 

0.0002) 

0.128 (± 

0.0003) 

0.113 (± 

0.0002) 

p < .001 

LAIRD 0.526 (± 

0.0019) 

0.624 (± 

0.0022) 

0.544 (± 

0.0015) 

p < .001 

 

Note: Prediction performances were evaluated by using mean squared error (MSE) first 

and the secondary AUC was calculated to evaluate overall performance. Lower 

secondary AUC means better SVR prediction performance. Each cell represents the 

mean of secondary AUC ± SD. ‘Permutation’ means the permutation test results 

between the static-FC and the combined. 
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Supplementary Table 3 

Group classification performance with various sliding-window sizes (optimal lambda) 

 

Autism Spectrum Disorder (ABIDE) Classification 

Sliding-window size: 60s 

Parcellation static-FC MSSD combined Permutation 

AAL2 0.837 (± 0.006) 0.789 (± 0.006) 0.859 (± 0.004) p < .001 

Schaefer200 0.884 (± 0.006) 0.903 (± 0.005) 0.951 (± 0.003) p < .001 

LAIRD 0.688 (± 0.007) 0.638 (± 0.007) 0.697 (± 0.008) p < .001 

Sliding-window size: 90s 

AAL2 0.837 (± 0.006) 0.791 (± 0.003) 0.871 (± 0.004) p < .001 

Schaefer200 0.878 (± 0.007) 0.871 (± 0.005) 0.922 (± 0.005) p < .001 

LAIRD 0.678 (± 0.006) 0.641 (± 0.007) 0.716 (± 0.006) p < .001 

Sliding-window size: 90s 

AAL2 0.838 (± 0.006) 0.789 (± 0.003) 0.873 (± 0.007) p < .001 

Schaefer200 0.878 (± 0.007) 0.881 (± 0.005) 0.919 (± 0.004) p < .001 

LAIRD 0.683 (± 0.007) 0.622 (± 0.007) 0.708 (± 0.006) p < .001 

     

Schizophrenia Disorder (COBRE) Classification 

Sliding-window size: 60s 

Parcellation static-FC MSSD combined Permutation 

AAL2 0.989 (± 0.004) 0.979 (± 0.004) 0.991 (± 0.004) p = .426 

Schaefer200 0.999 (± 0.001) 0.949 (± 0.012) 0.999 (± 0.000) p < .001 

LAIRD 0.811 (± 0.019) 0.847 (± 0.019) 0.928 (± 0.013) p < .001 

Sliding-window size: 90s 

AAL2 0.986 (± 0.006) 0.999 (± 0.000) 0.999 (± 0.000) p < .001 

Schaefer200 0.999 (± 0.001) 0.999 (± 0.001) 0.998 (± 0.002) p < .001 

LAIRD 0.809 (± 0.016) 0.789 (± 0.019) 0.857 (± 0.022) p < .001 

Sliding-window size: 120s 

AAL2 0.998 (± 0.001) 0.999 (± 0.000) 0.999 (± 0.001) p = .187 
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Autism Spectrum Disorder (ABIDE) Classification 

Schaefer200 0.999 (± 0.001) 0.999 (± 0.001) 0.999 (± 0.001) p = .195 

LAIRD 0.775 (± 0.018) 0.814 (± 0.029) 0.867 (± 0.017) p < .001 

     

 

Note: Classification performances were evaluated by using the area under curve (AUC). 

Higher AUC means better SVM classification performance. Each cell represents mean 

AUC ± SD. ‘Permutation’ means the permutation test results between the static-FC and 

the combined. 
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Supplementary Table 4 

Predicting individuals’ characteristics performance with various sliding-window sizes 

(optimal lambda) 

 
 

Autism Spectrum Disorder – ADOS 

Sliding-window size: 60s 

Parcellation static-FC MSSD combined Permutation 

AAL2 13.139 (± 

0.434) 

11.29 (± 0.297) 11.107 (± 0.55) p < .001 

Schaefer200 9.217 (± 0.410) 4.988 (± 0.401) 5.026 (± 0.431) p < .001 

LAIRD 18.442 (± 

0.508) 

16.822 (± 

0.538) 

16.387 (± 

0.365) 

p < .001 

Sliding-window size: 90s 

AAL2 13.001 (± 

0.561) 

10.463 (± 

0.509) 

10.832 (± 

0.482) 

p < .001 

Schaefer200 9.355 (± 0.427) 5.077 (± 0.359) 7.775 (± 0.398) p < .001 

LAIRD 18.435 (± 

0.601) 

17.567 (± 

0.480) 

16.605 (± 

0.553) 

p < .001 

Sliding-window size: 90s 

AAL2 12.356 (± 

0.483) 

10.738 (± 

0.504) 

11.142 (± 

0.515) 

p < .001 

Schaefer200 10.067 (± 

0.541) 

7.689 (± 0.355) 7.429 (± 0.400) p < .005 

LAIRD 18.411 (± 

0.635) 

17.811 (± 

0.339) 

17.268 (± 

0.487) 

p < .001 

     

Schizophrenia Disorder – PANSS(positive) 

Sliding-window size: 60s 

Parcellation static-FC MSSD Combined Permutation 
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AAL2 8.137 (± 

0.9874) 

- 1.669 (± 

0.1645) 

p < .001 

Schaefer200 2.143 (± 0.107) 0.946 (± 0.046) 0.715 (± 0.029) p < .001 

LAIRD 14.248 (± 0.) - 14.091 (± 

1.957) 

p = .709 

Sliding-window size: 90s 

AAL2 8.117 (± 1.066) 8.454 (± 1.239) 4.892 (± 

0.4774) 

p < .001 

Schaefer200 2.149 (± 0.144) 1.067 (± 0.049) 0.781 (± 0.041) p < .001 

LAIRD 19.018 (± 

2.743) 

- 4.184 (± 

0.4734) 

p < .001 

Sliding-window size: 120s 

AAL2 8.042 (± 

1.0515) 

- 1.483 (± 

0.1862) 

p < .001 

Schaefer200 2.501 (± 0.170) 1.020 (± 0.047) 0.863 (± 0.034) p < .001 

LAIRD 17.997 (± 

2.220) 

17.616 (± 

1.791) 

17.712 (± 

2.114) 

p = .512 

     

Schizophrenia Disorder – PANSS(negative) 

Sliding-window size: 60s 

Parcellation static-FC MSSD Combined Permutation 

AAL2 - 12.068 (± 

1.587) 

13.735 (± 

0.832) 

- 

Schaefer200 - - - - 

LAIRD 19.316 (± 

1.101) 

- 13.929 (± 

1.721) 

p < .001 

Sliding-window size: 90s 

AAL2 - 19.117 (± 

0.304) 

- - 

Schaefer200 - 1.438 (± 0.094) - - 
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LAIRD 19.327 (± 

0.967) 

- 15.193 (± 

1.063) 

p < .001 

Sliding-window size: 120s 

AAL2 - - - - 

Schaefer200 - 1.566 (± 0.080) 1.269 (± 0.069) - 

LAIRD 19.453 (± 

0.961) 

14.365 (± 

0.905) 

11.559 (± 

1.196) 

p < .001 

     

Neurodevelopmental (NKI) - Age 

Sliding-window size: 60s 

Parcellation static-FC MSSD combined Permutation 

AAL2 74.948 (± 

2.847) 

98.159 (± 

6.764) 

46.648 (± 

2.199) 

p < .001 

Schaefer200 74.434 (± 

5.189) 

63.933 (± 

4.988) 

38.983 (± 

2.538) 

p < .001 

LAIRD 280.482 (± 

11.1) 

326.475 (± 

10.7) 

260.88 (± 

10.822) 

p < .005 

Sliding-window size: 90s 

AAL2 92.672 (± 

5.648) 

84.928 (± 

7.847) 

42.234 (± 

3.016) 

p < .001 

Schaefer200 67.231 (± 

4.413) 

33.177 (± 

2.630) 

51.407 (± 

3.117) 

p < .001 

LAIRD 279.845 (± 

8.83) 

317.32 (± 

3.484) 

246.656 (± 

11.18) 

p < .001 

Sliding-window size: 120s 

AAL2 76.886 (± 

3.566) 

123.87 (± 

10.95) 

30.728 (± 

3.478) 

p < .001 

Schaefer200 61.392 (± 

3.701) 

54.061 (± 

3.521) 

39.367 (± 

3.131) 

p < .001 
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LAIRD 277.35 (± 

11.99) 

307.87 (± 

7.858) 

241.907 (± 

5.706) 

p < .001 

 

Note: Prediction performances were evaluated by using mean squared error (MSE). 
Lower MSE means better SVR prediction performance. Each cell represents mean MSE 
± SD. ‘Permutation’ means the permutation test results between the static-FC and the 
combined. 
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