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Background: Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer
which typically exhibits a diverse progression trajectory. Our study sought to explore the
cell differentiation trajectory of LUAD and its clinical relevance.

Methods: Utilizing a single-cell RNA-sequencing dataset (GSE117570), we identified
LUAD cells of distinct differential status along with differentiation-related genes (DRGs).
DRGs were applied to the analysis of bulk-tissue RNA-sequencing dataset (GSE72094) to
classify tumors into different subtypes, whose clinical relevance was further analyzed.
DRGs were also applied to gene co-expression network analysis (WGCNA) using another
bulk-tissue RNA-sequencing dataset (TCGA-LUAD). Genes from modules that
demonstrated a significant correlation with clinical traits and were differentially
expressed between normal tissue and tumors were identified. Among these, genes
with significant prognostic relevance were used for the development of a prognostic
nomogram, which was tested on TCGA-LUAD dataset and validated in GSE72094.
Finally, CCK-8, EdU, cell apoptosis, cell colony formation, and Transwell assays were
used to verify the functions of the identified genes.

Results: Four clusters of cells with distinct differentiation status were characterized,
whose DRGs were predominantly correlated with pathways of immune regulation. Based
on DRGs, tumors could be clustered into four subtypes associated with distinct immune
microenvironment and clinical outcomes. DRGs were categorized into four modules. A
total of nine DRGs (SFTPB, WFDC2, HLA-DPA1, TIMP1, MS4A7, HLA-DQA1, VCAN,
KRT8, and FABP5) with most significant survival-predicting power were integrated to
develop a prognostic model, which outperformed the traditional parameters in predicting
clinical outcomes. Finally, we verified that knockdown of WFDC2 inhibited proliferation,
migration, and invasion but promoted the apoptosis of A549 cells in vitro.
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Conclusion: The cellular composition and cellular differentiation status of tumor mass can
predict the clinical outcomes of LUAD patients. It also plays an important role in shaping
the tumor immune microenvironment.
Keywords: cell differentiation related genes (DRGs), immune microenvironment, prognosis prediction, lung
adenocarcinoma, respiratory, WFDC2
INTRODUCTION

Globally, non-small cell lung cancer (NSCLC) is among the most
prevalent malignant diseases and is associated with high
mortality (1). Lung adenocarcinoma (LUAD) is one of the
most common subtypes of NSCLC. LUAD is a heterogeneous
disease in terms of molecular alteration, pathological growth
patterns, and clinical outcomes (2–4). There is considerable
variability with respect to clinical outcomes even among
patients with the same disease stage and treated with a similar
therapeutic regimen. Surgical treatment is the only radical
treatment for patients with early-stage LUAD; however, a
proportion of patients tend to develop recurrence after tumor
resection (5). Molecular alterations such as oncogenic mutations
(EGFR, KRAS, STK11) usually help to define certain subtypes of
lung cancer that share similar biological features (6–8). However,
tumors with similar molecular alteration may still exhibit
differences in terms of tumor aggressiveness and therapeutic
response (9–12). In addition to targeted therapy and
conventional chemotherapy, immunotherapy is a milestone
therapeutic regimen for lung cancer which is widely used for
the treatment of advanced LUAD (13, 14). However, the
therapeutic efficacy of immunotherapy shows considerable
interindividual variability, with some patients achieving a
durable response, while others showing no response at all (15).
The underlying mechanisms responsible for the distinct
aggressiveness and therapeutic response in LUAD are yet to
be elucidated.

Tumor mass is a heterogeneous entity composed of stromal
cells and malignant cells with variable differentiation status (16).
Cellular differentiation status plays a critical role in tumor
development and progression (16). Tumors predominantly
comprising poorly differentiated cells with stem cell features
were shown to be associated with rapid progression and
unfavorable outcomes (17). The differentiation status of tumor
cells can dynamically change during the progression of
malignant disease; a typical example of this phenomenon is the
epithelial–mesenchymal transition (EMT) which is characterized
by the acquisition of a mesenchymal-like phenotype by epithelial
cells (18). EMT is associated with a more aggressive phenotype,
greater propensity for metastasis, and resistance to all kinds of
an t i tumor therapy (19 , 20 ) . The tumor immune
microenvironment can also be remodeled by the differentiation
status of tumor cells, as stem cell property and EMT were shown
to be associated with an immune suppressive phenotype (21).
The cellular composition of tumor mass also plays a role in
determining the biological features of the tumor. The immune
context, such as the infiltration level and the functional status of
2

different immune cells within the tumor mass, is closely
associated with cancer prognosis and therapeutic response (22,
23). Certain stromal components in the tumor mass such as the
infiltrating or resident myeloid cells also demonstrate high
plasticity, as their phenotype dynamically changes along with
tumor progress ion and helps modulate the tumor
microenvironment and disease progressiveness (24). To
summarize, the cellular composition and differentiation status
of intratumor cells can play a key role in determining tumor
biological features, microenvironment, and clinical outcomes.

The traditional approach to study tumor cell heterogeneity
relies on some known biomarkers, which is less effective and
provides limited information. The development of the whole-
exome RNA-sequencing technique and single-cell RNA-
sequencing (scRNA-seq) technique has provided new tools for
cancer study. scRNA-seq is a powerful tool to explore intra-
tumor heterogeneity and biological behaviors. Publicly available
databases such as The Cancer Genome Atlas (TCGA) and the
Gene Expression Omnibus (GEO) also facilitate cancer research
with abundant RNA-sequencing data as well as complete clinical
information. In this study, we utilized three independent datasets
of adenocarcinoma (one scRNA-sequencing dataset and two
bulk-tissue RNA-sequencing datasets), to explore the cellular
composition and differentiation trajectory of intratumor cells,
and assessed their clinical implications. We first classified
intratumor cells into different branches with distinct
expression patterns based on trajectory analysis using the
scRNA-seq dataset. The feature genes that were highly
expressed in each branch were defined as differentiation-
related genes (DRGs), whose clinical relevance was evaluated
through the RNA-sequencing data of bulk tumors. Further, we
developed a prognostic nomogram integrating DRGs with
prognostic significance and clinicopathological features and
validated it in an independent dataset. Finally, the functions of
WFDC2 were verified in A549 cells. Our findings highlight the
importance of intratumor cellular composition and
differentiation status in remodeling the tumor immune
microenvironment and predicting clinical outcomes.
MATERIALS AND METHODS

Data Acquisition and Preprocessing
One scRNA-sequencing dataset (GSE117570) from the GEO
database and two bulk-tissue RNA-sequencing datasets
(TCGA_LUAD dataset from TCGA and GSE72094 dataset
from GEO) were included in this study. Tumor bulk-tissue
RNA-sequencing data and the corresponding clinical
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information of 594 patients with LUAD were obtained from
TCGA database (https://portal.gdc.cancer.gov/) and used as the
training cohort. The GSE72094 dataset containing RNA-
sequencing and clinical data of 442 patients with LUAD were
also collected as the validation dataset (25).

GSE117570 contains single-cell sequencing data of
dissociated tumors or adjacent normal tissue from four NSCLC
patients (three lung adenocarcinoma and one squamous cell lung
cancer) (24). After exclusion of data from squamous cell lung
cancer and its corresponding normal tissue, sequencing data
from a total of 3,183 cells derived from three adenocarcinomas
and their adjacent normal tissues were subjected to quality check
and further study, which were all carried out by the Seurat
package in R environment (R 3.5.1) (26). The percentage of
mitochondrial genes was calculated by the PercentageFeatureSet
function. All sequencing data had a reading depth of 10×
genomics based on Illumina NextSeq 500. The relationship
between sequencing depth and mitochondrial gene sequences,
as well as total intracellular sequences, was evaluated by
correlation analysis. HTseq counts of the remaining cells were
normalized using a linear regression model with the
LogNormalize method. During quality control, we further
excluded a total of 2,078 low-quality cells with genes detected
in <3 cells, <50 total detected genes, or ≥5% of mitochondria-
expressed genes. The remaining cells were normalized using a
linear regression model with the LogNormalize method. The top
highly variant 1,500 genes were also identified by
variance analysis.

Cell annotation by dimensionality reduction and trajectory
analysis with pseudotime PCA was performed to identify
significantly available dimensions with a p-value < 0.05 (27).
Cluster classification analysis with dimensionality reduction for
the top 15 principal components (PCs) was carried out using
the t-distributed stochastic neighbor embedding (tSNE)
algorithm to obtain the major clusters (28). Marker genes of
each cluster were identified by differential expression analysis
conducted using the limma package in R environment (29).
Genes with an adjusted p value < 0.05 and | log2[fold change
(FC)] | > 0.5 were considered to be significant. Annotation of
cell clusters was carried out by the singleR package according to
the composition patterns of the marker genes and were then
manually verified and corrected with the CellMarker database
(30, 31).

We then constructed the single-cell pseudotime trajectory
using the Monocle 2 algorithm based on the scRNA-seq data
derived from lung adenocarcinoma (32). We can interpret the
differentiation trajectory of every single cell, as they were
projected onto this space and ordered into a trajectory with
branch points; cells within the same branch were considered to
have a similar differentiation state, and vice versa. We also
identified differentially expressed genes in cells with distinct
differentiation states with | log2[fold change (FC)] | > 0.5 and
FDR <0.05, which were defined as state-specific marker genes
and were also defined as DRGs in our study. DRGs of different
branches were applied to Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses to
Frontiers in Oncology | www.frontiersin.org 3
identify the enriched pathways. All pathway analyses were
implemented by the “clusterProfi ler” package in R
environment. Pathways with an adjusted p value < 0.05 were
considered to be significantly enriched.

Classification of LUAD Patients Based on
DRGs in the GSE72094 Dataset
To employ the DRGs identified from the trajectory analysis for
classification of LUAD patients based on the bulk transcriptome
data, we performed unsupervised consensus clustering on
the GSE72094 dataset using the above-identified DRGs.
Unsupervised consensus clustering was implemented by
ConsensusClusterPlus’ package in R, using an algorithm based
on k-means machine learning (33). The optimal number of
clusters was decided based on the relative change in the area
under the cumulative distribution function (CDF) curves of the
consensus score and consensus heatmap. The clinical relevance
of the clustering was evaluated in terms of its correlation with
clinical features such as overall survival, age, sex, tumor stage,
and oncogene mutation.

Tumor Purity Prediction and Enumeration
of Immune Cells
Tumor purity and the presence of infiltrating stromal/immune
cells in tumor tissues were inferred based on the expression data
using an ESTAMATE algorithm. Single sample gene set
enrichment analysis (ssGSEA) and ESTAMATE signatures
were integrated in the ESTAMATE algorithm, whose outputs
include stromal score (represents the presence of stroma in
tumor tissue), immune score (represents the infiltration of
immune cells in tumor tissue), and estimate score (represents
tumor purity) (34).

The composition of different immune cells was inferred by
CIBERSORT, which is a web portal (http://cibersort.stanford.
edu/) that performs cell type enrichment analysis for different
immune cell types based on the bulk-tissue RNA-seq data
(35). The relative infiltrating fractions of the 22 immune cell
types in the tumor microenvironment were estimated
by CIBERSORT.

WGCNA Analysis
Utilizing TCGA dataset, we conducted weighted gene co-
expression network analysis (WGCNA) to explore the co-
expression network of all the DRGs, which was implemented
by the WGCNA package in R software. The distance between
each DRG was calculated using the Pearson correlation
coefficient, and a weighted co-expression network was
constructed. Genes with missing values were identified and
discarded, and a cluster tree was constructed to test the
outliers. Network topology analysis was then applied to choose
the soft-thresholding power. The expression matrix was
transformed into an adjacency matrix and, subsequently, into a
topological matrix (TOM). The hierarchical clustering tree of
genes was shaped with the corresponding dissimilarity
calculated. Based on the TOM, we used the average-linkage
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hierarchical clustering method to cluster genes. Modules with
similar patterns through the Dynamic Tree Cut were identified
and merged. We followed the standard of a mixed dynamic shear
tree and set the minimum number of genes in each DRG network
module to 20. Gene Significance (GS) and Module Membership
(MM) were the quantifications of the relationship of genes to the
trait and modules. Genes in the modules demonstrating the most
remarkable association with clinical traits (such as age, sex,
smoking history, stage, survival status, and survival time) were
identified for further analysis. Genes with GS >0.5 and MM >0.5
were selected as candidate hub genes.

Identification of Hub Genes and
Construction of the Risk Prediction Model
The candidate hub genes identified in WGCNA analysis were
further applied to univariate survival analysis. Genes with a
Univariate Cox value of p < 0.05 were further screened with
the least absolute shrinkage and selection operator (Lasso) Cox
model, which was implemented by package glmnet in R
environment (36). Genes screened by Lasso Cox regression
analysis were selected as hub genes and used for the
construction of the risk prediction model, which was denoted
as RiskScore in our study. Lambda derived from Lasso analysis
was used as the coefficient of each gene in the calculation of
RiskScore with the following formula: RiskScore =

ot
n(Expt + Coeft)

where t represents the “t”th gene and n represents the total
number of genes. The GSE72094 dataset was used as a testing
cohort for external validation of RiskScore. The predictive power
of the nomogram in the training cohort and validation cohort
was evaluated and presented using receiver operating
characteristic (ROC) curve analysis.

Construction and Validation of the
Prognostic Nomogram
TCGA_LUAD dataset was applied as a training set for the
development of a prognostic nomogram. Overall survival (OS)
was defined as the time from the date of diagnosis or surgical
resection to the date of death or most recent follow-up. Clinical
parameters such as age, TNM stage, and RiskScore were included
in univariate and multivariate Cox regression analyses using the
backward stepwise Cox proportional hazard model. The
coefficients for each parameter derived from multivariate
analysis were used for the construction of a prognostic
nomogram. The survival statuses of patients at 1, 3, and 5
years were used as the endpoint parameters for the
development of the nomogram (37). The discrimination and
calibration of the nomogram for the endpoint index were
measured by the concordance index (C-index = 0.727) and by
calibration plot comparing the expected and observed survival
probabilities, respectively. The GSE72094 dataset was used as a
testing cohort for external validation. The predictive power of the
nomogram in the training cohort and validation cohort was
evaluated and presented using the ROC curve.
Frontiers in Oncology | www.frontiersin.org 4
Cell Culture
Human lung cancer cell lines (A549) were purchased from the
American Type Culture Collection (ATCC, USA). Cells were
cultured with Dulbecco’s Modified Eagle’s Medium/Nutrient
Mixture F-12 (DMEM/F12) (DMEM/F-12; Invitrogen,
Carlsbad, CA, USA) supplemented with 10% fetal bovine
serum (FBS; Gibco, Grand Island, NY, USA) and 4 mM of L-
glutamine. Cells were cultured and incubated in a 5% CO2

atmosphere at 37°C.

siRNA Transfection
A549 cells (5 × 104 cells per well) were seeded in 24-well plates
and cultured overnight. Cells were transfected with 100 nM non-
targeting siRNA, si-WFDC2 (Ruibo, Liaocheng, Shandong,
China) using the Lipofectamine 3000 Transfection Reagent
(Thermo Fisher, Waltham, MA, USA) following the
manufacturer’s instructions. The negative control group was
treated only with a transfection reagent. After 48 h, the
transfection efficiency was confirmed by qRT-PCR.

EdU Cell Proliferation Assay
The influence of WFDC2 on the proliferation of A549 cells was
further evaluated using the EdU Apollo 567 In Vitro Kit
(Solarbio, Beijing, China). Briefly, A549 cells transfected with
or without si-WFDC2 were placed in 96-well plates at the density
of 1 × 103 cells. EdU solution (50 µM) was added to each well for
2 h. Then, cells were fixed with 4% paraformaldehyde for 10 min
at room temperature. Cells were treated with glycine (2 mg/ml)
and Apollo (1×), respectively. The nuclei were stained with 4′,6-
diamidino-2-phenylindole (DAPI, Sigma, St. Louis, MO, USA).
Positive staining was observed and captured under a fluorescence
microscope (Olympus, Tokyo, Japan).

CCK-8 Assay
The proliferation of A549 cells transfected with or without si-
WFDC2 cells were analyzed using the Cell Counting Kit-8 assay.
Cells were seeded at 1 × 103 cells per well into 96-well plates and
cultured overnight at 37°C and 5% CO2. After 24 h, CCK‐8
(Dojindo, Kumamoto, Japan) was added to each well and
cultured for 2 h. The OD values at 450 nm were detected using
the Multiskan Go Spectrophotometer (Thermo Fisher Scientific,
USA) at days 1, 2, 3, and 4, respectively.

Colony Formation Assay
A549 cells transfected with or without si-WFDC2 (1 × 103) were
first blended into top agar (1.5 ml) for colony formation assay.
Then the mixture was added onto base agar in each well. Three
weeks post‐seeding, colonies were stained with 0.5% Crystal
Violet for 15 min. To count the colonies, a single-lens reflex
camera (Nikon) was used.

Apoptosis Assay
Cell apoptosis was evaluated utilizing FITC Annexin V
Apoptosis Kit (BD Biosciences, San Jose, CA, USA) by flow
cytometry assay. A549 cells (5 × 105) transfected with or without
si-WFDC2 were incubated with 1× binding buffer (100 ml)
supplemented with PI (5 ml) and FITC Annexin V (5 ml) at
July 2022 | Volume 12 | Article 911401
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room temperature and then analyzed using a flow cytometer
(BD Biosciences).

Cell Cycle Analysis
The cell cycle was analyzed by a Cell Cycle Detection Kit (Keygen
Biotech, Nanjing, China). Briefly, A549 cells transfected with or
without si-WFDC2 were collected and fixed in 70% cold ethanol
overnight. After that, cells were treated with 100 ml RNase A (100
mg/ml) for 30 min at 37°C and stained with 400 ml PI (50 mg/ml)
at 4°C for 30 min. DNA content was measured using flow
cytometry (Beckman Coulter FC500); the number of cells in
the G1, S, and G2 phases were quantified by cell-cycle analysis
software (FlowJo v10.0, Palo Alto, CA, USA).

Transwell Assay
The migration and invasion of A549 cells were evaluated using
Transwell assays. A549 cells transfected with or without si-
WFDC2 were pre-starved for 12 h, and 5 × 104 cells were
seeded in the upper chambers of the Transwell inserts coated
with or without Matrigel® (BD Biosciences, Bedford, MA, USA)
solution, and the medium (DMEM supplemented with 10% FBS)
was added into the lower chambers. After a 24-h incubation, the
migrated and invaded cells were fixed with formalin for 10 min
and stained using 0.1% crystal violet for 20 min at room
temperature. Finally, the cell numbers were counted in five
r andom l y s e l e c t e d fi e l d s unde r t h e m i c r o s c op e
(Olympus, Japan).

qRT-PCR
Total RNAs were extracted using TRIzol® Reagent (Invitrogen;
Thermo Fisher Scientific, Inc.) according to the manufacturer’s
instructions. The RNAs were transcribed into cDNAs with First
Strand cDNA Synthesis Kit (Thermo Scientific, USA). Specific
cDNAs were amplified with iTaq™ Universal SYBR® Green
(Bio-Rad, Hercules, CA, USA) utilizing Eco Real-Time PCR
System (Illumina, San Diego, CA, USA). The results were
analyzed using the 2−DDCT relative quantitative method, with
GAPDH as an internal control.

Statistical Analysis
Between-group differences with respect to continuous variables
were assessed using two-sample t test or Wilcoxon test. Between-
group differences with respect to categorical variables were
assessed using the c2 test, CMH-c2 test, or Fisher’s exact test,
as appropriate. Pearson correlation analysis was conducted to
assess the correlation between two continuous variables.
Continuous variables were transferred to dichotomous
variables with the median value as the cutoff point before
inclusion in survival analysis. Log-rank test was used to
evaluate the survival relevance of different parameters, which
were presented with Kaplan–Meier plots. Logistic regression
univariate analysis was conducted to explore the prognostic
significance of each DRG. ROC curve analysis was performed
to assess the performance of RiskScore in predicting the
postsurgery survival probability of LUAD at 1, 3, and 5 years,
respectively. All statistical analyses and data presentations were
performed in R language 3.5.1 (http://www. r-project.org). p
Frontiers in Oncology | www.frontiersin.org 5
values less than 0.05 were considered indicative of
statistical significance.
RESULTS

scRNA-Seq Analysis Identified 10 Clusters
of LUAD Cells
Single-cell sequencing data from dataset GSE117570 were
analyzed. Standard quality control and normalization were
performed for a total of 5,189 cells derived from the tumor
mass of three cases of lung adenocarcinoma and 3,183 cells
derived from adjacent normal tissues. A total of 2,078 low-
quality cells were excluded from further analysis (Figure 1A).
Significant positive correlations between sequencing depth and
mitochondrial gene sequences (R = 0.08) and between
sequencing depth and total intracellular sequences (R = 0.91)
were detected (Figure 1B). A total of 3,162 genes detected in the
dataset were included in the study. Variance analysis was
performed for all the included genes, among which 1,500 genes
were found to be highly variable (p < 0.05 and log(fold change)
>1) across cells, while 1,662 genes showed no significant
variation (Figure 1C). To classify the cells derived from tumor
mass into different subsets, principal component analysis (PCA)
was performed based on scRNA sequencing data. Although a
total of 15 principal components (PCs) were identified
(Figure 1E), PCA could not clearly separate the cells
(Figure 1D). The top 20 highly expressed genes that were
highly correlated with each of the first eight components are
shown in Figure 1F.

To further identify cell clusters with distinct features, the t-
distributed stochastic neighbor embedding (tSNE) algorithm was
used to narrow down the cells into 10 distinct clusters. We also
performed differential expression analysis to identify
differentially expressed genes in different clusters, which were
defined as the marker genes of the clusters. A total of 1,187
marker genes were identified; the top 20 marker genes for each
cluster are presented in the heatmap (Supplementary Figure 1).

Trajectory Analysis Identified Four
Branches of Cells From LUAD Tumor
Mass and Their Corresponding DRGs
The 10 clusters identified previously were annotated using
singleR and CellMarker. Based on the expression pattern of the
marker genes, the cellular subsets that were recognized during
the annotation included T cells (cluster 0, containing 566 cells),
monocytes (clusters 1 and 2, containing 334 cells and 265 cells,
respectively), B cells (clusters 3 and 6, containing 130 cells and 86
cells, respectively), macrophages (cluster 4, containing 89 cells),
epithelial cells (clusters 5 and 8, containing 87 cells and 51 cells,
respectively), tissue stem cells (cluster 7, containing 57 cells), and
endothelial cells (cluster 9, containing 30 cells) (Figure 2A and
Supplementary Table 6).

We further performed trajectory analysis to identify cells with
a distinct differentiated pattern. All the cells derived from the
tumor mass were projected into a three-dimensional graph with
July 2022 | Volume 12 | Article 911401
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B

C D E

F

A

FIGURE 1 | scRNA-seq analysis identified eight clusters of LUAD cells (A) Violin plots demonstrate the sequencing depth (left), number of detected genes (middle),
and percentage of mitochondria genome (right) in each single-cell samples. After quality control of the 3,183 cells from the tumor cores of three human LUAD
samples, 1105 cells were included in the analysis. (B) Dot plot demonstrates the correlation between sequencing depth and percentage of mitochondrial genes
across all the single-cell samples (left). Dot plot demonstrates the correlation between sequencing depth and total intracellular sequences (right). (C) Dot plot
demonstrates the correlation variance of each gene expression across all the single-cell samples. A total of 3,162 genes throughout all cells of LUAD are shown in
the variance diagram. A total of 1,500 genes found to be highly variable are denoted as red dots, and 1,662 genes without significant variation are represented by
black dots. Gene symbols of the top 10 highly variable genes are shown. (D) Principal component analysis (PCA) cannot clearly separate LUAD cells. (E) PCA
identified 15 principal components (PCs) with an estimated P value less than 0.05. (F) The dimensionality of the 15 PCs were reduced using the tSNE algorithm and
successfully yielded eight cell clusters whose top 20 markers genes are shown in dot plots.
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one root (II) and four branches (branches I, III, IV, and V)
(Figures 2B, C). Branch-specific feature genes were identified as
genes that were incrementally upregulated or downregulated
from root to each branch (Supplementary Tables 1–4).
Feature genes that were upregulated in each branch were
defined as differentiation-related genes (DRFGs) and were
applied to GO and KEGG pathway analyses; all the
significantly enriched pathways for different branches are
shown in Supplementary Figures 2A–D. Pathways that were
significantly enriched in each branch were mainly associated
with immune regulation, such as immune cell infiltration or
activation, antigen presentation, and cytokine production. The
DRFGs in branches I/V were involved in neutrophil
degranulation and activation, immune receptor activity, and
inflammatory disease occurrence (Supplementary Figures 2A,
D); those in branch II were also associated with a positive
regulation of cytokine production and antigen processing and
presentation (Supplementary Figure 2B), and those in branch
III were closely linked to response to molecule of bacterial origin
and Staphylococcus aureus infection pathways (Supplementary
Figure 2C).

DRGs-Based Classification of LUAD
Patients Correlated With Distinct Clinical
Outcomes
To classify LUAD patients based on the expression pattern of
DRGs identified from scRNA sequencing analysis, machine
learning-based unsupervised consensus clustering was carried
out using the bulk transcriptome data of 442 LUAD tumors from
the GSE72094 dataset. The number of clusters (k value) was
determined based on the area under the CDF curve and
consensus heatmap. When the k value was 4, the heatmap
clearly classified the tumor into four clusters with distinct
expression patterns (Supplementary Figure 3A), and the
relative change in the area under the CDF curve was minimal
with the increase in the k value (Figures 3 A, B). Thus, all LUAD
patients from the GSE72094 dataset were classified into four
groups, and their correlation with clinicopathological features
was evaluated. The Kaplan–Meier survival plot was used to
present the survival difference among patients of different
Frontiers in Oncology | www.frontiersin.org 7
groups; the results showed that patients of C3 had the worst
overall survival compared with the other three groups (p = 0.003)
(Figure 3C). The distribution of different clinicopathological
features such as age, sex, smoking history, tumor stage, and
mutation status of oncogenes or tumor-suppressor genes (KRAS,
EGFR, TP53, STK11) in different groups was compared
and presented as percentage bar plot (Figures 3D–H,
Supplementary Figures 3B–D). The distribution of all these
clinical features was comparable across the four groups except
for the mutation status of TP53 and STK11. TP53 mutation
occurred more frequently among patients of C3 (Figure 3G).
The mutation of STK11 was significantly more frequent in C3
and C4 and extremely rare in C1 and C2 (Figure 3H).

DRG-Based Classification of LUAD
Demonstrates Distinct Immune
Microenvironment
We further evaluated the difference in the tumormicroenvironment
of the four different groups. As shown in Figure 4A, tumors from
different groups significantly differed from one another in terms of
immune score, stromal score, and tumor purity as inferred from the
expression data. Of note, tumors from C3 demonstrated the lowest
immune score and stromal score but the highest score for tumor
purity. Also, tumors of the four groups differed from each other with
respect to the composition of different immune cells (Figure 4B,
Supplementary Table 7). Specifically, tumors of C3 had a
significantly lower level of adaptive immune population (such as
B cells and T cells) but significantly more abundant innate immune
cells (such as NK cells and macrophages) compared with other
groups (Supplementary Figure 3E). We further evaluated the
difference in immune checkpoint expression among tumors of the
four groups. As shown in Figure 4C, the expression pattern of most
of the known immune checkpoints was significantly different
among the four groups.

Considering the significant difference in immune
characteristics and overall survival among patients of the four
groups, we anticipated that the immune microenvironment plays
an important role in dictating tumor progression and clinical
outcome. We further evaluated the prognostic relevance of
different immune populations as well as immune-associated
B CA

FIGURE 2 | Cell annotation, differentiation trajectory prediction, and pathway enrichment analysis of different branches. (A, B) All 10 clusters of cells in LUAD were
annotated by singleR and CellMarker according to the composition of the marker genes. (C) All cells from tumor mass with cellular annotation were projected into a
three-dimensional graph with one root (II) and four branches (branches I, III, IV, and V) in the trajectory analysis. Four branches of cells (branches I, III, IV, and V) with
distinct differentiation patterns were identified by trajectory analysis.
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genes in LUAD patients using the GSE72094 dataset. As shown
in Supplementary Figure 1, lower levels of macrophage M0,
activated mast cells, and plasma cells and higher levels of resting
mast cells and CD4 memory resting cells were associated with
significantly prolonged overall survival (p < 0.05). Immune-
associated genes whose overexpression predicted favorable
survival included CD40LG and PTPRC. Some other immune-
associated genes such as YTHDF1, LDHA, PVR, and TNFSF4
correlated with unfavorable prognosis when highly expressed.

RiskScore Calculated With Prognosis-
Associated DRGs Outperformed
Conventional Parameters in Predicting
Clinical Outcomes
To better classify DRGs based on their co-expression pattern,
WGCNA was performed for DRGs that are specific to each
branch to construct co-expression patterns using TCGA-LUAD
dataset. A total of four modules, MEturquoise, MEblue,
MEbrown, and MEgrey, were identified, containing 326, 43, 29,
and 14 DRGs, respectively (Supplementary Table 5). The
correlation between the expression of each module and clinical
traits such as age, sex, smoking history, stage, survival status, and
survival time was evaluated. As shown in Figure 5A, two
modules (MEturquoise and Eblue) demonstrated the most
remarkable association with clinical traits. Both MEturquoise
and MEblue showed a significant correlation with deceased
survival status, older age, no smoking history, and early tumor
stage (Figure 5A). DRGs from modules MEturquoise and
MEblue were selected as potential hub DRGs for the
Frontiers in Oncology | www.frontiersin.org 8
construction of the DRG-based prognostic model. All the
DRGs from modules MEturquoise and MEblue were applied to
differential expression analysis to identify their differential
expression status between cells from the tumor mass and
normal tissue (Figure 5B, Supplementary Figure 5). A total of
15 genes were highly expressed in cells derived from tumor mass,
and 85 genes were highly expressed in cells from normal tissue;
the rest of the DRGs demonstrated no differential expression
(Figure 5B, Supplementary Figure 5).

Univariate Cox-regression survival analysis was performed to
identify potential hub DRGs with significant prognostic
relevance, which was further applied to multivariate Cox-
regression survival analysis to evaluate their independent
prognostic significance (Figure 5B). All survival analyses were
based on TCGA-LUAD dataset. Only genes with independent
prognostic significance were applied to the development of a
prognostic model. The lambda value from Lasso analysis was
carried out to construct the prognostic model.

A total of nine DRGs (TIMP1, VCAN, HLA-DPA1, HLA-
DQA1, KRT8, MS4A7, SFTPB, WFDC2, FABP5) were finally
recruited for the development of the prognostic model (Risk
score) using TCGA-LUAD dataset. Pairwise comparison was
carried out to evaluate the differential expression status of all the
hub genes between tumor tissues and adjacent normal tissues using
the expression data derived from 19 paired samples from our
center (38). As shown in Supplementary Figure 2, FABP5 and
MS4A7 demonstrated a significantly higher expression in normal
tissue (p < 0.05), while the expression levels of TIMP1, KRT8, and
WFDC2 were significantly higher in tumor tissue (p < 0.05); the
B C

D E F G H

A

FIGURE 3 | DRG-based classification of LUAD patients and their corresponding clinicopathological features (A) CDF curves of the consensus score (k = 2–9) in the
GSE72094 cohort. (B) Relative change in the area under the CDF curve (k = 2–9) in the GSE72094 cohort. (C) Kaplan–Meier survival analyses of patients in clusters
C1, C2, C3, and C4 in the GSE72094 cohort. (D–H). Comparisons of the clinicopathological variables including stage (D), KRAS mutation status (E), EGFR mutation
status (F), TP53 mutation status (G), and STK11 mutation status (H) among patients with clusters C1, C2, C3, and C4 in the GSE72094 cohort.
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four remaining genes VCAN,HLA-DPA1,HLA-DQA1, and SFTPB
demonstrated no significant differential expression between tumor
and normal tissue (p > 0.05). The expression level of the hub genes
in different cell types as annotated based on scRNA sequencing
data was evaluated (Figures 5C, D). SFTPB, WFDC2, and KRT8
were highly expressed in epithelial cells; MS4A7, HLA-DPA1, and
HLA-DQA1 were mainly expressed in immune cells such as
macrophages and monocytes; and TIMP1 and VCAN were
predominantly expressed by tissue stem cells (Figures 5C, D).

A prognostic model (RiskScore) integrating the expression level
of the nine hub DRGs and their lambda value from Lasso analysis as
coefficients was formulated as riskScore = SFTPB* -0.04820129 +
WFDC2* -0.08632731 + HLA-DPA1* 0.22186232 + TIMP1*
Frontiers in Oncology | www.frontiersin.org 9
0.26765595 + MS4A7*0.25567211 + HLA-DQA1*-0.15251071 +
VCAN*0.12144478 + KRT8*0.26015183 + FABP5*0.22527365.
Patients from TCGA cohort were categorized as high-risk group
and low-risk group using themedian value of RiskScore as the cutoff
point (Figure 6A). The log-rank test showed that patients with low
RiskScore had significantly better overall survival in TCGA-LUAD
dataset (p < 0.001) (Figure 6C). To demonstrate the predicting
power of RiskScore in an independent cohort, we evaluated the
survival relevance of RiskScore in the GSE72094 dataset as a
validation cohort. We obtained the risk score for each patients
using the RiskScore model, based on which patients were
categorized as high-risk group and low-risk group with the
median value of risk score as the cutoff point. The high-risk
B

CA

FIGURE 4 | DRG-based classification of LUAD patients and their corresponding tumor immune microenvironment. (A) Violin plots present the ESTIMATEscore of
tumors from C1, C2, C3, and C4 clusters in the GSE72094 cohort. Intercluster comparison was performed using t test. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not
significant. (B) Boxplot showing the infiltrating fractions of 22 different subtypes of immune cells in the four groups of tumors. Between-group differences were
evaluated using the Wilcoxon test. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant. (C) Boxplot showing the expression levels of immune check point genes
across four groups of tumors. Between-group differences were evaluated using Wilcoxon test. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.
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group demonstrated significantly worse overall survival as
compared to the low-risk group (p = 0.001) (Figures 6B, D).
Time-dependent ROC curve analysis revealed impressive predictive
power of the prognostic model in TCGA dataset [area under the
curve (AUC) for prediction of 1-, 3-, and 5-year overall survival
rates: 0.702, 0.651, and 0.632, respectively) (Figure 6E). The
predictive ability of the prognostic model was also evaluated in an
independent cohort (GSE72094), which showed comparable
efficiency in predicting the overall survival rates at years 1, 3, and
5 years (AUC: 0.691, 0.610, and 0.679, respectively) (Figure 6F).
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Construction and Validation of Prognostic
Nomogram Integrating RiskScore and
Clinicopathological Parameters
Univariate and multivariate Cox survival analyses were
conducted to compare the prognostic value of RiskScore with
that of the other clinicopathological variables such as age, sex,
smoking history, and TNM stage (Figures 6A, B). Only TNM
stage and RiskScore showed significant prognostic relevance in
both univariate and multivariate survival analyses (p < 0.001)
(Figures 7A, B); the hazard ratios (95% confidential intervals) in
B

C

D

A

FIGURE 5 | Deidentification of hub-DRGs for the prognostic model (RiskScore) (A) Heatmap showing the correlation between modules of DRGs derived from
WGCNA analysis and clinical traits such as age, sex, smoking status, TNM stages, survival time, and survival status in TCGA-LUAD cohort. The correlation
coefficient and p value (in parentheses) are shown. (B) Forest plot demonstrating DRGs with significant prognostic impact in TCGA-LUAD cohort. Genes were
converted into dichotomous variable with median value as the cutoff level; subsequently, logistic regression univariate analysis was conducted to explore their
correlation with overall survival. Genes associated with favorable survival are denoted in green in the forest plot, while those associated with unfavorable prognosis
are denoted in red. (C, D). Expression level of the nine hub genes across different cell types in nine clusters as classified by the tSNE algorithm.
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multivariate analysis were 1.54 (1.33–1.783) and 1.649 (1.466–
1.855), respectively.

A prognostic nomogram integrating RiskScore and
clinicopathological variables such as age and TNM stage was
developed based on TCGA-LUAD dataset to better predict the
prognosis of LUAD patients (Figure 7C). Survival statuses at 1,
3, and 5 years were applied as parameters of clinical outcome.
The calibration plots showed excellent agreement between the
OS predictions and the actual observations of the 0.5-, 1-, and 3-
year survival rates in TCGA cohort (Figure 7D).
Frontiers in Oncology | www.frontiersin.org 11
WFDC2 Promoted the Proliferation,
Migration, and Invasion and Decreased
Apoptosis of A549 Cells
WFDC2, which was mainly expressed in epithelial cells and
served as an immunity-related gene, was most significantly
differentially expressed in our own RNA-seq database of 19
LUAD patients (Supplementary Figure 2, Supplementary
Table 1). Therefore, WFDC2 was chosen for further
verification in vitro. To clarify the functions of WFDC2 in lung
cancer, the expressions of WFDC2 were silenced in A549 cells
B

C D

E F

A

FIGURE 6 | Development and validation of the hub-DRG-based prognostic model (RiskScore) A-B. Risk scores of the DRGs in TCGA cohort (A) and GSE72094
cohort (B) were calculated, and the patients were divided into high-risk group or low-risk group using the median risk score as the cutoff level. Upper panel: patient
survival status and time distributed by the risk score. Bottom panel: risk score curves of the DRGs. (C, D). Differences in overall survival between patients with high
RiskScore and low RiskScore in TCGA-LUAD cohort (C) and GSE72094 cohort (D) were assessed using the log-rank test, as shown in the Kaplan–Meier plot.
(E, F). ROC plot showing the prognostic performance of the nomogram demonstrated by the time-dependent ROC curve for predicting the 1-, 3‐, and 5‐year
survival rates in TCGA-LUAD training cohort (D) and GSE72094 validation cohort.
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(Figure 8A). WFDC2 knockdown significantly reduced EdU-
positive cells (Figure 8B). The results of CCK-8 assay also
showed that the proliferation of A549 cells was decreased
when WFDC2 was silenced (Figure 8C). Meanwhile, WFDC2
depletion repressed the colony numbers of A549 cells
(Figure 8D). These results indicated that knockdown of
WFDC2 inhibited the proliferation of A549 cells. Then we
conducted flow cytometry to examine the effects of WFDC2 on
the apoptosis of A549 cells. Annexin V-FITC and PI staining
revealed that the number of apoptotic cells was obviously
increased when WFDC2 was silenced in A549 cells (Figure
8E). For cell-cycle analysis, we observed that silence of
WFDC2 significantly increased the fraction of cells in the S
phase while it decreased the fraction of cells in the G1 phase,
Frontiers in Oncology | www.frontiersin.org 12
which indicated that the cell proliferation of A549 cells was
reduced (Figure 8F). Finally, Transwell assay indicated that
WFDC2 inhibition also decreased the numbers of migrated
(Figure 8G) and invaded A549 (Figure 8H) cells which
indicated that WFDC2 inhibition attenuated the migration and
invasion of A549 cells (Fig.2C). All these results indicated that
WFDC2 acted as a pro-oncogenic regulator in lung cancer.
DISCUSSION

Utilizing the scRNA sequencing dataset, we explored intratumor
heterogeneity by identifying cellular components of different
origins and their differentiation status within the tumor mass,
B

C

D

A

FIGURE 7 | Development and validation of prognostic nomogram integrating RiskScore and conventional prognostic markers (A, B). Forest plots showing the
impact on overall survival of different risk factors as inferred by univariate analysis (A) and multivariate analysis (B). (C) Nomogram model to predict the prognosis of
LUAD patients based on TCGA training cohort. Age, sex, smoking history, tumor stages, and RiskScore inferred by hub DRGs. (D) Calibration plots of the
prognostic nomogram for predicting overall survival at 1, 3, and 5 years in the TCGA.
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and their corresponding feature genes (DRGs). DRGs are highly
correlated with pathways of immune regulation, whose
expression patterns can classify LUAD into four groups with a
distinct immune microenvironment and clinical outcomes.
DRGs with independent prognostic significance were selected
as hub genes for the construction of a prognostic model
(RiskScore), which efficiently stratified LUAD patients with
distinct prognosis. A nomogram integrating RiskScore and
cl in icopathologica l features was deve loped, which
demonstrated impressive ability for prognostic prediction
in LUAD.

Lung adenocarcinoma is a highly heterogenous entity in
terms of genomic alteration, composition of intratumor cells,
and tumor cell plasticity (4). While most previous studies have
investigated the genomic features and their clinical significance
(4, 39), only a few studies have tried to explore LUAD from the
perspective of cellular heterogeneity. The rapid advances in
single-cell sequencing technology and the corresponding
analytic strategies have facilitated in-depth research on
intratumor heterogeneity of LUAD. Different from the
previous in-silico studies based on expression data of bulk
tumor, where information of intratumor heterogeneity was lost
during the analysis, scRNA seq data facilitate the evaluation of
each single cell within the same tumor (40, 41). In the present
study, we successfully identified different cellular clusters within
Frontiers in Oncology | www.frontiersin.org 13
tumor mass based on scRNA sequencing analysis. We
anticipated that the distinct expression pattern of different
cellular clusters within the same tumor mass can recapitulate
the expression pattern of each bulk tumor. As shown by our
findings, feature genes of different cellular clusters efficiently
categorized tumors into different groups with distinct
clinicopathological features and prognosis.

Feature genes of different clusters as identified by scRNA
sequencing analysis were mostly associated with immune
regulation pathways. Of note, LUAD classification based on
the expression pattern of these feature genes also demonstrated
distinct immune features across tumors of different groups.
These findings indicated the intricate involvement of the
immune context in the clustering of intratumor cells, which is
either because of the different immune composition within
different clusters or due to the different immune modeling
effects of different cellular clusters. Tumors of cluster 3 were
found to be associated with an immune-suppressive phenotype
(a lower level of immune active composition and a higher level of
immune-suppressive component) and worst clinical outcome.
LUAD is known as an immune inflammatory cancer type with
relatively higher infiltration of immune cells and a relatively
favorable response to immunotherapy. Studies have shown that
the composition and functional status of the immune population
within the tumor mass play a key role in the development and
B C
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FIGURE 8 | WFDC2 downregulation inhibited proliferation, migration, and invasion while enhanced apoptosis in A549 cells. (A) Expressions of WFDC2 inA549 cells
transfected with or without siWFDC2 were detected by Western blot. (B) EdU assay was performed to detect the proliferation of A549 cells transfected with or
without siWFDC2. (C) CCK-8 assay was performed to detect the proliferation of A549 cells transfected with or without siWFDC2. (D) Colony formation assay was
performed to detect the proliferation of A549 cells transfected with or without siWFDC2. (E) Cell apoptosis of A549 cells transfected with or without si-WFDC2 was
examined by Annexin V-FITC/PI-labeled flow cytometry. (E) Representative cell-cycle distribution profiles of WFDC2 inhibited 549 cells. (F)Transwell assay was
performed to detect the migration and invasion of A549 cells transfected with or without si-WFDC2. n = 3, *p < 0.05,**p < 0.01,***p < 0.001.
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progression of lung cancer (42). The immune context was found
to be a major determinant of tumor characteristics in NSCLC
and closely associated with clinical outcomes (43). Largely
consistent with the published literature, we also found a
significant association of immune cell infiltration and
expression of immune-associated genes with prognosis in
LUAD. As the major effector during immunotherapy, the
immune composition is widely accepted to have a significant
impact on the therapeutic efficacy of immune checkpoint
inhibitors (44, 45). Although NSCLC is one of the cancer types
that show the best response to immunotherapy, only a small
fraction of patients actually benefit from the treatment (46).
Patient classification based on cellular composition as applied in
our study may offer a new strategy to identify patients who may
benefit from immunotherapy.

Prognostic prediction is an essential part of clinical
management of malignant disease, which can guide risk
stratification and treatment decision-making (47). TNM
staging is the most widely used approach for risk stratification
of cancer patients in clinical settings; however, this approach
does not accurately predict the prognosis of LUAD patients (48).
Thus, development of strategies for a more precise prognosis
prediction of LUAD is a key imperative. Plenty of prognostic
signatures have been reported in published studies, whose
prognostic genes were basically identified through differential
expression analysis of bulk expression data and functional
annotation of differentially expressed genes (49–51). A
prognostic signature derived from bulk expression analysis
tends to miss critical information such as the prognostic
significance of different cellular components and the cellular
origin of the prognostic genes. Our study sought to develop a
prognostic model with feature genes derived from trajectory
analysis of scRNA sequencing data. Among the finally selected
hub genes with prognostic significance, six genes were mainly
expressed by epithelial cells or stem cells, and the other three
genes were highly expressed in immune cells, indicating that the
immune population has an equally important impact on clinical
outcomes. The prognostic model based on the hub genes
outperformed all the clinicopathological parameters (including
TNM staging) in predicting the clinical outcomes of LUAD
patients. Our findings suggest that prognostic signature-
derived feature genes of different cellular clusters within tumor
mass can be a promising predictor for risk stratification of
LUAD. To maximize the prognostic prediction ability, a
strategy of integrating multiple parameters in a nomogram for
risk stratification has been widely applied in research (52, 53).
We developed a nomogram incorporating RiskScore (prognostic
model based on hub gene expression) and clinicopathological
features, which efficiently predicted both short-term and long-
term survival of patients with LUAD. The concomitant use of
RiskScore with conventional parameters can efficiently improve
the accuracy of prognostic prediction in LUAD.

A total of nine hub genes for prognostic model construction
were identified in our study. Three genes (SFTPB, WFDC2, and
HLA-DQA1) were associated with reduced prognostic risk, while
the other six genes (HLA-DPA1, TIMP1, MS4A7, VCAN, KRT8,
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and FABP5) were predictors of unfavorable survival.
Consistently, in previous studies, a high expression of TIMP1
(54, 55), VCAN, KRT8 (56–58), and FABP5 (59) and a low
expression of SFTPB (60, 61), WFDC2 (62, 63), and HLA-DQA1
(64, 65) were associated with poor prognosis in multiple cancer
types. However, a reduced expression of HLA-DPA1 (64, 65) and
MS4A7 (66) was reported to be associated with disease
progression and unfavorable survival, which differed from the
findings in the studies. Especially, both HLA-DPA1 and HLA-
DQA1 were reported to be immune genes associated with antigen
presentation, whose reduction indicated an immune-suppressive
microenvironment and aggressive disease (64, 65). The biological
functions and prognostic role of all these hub genes identified in
our study need to be validated and investigated in further studies.

In this study, we validated that WFDC2 was significantly
upregulated in LUAD tissues in our own RNA-seq database
among these nine hub genes. Then we conducted further in vitro
investigations and demonstrated that WFDC2 might serve as a
pro-oncogene to promote cell proliferation, migration, and
invasion and inhibit apoptosis in A549 cells. Generally,
WFDC2 is a secretory protein that could be detected in the
serum and upregulated in various cancers including ovarian,
endometrial, and breast cancer (67). WFDC2 has been shown to
play vital roles in tumorigenesis, chemoresistance, and tumor
metastasis and was confirmed to promote tube formation and
enhance angiogenesis through STAT3 signaling (PMID:
32444701). Moreover, knockdown of WFDC2 decreased
matrix metalloproteinase-2 (MMP-2) expression, both in vitro
and in vivo, which indicated that WFDC2 may also contribute to
cancer metastasis. Chen et al. discovered that the cell invasion
induced by WFDC2 can be reversed by the inhibitor of P13K/
AKT signaling (67), implying that WFDC2 promoted cancer
invasion by activating the P13K/AKT signaling pathway.
Interestingly, the serum level of WFDC2 was inversely
correlated with cytotoxic T-cell infiltration, which indicated
that WFDC2 might suppress proper T-cell trafficking and alter
immunogenic responses in cancers (68). These results indicate
that WFDC2 serves as a vital oncogene and is a potential
therapeutic target for lung cancer.

Our study indicates that the cell differentiation trajectory-
related genes are closely correlated with the immune contexture
with tumor mass and efficiently predict prognosis in LUAD.
Even with these interesting findings, several limitations of the
current study need to be addressed. First of all, scRNA data were
obtained from only three tumors, which might not be able to
truly reflect the cellular composition in all the lung squamous cell
carcinomas. Further study regarding single-cell sequences with a
larger sample size is needed to confirm or expand our finding.
Also, this was an in-silico study and the analysis was purely based
on transcriptome data. The major findings were obtained from
analysis of public datasets without further confirmation in data
of our own cohort. Secondary, all datasets applied in our study
mainly involved early-stage tumor samples. All the included
cases underwent surgical treatment. The generalizability of our
findings to advanced tumors needs to be evaluated in a future
study. Thirdly, although the model developed in our study
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classified tumors with distinct immune contexture, we failed to
evaluate its capacity in predicting response to immunotherapy
due to the unavailability of relevant data. Last but not least, the
calculation of RiskScore is based on the expression level of all the
hub genes. As the magnitude of expression data differs across
different platforms, the generalized application of RiskScore in
the clinical practice is restricted.
CONCLUSIONS

To conclude, our study systematically evaluated the tumor
heterogeneity of LUAD and assessed its clinical relevance
based on the in-silico analysis integrating scRNA sequencing
data and RNA sequencing data of bulk tumors. Genes associated
with cellular differentiation trajectory are closely associated with
immune contexture and can predict prognosis of patients
with LUAD.
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