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Papillary thyroid carcinoma (PTC) is the most common malig-
nant tumor of endocrine systems. Chromosomal instability
(CIN) is crucial to the clinical prognoses of tumor patients.
DNA methylation plays an important role in the regulation of
gene expression and CIN. Based on PTC samples from The Can-
cer GenomeAtlas database, we usedmultiple regression analyses
to identify methylation patterns of CpG sites with the strongest
correlation with gene expression. A total of 4,997 genes were
obtained through combining the CpG sites, which were repre-
sented as featured DNA methylation patterns. In order to
identify CIN-related epigenetic markers of PTC survival, we
developed a method to characterize CIN based on DNAmethyl-
ation patterns of genes using the Student’s t statistics. We found
that 1,239 genes were highly associatedwithCIN.With the use of
the log-rank test, univariate Cox regression analyses, and the Ka-
plan-Meier method, DNA methylation patterns of UBAC2 and
ELOVL2, highly correlated with CIN, provided potential prog-
nostic values for PTC. The higher these two genes, risk scores
were correlated with worse PTC patient prognoses. Moreover,
the ELOVL2 risk score was significantly different in the four
stages of PTC, suggesting that it was related to the progress of
PTC. The DNA methylation pattern associated with CIN may
therefore be a good predictor of PTC survival.
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INTRODUCTION
Papillary thyroid carcinoma (PTC) is derived from the thyroid follic-
ular epithelium. PTC is the most common type of endocrine cancer,
and its incidence has increased rapidly over the past several decades.1

It accounts for 85% of thyroid cancer, 60% of adult thyroid cancer,2

and 100% of child thyroid cancer.3 The vast majority of patients are
diagnosed with differentiated thyroid carcinoma, especially with
PTC.4 This causes difficulty in planning the therapy, because some
patients are overtreated, whereas in other patients, the same therapy
does not result in the eradication of the neoplastic foci and inhibition
of the natural course of the disease. PTCs are usually curable with a
5-year survival of over 95%;5 however, occasionally, they dedifferen-
tiate into more aggressive and lethal thyroid cancers.6 For this reason,
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it is important to identify effective prognostic markers to evaluate the
prognoses of PTC patients.

Commonly used prognostic markers presently include proteins,
microRNAs (miRNAs), mRNAs, and DNA methylations. Ma and
Yu7 suggested that TBL1XR1 overexpression was an unfavorable
prognostic factor for epithelial ovarian cancer, and Wang et al.8 sug-
gested that DHX32 overexpression was an unfavorable prognostic
biomarker for breast cancer. The signature of chromosomal insta-
bility (CIN), inferred from gene-expression levels, can predict clinical
outcomes in multiple human cancers.9 CIN describes a dynamic state
in which cells continuously gain or lose whole chromosomes or parts
of chromosomes at an elevated rate and is therefore a principal medi-
ator of aneuploidy and intra-tumor heterogeneity.10–13 Because aneu-
ploidy is a consequence of CIN, genes with expression levels are
consistently associated with aneuploidy, so gene-expression signa-
tures provide a means to estimate levels of CIN.9 Carter et al.9

developed a computational method to characterize CIN based on
gene-expression levels using the Student’s t statistics. They mapped
the genes to chromosomal sub-bands, with CIN describing the net de-
viation in expression of genes contained in each chromosomal region
relative to the remainder of the sampled transcriptome. Patients with
a higher CIN score had worse clinical prognoses. They suggested that
gene-expression signatures that had high correlations with CIN could
therefore predict the clinical prognoses of tumor patients.

Genomic DNA hypomethylation is another important factor associ-
ated with CIN.14–17 Methylation of the carbon-5 position of cytosine,
mostly in the context of CpG dinucleotides, is the main epigenetic
The Authors.
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Table 1. Clinical Information on PTC Patients

Characteristics Training Set (n = 49) Testing Set (n = 442)

State

Living 45 431

Dead 4 11

Survival (years)

Mean ± SD 4.22 ± 3.52 2.46 ± 2.37

Gender

Male 14 117

Female 35 325

Age (years)

Mean ± SD 45.29 ± 17.22 47.57 ± 15.72

Stage

I 30 246

II 5 47

III 11 99

IV 3 50

Histological Type

Thyroid papillary carcinoma

Classical/usual 42 313

Tall cell (R50% tall cell features) 3 33

Follicular (R99% follicular
patterned)

4 96
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modification of DNA and is essential for a properly functioning
genome, including maintenance of chromosome stability and tran-
scriptional repression.18–21 Recently, DNA methylation biomarkers
for the diagnoses, molecular typing, and prognoses of cancers were
identified.22–24 Lu et al.22 suggested that hypermethylation of
hMLH1 in PTC was significantly correlated with age, size, and the
number of primary lesions, local invasion, T stage, and lymph node
metastases. Shou et al.23 reported that aberrant methylation of the
RASSF1A promoter was more frequently detected in thyroid cancer
than in noncancerous controls. Wang et al.24 reported that hyperme-
thylation of RUNX3 significantly increased the risk of PTC recurrence
by using appropriate site-specific cut-off values.

Genomic DNA hypomethylation has been associated with
increased CIN, which plays a central role in tumorigenesis.14–17

Kawano et al.14 suggested that whole genome hypomethylation
initiated carcinogenesis of esophageal squamous cells through
CIN. Nishida et al.15 concluded that DNA hypomethylation is
an important cause of CIN in the earliest phase of human hepa-
tocellular carcinoma, especially in the background of noncirrhotic
livers. Rodriguez et al.16 reported that CIN was correlated with
genome-wide DNA demethylation in human primary colorectal
cancers, and Suzuki et al.17 reported that global DNA demethyla-
tion in gastrointestinal cancer was correlated with increased
genomic damage. However, few reports have shown that hyper-
methylation is associated with CIN.
Gene-expression levels can be affected by a number of factors,
including the environment, gene mutations, and DNA methyla-
tions.25–28Hypermethylated promoters lead to an “off” state of expres-
sion, whereas less methylation may lead to an “on” state.19 Methyl-
ation is an acquired epigenetic phenomenon but can be faithfully
reproduced in the progeny of affected cells, and the methylation will
then be propagated during clonal selection during the development
of tumors.29 DNA methylations are therefore more stable than gene
expressions. Although several methylation biomarkers have been
identified to predict cancer survival, they are usually limited to average
methylation levels of several genes based on experimental data. How-
ever, there is aweak correlation between the averageDNAmethylation
levels of gene promoters and the levels of gene expression.30 This
report prompted us to speculate that methylated CpGs might not
have equivalent regulatory effects on gene expression, which results
in the maximum regulatory effect of DNA methylation on gene
expression.31 We then identified the DNA methylation patterns that
had high correlations with CIN as prognostic markers of PTC.

In the following study, based on The Cancer Genome Atlas (TCGA)
database, we identified differentially methylated CpG sites between
PTC and normal samples. Multiple regression analyses were then
used to obtain the methylation patterns of CpGs with the highest
correlations with gene expression. We obtained specified genes by
combining CpG sites, which were represented as specific DNA
methylation patterns. In order to identify CIN-related epigenetic
markers of PTC survival, a method was developed to characterize
CIN based on the DNA methylation patterns of genes using the
Student’s t statistics. Pearson’s correlation coefficient (PCC) was
used to evaluate the correlations between DNAmethylation patterns
and the CIN of each gene. With the use of PCC and a permutation
test, we verified that the featured genes were highly associated with
CIN. With the use of the log-rank test, univariate Cox regression
analyses, and the Kaplan-Meier method, we conducted prognostic
analyses. The DNA methylation patterns of UBAC2 and ELOVL2
that had high correlations with CIN provided good prognostic values
for PTC. Moreover, UBAC2 and ELOVL2 were hypomethylation
phenotypes. The DNA methylation patterns associated with CIN
may therefore be a good predictor of PTC survival.

RESULTS
Identifying Differentially Methylated CpGs Associatedwith Gene

Expression

With the use of the Illumina Infinium HumanMethylation450
BeadChip assay (Illumina, San Diego, CA), raw data (level 3 data),
raw UNC RNAseqV2 level 3 expression data, and the clinical prog-
nostic information for PTC were collected from TCGA. The DNA
methylation data and the gene-expression data both contained 562
samples, comprised of 49matched normal samples, 494 PTC samples,
11 metastatic thyroid carcinoma samples, and eight samples of other
types of thyroid cancers. We eliminated batch effects between these
562 samples. In total, 49 PTC samples and 49matched normal samples
comprised the training set, with the remaining 445 PTC samples used
as the testing set. Three samples were excluded because they did not
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Figure 1. Analyses of Papillary Thyroid Carcinoma

Data

(A) Two-way hierarchical clustering of the fBi value in papil-

lary thyroid carcinoma tissue samples. The blue area

was >0, and the red area was <0. (B) In total, DNA

methylation patterns of 1,239 genes were highly related to

chromosomal instability (CIN), and 653 (53% of the total)

were positively correlated genes. In total, 586 (47% of the

total) were negatively correlated genes. (C) Gene ontology

(GO) functional enrichment analyses for DNA methylation

patterns of 1,239 genes were highly related to CIN using

DAVID. (D) TheKyotoEncyclopediaofGenesandGenomes

pathway enrichment analyses forDNAmethylation patterns

of 1,239 genes were highly related to CIN using DAVID. (E)

Two-way hierarchical clustering of DNA methylation pat-

terns of 1,239 genes were highly related to CIN in papillary

thyroid carcinoma tissue samples and normal tissue sam-

ples. The blue area was >0, and the red area was <0.
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contain survival information. The final study included 442 PTC pa-
tients in the testing set (Table 1). Eleven metastatic thyroid carcinoma
samples and eight samples of other types of thyroid cancers were
excluded.

All of the CpG sites were from the Illumina Infinium
HumanMethylation450 BeadChip assay. Raw data (level 3 data) con-
tained all CpG sites in the gene sequence and all CpG sites in the pro-
moter of the analyzed gene. For a specific CpG site, we calculated the
correlations with expression of the nearest gene. In total, 203,015
differentially methylated CpG sites were identified from the training
set, and 7,541 differentially methylated CpG sites were significantly
related to gene expression (false discovery rate [FDR]-corrected p
value < 0.05) and included 4,997 genes. There were 3,673 hypermethy-
lated sites and 3,868 hypomethylated sites. More than 50% of the hy-
pomethylated sites were negatively related to gene expression (Fig-
ure S1A), and more than 50% of the hypermethylated sites were
negatively related to gene expression (Figure S1B). A total of 2,035
genes with the proportion of the hypomethylated sites associated
with gene expression were greater than 9.60%, accounting for more
than 50%, and the expression of seven genes was influenced by all of
their hypomethylated sites (Figure S1C). A total of 2,082 genes with
the proportion of the hypermethylated sites associated with gene
expression were greater than 9.22%, accounting for more than 50%,
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and the expression of three genes was influenced
by all of their hypermethylated sites (Fig-
ure S1D). The hypomethylated sites showed sig-
nificant regulatory effects on gene expression
(Figure S1E), and the hypermethylated sites
also showed significant regulatory effects on
gene expression (Figure S1F).

Identification of the Genes Related to CIN

The methylation pattern score (score value) was
used to describe the maximal regulatory effect of
DNA methylation on gene expression. The distribution of the score
value was consistent with the normal distribution, which was the
same as the gene expression (Figure S2). We therefore characterized
the CIN based on the score value using Student’s t statistics. The fBi
was the net deviation in the score value contained in each chromo-
somal region relative to the remainder of the sampled score value.
The results of clustering analyses showed that most of the bands
had CIN (Figure 1A). As a measure of overall CIN, theMFA of a sam-
ple was defined as the sum of the magnitudes of its fBi features. In to-
tal, the DNA methylation patterns of 1,239 genes from preselected
4,997 genes were significantly related to the MFA (Table S1), and
53% of them showed a positive correlation, indicating the higher
the gene score value, the higher the CIN (Figure 1B). A total of 572
of them were hypermethylation phenotypes (Table S2), and 667 of
them were hypomethylation phenotypes (Table S3).

Gene ontology (GO) functional enrichment analyses (Figure 1C)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses (Figure 1D) showed that the 1,239 genes
were significantly related to organ development and were enriched
in pathways that were related to cancer. The DNA methylation pat-
terns of these genes were significantly related to the MFA and
significantly differentiated between normal samples and cancer sam-
ples (Figure 1E).



Table 2. Prognosis Markers of PTC Patients

Variable HR (95% CI)
Regression
Coefficient p Value

TMEM18 1.951 � 10-9(2.351e�17-0.1619) �20.05 0.0311

UBAC2 7.909� 10-19(3.658e�33-0.000171) �41.68 0.0133

ELOVL2 0.002013(5.646e�06-0.7177) �6.208070 0.0384

ALMS1P 1.7 � 109(1.075-2.687e+18) 21.25 0.0492

www.moleculartherapy.org
Differentially Methylated Markers Associated with PTC Clinical

Prognoses

We used the log-rank test to analyze the DNA methylation patterns
of 1,239 genes that had high correlations with CIN, with 28 genes
being left. The DNA methylation patterns of thirteen genes that
had high correlations with CIN were significant (p < 0.05) using uni-
variate Cox regression analyses. The hazard ratios (HRs) and 95%
confidence intervals (CIs) of the clinical parameters for mortality
were calculated using univariate Cox proportional hazard model an-
alyses. The Kaplan-Meier method was used to estimate the overall
survival times of patients. The DNA methylation patterns of four
genes, TMEM18, UBAC2, ELOVL2, and ALMS1P, which had high
correlations with CIN, were finally identified as prognosis markers
of PTC. We developed four distinct risk scores, each of them based
on the methylation pattern of one of four genes. The risk score
formula for each patient was calculated as follows: risk score =
(�20.05 � TMEM18), (�41.68 � UBAC2), (�6.20807 � ELOVL2),
and (21.25�ALMS1P). If the regression coefficient estimated by the
univariate Cox proportional hazards model > 0, then the hyper-
methylation of the risk gene was bad for the survival time. We
subdivided the PTC patients into high-risk and low-risk groups
by using the median of the risk scores. The HRs (95% CI) of
TMEM18, UBAC2, ELOVL2, and ALMS1P were 1.951 � 10�9

(2.351e�17-0.1619), 7.909 � 10�19 (3.658e�33-0.000171),
0.002013 (5.646e�06-0.7177), and 1.7 � 109 (1.075-2.687e+18),
respectively (Table 2).

The DNA methylation pattern of UBAC2 that had a high correlation
with CIN significantly predicted the survival of PTC patients in the
training set (Figure 2A). The 5-year survival percentage of the high-
risk score patients was 68.2% ± 13.6% and was less than that of the
low-risk score patients (100%, p = 0.038). From the low-risk group
to the high-risk group, the methylation levels of the UBAC2
cg16941122 site showed a significant upward trend and had a strong
linear relationship with the risk index, although the expression levels
of UBAC2 and the average methylation levels had no obvious trend
(Figure 2B). Furthermore, a higher UBAC2 risk score was associated
with a worse PTC patient prognosis.

The DNA methylation pattern of TMEM18 that had a high correla-
tion with the CIN significantly predicted the survival of PTC pa-
tients in the training set. The 5-year survival percentage of the
high-risk score patients was 59.8% ± 16.3% and was significantly
lower than that of the low-risk score patients (100%, p = 0.01) (Fig-
ure S3). The DNA methylation pattern of ALMS1P that had a high
correlation with CIN significantly predicted the survival of PTC pa-
tients in the training set. The 5-year survival percentage of the high-
risk score patients was 67.6% ± 14.2% and was significantly lower
than that of the low-risk score patients (100%, p = 0.041) (Figure S4).
Therefore, a higher gene risk score predicted a worse PTC patient
prognosis.

The DNAmethylation pattern of ELOVL2 that had a high correlation
with CIN significantly predicted the survival of PTC patients in the
training set (Figure 3A). The 5-year survival percentage of the high-
risk score patients was 65.8% ± 14.6% and was significantly lower
than that of the low-risk score group (100%, p = 0.029). From the
low-risk group to the high-risk group, the methylation levels of the
ELOVL2 cg24724428 site showed a significant upward trend and
had a strong linear relationship with the risk index, although the
expression levels of ELOVL2 and the average methylation levels had
no obvious trend (Figure 3B). Moreover, the ELOVL2 risk score
was significantly different in the four stages of PTC (Kruskal-Wallis
test, p = 0.001527), suggesting that the DNA methylation pattern of
ELOVL2 that had a high correlation with CIN was related to the prog-
ress of PTC (Figure 3C). A higher ELOVL2 risk score correlated with a
worse PTC patient prognosis, further suggesting that the ELOVL2
score value that had a high correlation with CIN significantly influ-
enced the patient’s clinical condition, progression of the disease,
and survival time.

We performed a time-dependent receiver-operating characteristic
(ROC) curve analysis to compare the sensitivity and specificity for
survival predictions among the DNA methylation patterns of these
four genes. The area under the ROC curve (AUC) value was obtained
from the ROC analyses and was compared among the DNA methyl-
ation patterns of these four genes. The AUC values of TMEM18,
UBAC2, ELOVL2, and ALMS1P were 0.95, 0.886, 0.764, and 0.854,
respectively (Figure 4).

Verification of the Testing Set

The testing set was used to evaluate the reproducibility and availabil-
ity of these four genes in a prognostic model. The DNA methylation
patterns of ELOVL2 and UBAC2 were obtained using independent
cancer samples that not only associated with CIN but could also be
used to predict the prognosis of PTC.Moreover,UBAC2 and ELOVL2
were hypomethylation phenotypes. The DNA methylation pattern of
UBAC2 that had a high correlation with CIN predicted the survival of
PTC patients in the testing set (Figure 5A). The 5-year survival per-
centage of the high-risk score patients was 83.6% ± 6.2%, which
was significantly lower than that of the low-risk score group
(97.1% ± 2%, p = 0.024). From the low-risk group to the high-risk
group, the methylation levels of the UBAC2 cg16941122 site showed
a significant upward trend and had a strong linear relationship with
the risk index, although the expression levels of UBAC2 and the
average methylation levels had no obvious trend (Figure 5B). The
samples from the testing set were subgrouped based on the tumor
stage, and the survival times of patients from the high-risk score
Molecular Therapy: Nucleic Acids Vol. 18 December 2019 653

http://www.moleculartherapy.org


Figure 2. The UBAC2 Risk Score Model Predicts

Overall Survival of Papillary Thyroid Carcinoma

Patients in the Training Dataset

(A) Kaplan-Meier analyses for overall survival of patients

with high-risk or low-risk scores. The p value was calcu-

lated using the two-sided log-rank test. (B) DNA methyl-

ation pattern, expression levels, and average methylation

levels of the prognostic UBAC2 that correlated with pa-

tients’ survival status and increased risk scores.
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group were significantly different from that of the low-risk score
group in stage III of PTC (p = 0.018) (Figure 5C). The survival times
of patients from the high-risk score group were the same as those
from the low-risk score group in stages I, II, and IV of PTC (p =
0.39, 0.355, 0.137, respectively). We subgrouped the testing samples
based on histological type, and the survival times of the patients in
the high-risk score group were significantly different from those of
the low-risk score group in the thyroid papillary carcinoma clas-
sical/usual group (p = 0.009) (Figure 5D). The thyroid papillary car-
cinoma tall cell (R50% tall cell features) histological group contained
33 samples, and there were no samples from patients who had died.
Therefore, we could not perform survival analyses. The survival times
of the patients in the high-risk score group were the same as those
from the low-risk score group in the thyroid papillary carcinoma-
follicular (R99% follicular patterned) histological group (p =
0.366). A higher UBAC2 risk score predicted a worse PTC patient
prognosis.

The DNAmethylation pattern of ELOVL2 that had a high correlation
with the CIN significantly predicted the survival of PTC patients in
the testing set (Figure 6A). The 5-year survival percentage of the
high-risk score patients was 83.4% ± 6.1% and was significantly lower
than that of the low-risk score group (97.1% ± 2.4%; p = 0.026). From
the low-risk group to the high-risk group, the methylation levels of
the ELOVL2 cg24724428 site showed a significant upward trend
and had a strong linear relationship with the risk index, although
the expression levels of ELOVL2 and the average methylation levels
had no obvious trend (Figure 6B). The samples from the testing set
were subgrouped based on the tumor stage, and the survival times
of patients from the high-risk score group were the same as those
of the low-risk score group in stages I, II, III, and IV of PTC (p =
0.324, 0.206, 0.19, and 0.05, respectively). We subgrouped the testing
samples based on histological type, and the survival times of the pa-
tients in the high-risk score group were the same as those from the
654 Molecular Therapy: Nucleic Acids Vol. 18 December 2019
low-risk score group in the thyroid papillary
carcinoma classical/usual group (p = 0.078).
The survival times of the patients in the high-
risk score group were the same as those of the
low-risk score group in the thyroid papillary
carcinoma-follicular (R99% follicular pattern)
histological group (p = 0.317). Moreover, the
ELOVL2 risk score was significantly different
in the four stages of PTC (Kruskal-Wallis test;
p = 9.915� 10�13) (Figure 6C), suggesting that the DNAmethylation
pattern of ELOVL2 that had a high correlation with CIN was related
to the progress of PTC. A higher ELOVL2 risk score was correlated
with a worse PTC patient prognosis, indicating that the ELOVL2
score value that had a high correlation with CIN significantly influ-
enced the patient’s clinical condition, progression of disease, and sur-
vival time. The AUC values of ELOVL2 and UBAC2 were 0.849 and
0.556, respectively (Figure 7).

DISCUSSION
To predict PTC patient clinical prognoses, tumor node metastasis
(TNM) staging; patient age, histologic grade of the tumor, tumor
extent (extrathyroidal invasion or distant metastases), and size of
the primary tumor (AGES) scoring; patient age, presence of distant
metastases, extent and size of the primary tumor (AMES) scoring;
and metastasis, patient age, completeness of resection, local invasion,
and tumor size (MACIS) scoring have been used.32–35 However, pa-
tients with similar clinical phenotypes do not have identical progno-
ses, suggesting that the present PTC prognostic evaluation system
does not provide an accurate clinical prognosis for every patient.36–39

The PTC prognostic evaluation system therefore needs improvement.
The accuracy of PTC prognoses could be significantly improved by
the use of molecular markers. Cancer patients with a higher CIN
have a worse clinical prognosis, so CIN could be used to evaluate
the clinical prognoses of tumor patients.40–43 To improve the existing
PTC prognostic evaluation system, it is important for PTC patient
treatment to identify reliable CIN-related prognostic markers.
Although CIN-related prognostic markers have been previously re-
ported,9 the results differed. Therefore, more valid CIN-related prog-
nostic markers are needed to improve the accuracy and credibility of
the prognoses.

DNA methylation plays an important role in the regulation of gene
expression and CIN. Based on PTC samples from TCGA database,



Figure 3. The ELOVL2 Risk Score Model Predicts

Overall Survival of Papillary Thyroid Carcinoma

Patients in the Training Dataset

(A) Kaplan-Meier analyses for overall survival of patients

with high-risk or low-risk scores. The p value was calcu-

lated using the two-sided log-rank test. (B) DNA methyl-

ation pattern, expression levels, and average methylation

levels of the prognostic ELOVL2 that correlated with pa-

tients’ survival status and increased risk scores. (C) Box

plot of the ELOVL2 risk scores in the four stages of

papillary thyroid carcinoma.
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we used the R Significance Analysis of Microarrays (SAM) package44

to identify 203,015 differentially methylated CpG sites between PTC
and normal samples. Then, we used multiple regression analyses to
obtain 7,541 methylation patterns of CpG sites with the strongest
correlation with gene expressions. A total of 4,997 genes were ob-
tained by combining the CpG sites, which were represented as
featured DNA methylation patterns. The results showed that the
Figure 4. Receiver-Operated Characteristic (ROC) Analyses of the

Sensitivity and Specificity for Survival Prediction among the DNA

Methylation Patterns of the Four Genes

The time-dependent ROC curve was used to evaluate the prognostic performance

for survival predictions. The performance comparison was assessed among the four

genes by calculating the area under the ROC curves (AUC) in the training dataset.
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distribution of DNA methylation patterns was
consistent with the normal distribution, which
was the same as gene expression. We subse-
quently developed a method to characterize
CIN based on DNA methylation patterns of
genes using the Student’s t statistics. PCC was
used to evaluate the correlation between the
DNA methylation patterns and the CIN of
each gene. We found that 1,239 genes were highly associated with
CIN.With the use of the log-rank test, univariate Cox regression an-
alyses, and the Kaplan-Meier method, DNA methylation patterns of
four genes, including TMEM18, UBAC2, ELOVL2, and ALMS1P,
which had high correlations with CIN, provided good prognostic
values for PTC. An independent test set was used to test the validity
of the methylation risk score of the four genes. Finally, ELOVL2 and
UBAC2 remained. In addition, the DNA methylation pattern of
ELOVL2 was involved in different stages of PTC, indicating that
the DNA methylation pattern of ELOVL2 with a high correlation
with CIN significantly influenced the patient’s clinical condition,
progression of disease, and survival time. The DNA methylation
pattern associated with CIN may therefore be a good predictor of
PTC survival.

Previous studies of ELOVL2 and UBAC2 emphasized their relation-
ships with lipid metabolism and obesity.45–48 González-Bengtsson
et al.45 suggested that ELOVL2 played an important role in doco-
sahexaenoic acid (DHA) synthesis. Kobayashi et al.46 reported
that cells overexpressing ELOVL2 showed enhanced triacylglycerol
synthesis and subsequent accumulation of lipid droplets. Pauter
et al.47 suggested that hepatic DHA synthesis of ELOVL2, in addi-
tion to controlling de novo lipogenesis, also regulated lipid storage
and fat mass expansion in an SREBP-1c-independent fashion.
Tikhonenko et al.48 reported that a decrease in long-chain polyun-
saturated fatty acids was associated with a decrease in the fatty acid
elongases, ELOVL2 and ELOVL4, in diabetes, and additional
studies showed that obesity increased the risk of thyroid can-
cer.49–52 Han et al.49 reported that the morbidity of thyroid cancer
in female patients was related to a high BMI. Hwang et al.50 sug-
gested that weight gain and annual increases in obesity indicators
in middle-aged adults increased the risk of developing PTC. Kim
et al.51 reported that a higher BMI was associated with more
y: Nucleic Acids Vol. 18 December 2019 655
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Figure 5. The UBAC2 Risk Score Model Predicts Overall Survival of Papillary Thyroid Carcinoma Patients in the Testing Dataset

(A) Kaplan-Meier analyses for overall survival of patients with high-risk or low-risk scores. The p value was calculated using the two-sided log-rank test. (B) DNA methylation

pattern, expression level, and average methylation level of the prognostic UBAC2 that correlated with patients’ survival status and increased risk scores. (C) Kaplan-Meier

analyses for overall survival of patients in the third stage of papillary thyroid carcinoma. The p value was calculated using the two-sided log-rank test. (D) Kaplan-Meier

analyses for overall survival of patients with thyroid papillary carcinoma-classical/usual histological types. The p value was calculated using the two-sided log-rank test.
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aggressive tumor features, such as lymph node metastasis,
lymphatic invasion, and tumor multiplicity in PTC patients. Ober-
man et al.52 reported that obesity was significantly associated with
thyroid cancer, with BMI, in particular, a strong predictor of thy-
roid cancer. ELOVL2 was also significantly related to biosynthesis
656 Molecular Therapy: Nucleic Acids Vol. 18 December 2019
of unsaturated fatty acids, and UBAC2 was significantly related to
protein localization to the endoplasmic reticulum. Therefore,
DNA methylation patterns of ELOVL2 and UBAC2 were not only
associated with CIN, but might also participate in the initiation
and development of PTC.
Figure 6. The ELOVL2 Risk Score Model Predicts

Overall Survival of Papillary Thyroid Carcinoma

Patients in the Testing Dataset

(A) Kaplan-Meier analyses for overall survival of patients

with high-risk or low-risk scores. The P value was calcu-

lated using the two-sided log-rank test. (B) DNA methyl-

ation pattern, expression level, and average methylation

level of the prognostic ELOVL2 that correlated with the

patients’ survival status and increased risk scores. (C) Box

plot of the ELOVL2 risk score in the four stages of papillary

thyroid carcinoma.



Figure 7. Receiver-Operated Characteristic (ROC) Analyses of the

Sensitivity and Specificity for Survival Prediction between the DNA

Methylation Patterns of the Two Genes

The time-dependent ROCcurvewas used to evaluate the prognostic performance for

survival predictions. The performance comparison was assessed between the two

genes by calculating the area under the ROC curves (AUC) in the testing dataset.
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Because of differences among individual patients, presently used
prognostic indicators cannot accurately predict the prognosis of
each patient. It is therefore difficult to evaluate the clinical progno-
ses of patients with similar clinical features. Our results showed that
the DNA methylation patterns of ELOVL2 and UBAC2, which had
high correlations with CIN, could be used to predict the prognosis of
PTC. Aberrant DNAmethylation was related to the risk of PTC, and
the epigenetic markers associated with CIN may be used as predic-
tors of PTC survival. The inclusion of these prognosis markers into
the present PTC prognostic evaluation system could therefore assist
the clinician in determining the prognoses of patients with similar
clinical features and could provide a more appropriate therapeutic
schedule for high-risk patients to enhance the efficacies of PTC
treatments.
Conclusions

UBAC2 and ELOVL2, which had high correlations with CIN, pro-
vided good prognostic values for PTC. The DNAmethylation pattern
associated with CIN may therefore be a good predictor of PTC
survival.
MATERIALS AND METHODS
Acquisition of Gene Expression and DNA Methylation Data

With the use of the Illumina Infinium HumanMethylation450
BeadChip assay, raw data (level 3 data), raw UNC RNAseqV2 level
3 expression data, and clinical prognostic information for PTC
were collected from TCGA (https://www.cancer.gov/tcga/).
Eliminating Batch Effects

In order to ensure the accuracy of experiments, we used the R Surro-
gate Variable Analysis (Bioconductor) package to eliminate batch
effects of all of the DNA methylation data and the gene-expression
data from all samples.

Identifying Differentially Methylated CpGs

To compare the differences of DNA methylation between cancer and
normal samples in the training set, we used the R SAM44 package to
identify differentially methylated CpG sites. To control for a FDR of
the results, we used the Benjamini-Hochberg method to correct the p
value obtained from the statistical test. The threshold for defining the
differentially methylated CpG site involved a value of p < 0.05, and the
differential level (delta beta value) between the cancer and normal
samples was >0.1.

Identifying Differentially Methylated CpGs Associatedwith Gene

Expression

For the differentially methylated CpG sites of the PTC samples from
the training set, we used multiple regression coefficients to evaluate
the correlation between DNA methylation and gene expression.
The dependent variable was gene expression of a single gene. The
independent variables were all CpG sites mapped to the gene, con-
taining all CpG sites under the gene sequence and all CpG sites in
the promoter of the analyzed gene. For a particular CpG site, we
calculated correlations with the expression of the nearest gene. A
value of p < 0.05 was identified as a significant methylation level high-
ly related to gene expression.

Quantitation of the Regulatory Effect of DNAMethylation (Score

Value)

With the consideration of the multiple CpGs mapped to the gene
and the variability of the DNA methylation levels of multiple
CpGs located in the same gene, the average methylation level may
not reflect the real ability of DNA methylation to regulate gene
expression. Multiple regression analyses were therefore used to
quantify the regulatory competence of differential CpG sites and
then to quantify the maximal regulatory effect of DNA methylation
on gene expression. The methylation pattern score (score value) was
defined31 as follows:

Scorek = ba1$cgk1 + ba2$cgk2 +.baj$cgkj: (Equation 1)

The j CpGs sites represented the significant methylation sites in mul-
tiple regression analyses (p < 0.05), a^j (j = 1,2,...,j) represented the mul-
tiple regression coefficient of the jth CpG sites of the gene, and cgkj
represented the methylation level of the jth CpG sites of the gene in
the kth sample.

Calculating the CIN Score (MFA)

This study downloaded the cytoband coordinate file (GRCh37/
hg19) from the UCSC Genome Bioinformatics and then mapped
the genes to chromosomal sub-bands. If fewer than five genes
were present in a given cytoband, we considered the statistical
Molecular Therapy: Nucleic Acids Vol. 18 December 2019 657
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measure unreliable, and that cytoband was eliminated from further
analysis. The fBi described the net deviation in score value contained
in each chromosomal region relative to the remainder of the
sampled score value:9

fBi =
mBi � mGiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs2

Bi=NBÞ+ ðs2
Gi=NGÞ

p : (Equation 2)

The mBi represented the average score value of all of the genes under
sample i in the band, s2Bi represented the variance of the score value of
all the genes under sample i in the band, mGi represented the average
score value of the rest of the genes under sample i, s2Gi represented the
variance of the score value of the rest of the genes under sample i, NB

represented the number of genes in the band, and NG represented the
number of the remaining genes.

As a measure of overall CIN, we defined the MFA of a sample as the
sum of the magnitudes of its fBi features:

9

MFAi =
X
Band

��fBi �� : (Equation 3)

Identification of Genes Related to MFA

PCC was used to evaluate the correlation between the score value and
the MFA of each gene. In order to control for a FDR of the PCC, we
adopted a permutation test to correct the p value of the statistical test.
For each gene, the MFA was permutated 1,000 times to calculate its
PCC value, and if the value of p was <0.05, this gene was identified
as highly related to MFA as follows:

p =
c+ 1
1001

; (Equation 4)

where c was the number of PCC square values that were no less than
the actual PCC square value of the gene from the 1,000 permutations.
Enrichment Analyses for the GO and KEGG Pathways

To analyze further the biological significance of the genes related to
CIN, we used Database for Annotation, Visualization and Integrated
Discovery (DAVID) software to perform GO function analyses for
the genes related to CIN.53 The Fisher exact test with multiple test
corrections (FDR < 0.05) was used to obtain significant GO terms
associated with PTC. We acquired the KEGG pathway terms using
the same method.

Prognosis Analyses

The log-rank test was used to obtain p values and to identify a subset
of genes for which a score value that had high correlations with CIN
showed significant differences between the high and low groups. The
high and low groups were groups with high and low score values,
grouped by their median values. The survival times were compared
between these two groups. Genes with p < 0.05 were used in the study.
The p values were uncorrected p values. Univariate Cox regression
analyses were performed to assess the survival prognosis capabilities
658 Molecular Therapy: Nucleic Acids Vol. 18 December 2019
of the selected gene set using the overall survival time as a dependent
variable. The HRs and 95% CIs of the clinical parameters for mortal-
ity were calculated using the univariate Cox proportional hazard
model. The risk score formula for each patient was calculated as
follows:

Risk Scorek = ci,geneik; (Equation 5)

where k was the kth sample, i denoted the feature genes filtered by
the univariate Cox proportional hazards models, and ci was the
regression coefficient estimated by the univariate Cox proportional
hazards model. The 5-year overall survival for each score
value scoring group (high versus low) was calculated using the
Kaplan-Meier method, and the statistical significance was assessed
using the log-rank test. The significance level of all statistical
tests was p < 0.05. We performed time-dependent ROC curve
analyses to compare the sensitivities and specificities for survival pre-
dictions between the predicted genes. The ROC AUC values were
obtained from ROC analyses and were compared between the
selected genes.

In order to verify the reproducibility and accuracy of the gene prog-
nostic model, as predicted in the training set, we used the testing set.
The regression coefficients and the thresholds of risk scores derived
from the training set were directly applied to the testing set, and
then the patients in the testing set were divided into high-risk and
low-risk groups. The evaluation of survival times and the comparison
of differences between the two groups were the same as that of the
training set.
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