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Running Head: Effectiveness of Localized Lockdowns 

 

ABSTRACT 

Non-pharmaceutical interventions, such as social distancing and lockdowns, have been essential 

to control the COVID-19 pandemic. In particular, localized lockdowns in small geographic areas 
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have become an important policy intervention to prevent viral spread in cases of resurgence. 

These localized lockdowns can result in lower social and economic costs compared to larger-

scale suppression strategies. Using an integrated dataset from Chile (March 3 through June 15, 

2020) and a novel synthetic control approach, in this paper we estimate the effect of localized 

lockdowns, disentangling its direct and indirect causal effects on SARS-CoV-2 transmission. 

Our results show that the effects of localized lockdowns are strongly modulated by their duration 

and are influenced by indirect effects from neighboring geographic areas. Our estimates suggest 

that extending localized lockdowns can slow down the pandemic; however, localized lockdowns 

on their own are insufficient to control pandemic growth in the presence of indirect effects from 

contiguous neighboring areas that do not have lockdowns. These results provide critical 

empirical evidence about the effectiveness of localized lockdowns in interconnected geographic 

areas. 

Key words: Causal Inference; COVID-19; Localized Lockdowns; Non-Pharmaceutical 

Interventions 

 

Since the beginning of the COVID-19 pandemic, non-pharmaceutical interventions have been 

essential to control and prevent the transmission of the severe acute respiratory syndrome-

coronavirus 2 (SARS-CoV-2) (1-3). Non-pharmaceutical interventions range from simple 

individual-level recommendations, such as wearing face masks, frequent hand-washing, or 

maintaining physical distance, to society-level regulatory actions, such as school closures, 

quarantines, or lockdowns (1, 3). Efforts to control pandemic growth based on these 

interventions have been successful in some countries (4-7). The effects of non-pharmaceutical 

interventions have been described primarily using compartmental models (1, 3, 6, 8, 9), with the 
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results informing policies around the world since the start of the pandemic (10, 11). In this paper, 

we adopt a complementary approach from the causal inference literature (12, 13). Arguably, 

health policy impact evaluations require a variety of study designs, data sets, and analytic 

approaches that support each other to provide stronger evidence (14). In general terms, this 

approach seeks to estimate the causal effect of localized lockdowns by approximating the 

hypothetical randomized experiment (trial) that would have been conducted under ideal 

circumstances to evaluate the policy in question (15-18).  

 

As the COVID-19 pandemic develops across countries, policymakers need evidence to help 

them decide when and how to ease mobility restrictions or strengthen these restrictions in cases 

of resurgence. Even now that countries have started vaccinating, large-scale non-pharmaceutical 

interventions continue to be important, particularly in low- and middle-income countries, to 

avoid large increases in the number of cases (19). In this context, localized lockdowns have 

become an increasingly relevant policy option (20-25).  

 

Localized lockdowns are typically implemented in transmission hotspots and can be applied to 

populations or areas large and small to suppress an outbreak. Localized lockdowns had not been 

widely used as a public health response to contain outbreaks until the current pandemic (20-25). 

In principle, localized lockdowns impose fewer social and economic costs compared to larger-

scale SARS-CoV-2 suppression strategies and are thus more sustainable. They can also provide a 

gradual exit from nationwide lockdowns. Early in the pandemic, for example, the Chinese 

government imposed a localized lockdown and other strict non-pharmaceutical interventions in 

the city of Wuhan (6), effectively suppressing SARS-CoV-2 transmission (26). Subsequently, 
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governments have implemented localized lockdowns in neighborhoods (e.g., Beijing, China), 

suburbs (e.g., Melbourne, Australia), towns (e.g., Vo, Italy), districts (e.g., North Rhine-

Westphalia, Germany), and at the city level in Leicester, England (4, 21). Despite the increasing 

importance of localized lockdowns, there is limited empirical evidence of their effectiveness.  

 

In this study, we use data from Chile to estimate the effect of localized lockdowns on COVID-19 

transmission. Our data set combines information from administrative COVID-19 surveillance 

records (27), a nationally representative household survey (28), and census data (29). We use a 

synthetic control approach (30, 31) to build control intervention units (municipalities) with 

similar sociodemographic features, trajectories of contagion, and histories of lockdowns until the 

time of the policy intervention, taking into account the spatio-temporal structure of the data. In 

other words, we assess whether the effectiveness of a localized lockdown implemented at the 

municipality level was affected by the lockdown status of its neighboring municipalities. This 

indirect effect may play an important role in municipalities within cities or urban areas where 

social and economic interdependencies exist. Allowing for such indirect effects or interference 

between municipalities (32, 33), we estimate the direct effects of extending the duration of 

localized lockdowns and the total (sum of direct and indirect) effects of maintaining lockdowns 

in neighboring municipalities. 

 

METHODS 

Lockdowns in Chile 

The Ministry of Health reported the first COVID-19 case in Chile on March 3, 2020 (34). By the 

end of March, the government had restricted large gatherings (March 13), closed schools and 
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universities (March 16), increased controls on national borders (March 18), enforced night-time 

curfews (March 22), and imposed mandatory use of facemasks in public (April 8) (34) (Figure 

1). These policies and recommendations were implemented uniformly nationwide, with no 

within-country variation until July 19, 2020 (34). During the study period (March 3 through June 

15, 2020), the only exceptions were localized lockdowns, implemented at the municipal level, 

the smallest administrative subdivision in Chile. Starting on July 19, 2020, the government 

initiated a gradual reopening scheme of five incremental steps, also implemented at the 

municipal level (35).  

 

In Chile, localized lockdowns were implemented at various points in time, typically at the 

municipality level, although in some cases they involved only a portion of its population (Figure 

2A, 2B; Web Figure 1). The government loosely defined the criteria used to impose lockdowns 

as a function of the number and density (per km
2
) of infectious COVID-19 cases, increases in 

case incidence, and health system capacity (34). Across the country, there was substantial 

variation in the duration of these municipal-level localized lockdowns and, for each municipality 

under lockdown, in the lockdown status of neighboring municipalities. As a result, the 

effectiveness of lockdowns varied geographically. We used this policy variation as a natural 

experiment to evaluate the effectiveness of localized lockdowns on SARS-CoV-2 transmission. 

 

Study overview 

Based on the potential outcomes framework for causal inference (12, 13, 36, 37), we used the 

augmented synthetic control method to analyze the pandemic's progression in comparable 

municipalities that underwent different lockdown interventions (30, 31). For an individual 
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municipality, we varied the duration of the intervention and the proportion of the population 

under lockdown in the neighboring municipalities at each time point, controlling for relevant 

covariates that could confound these effects (Figure 3B). We estimated the counterfactual 

progression that the disease would have exhibited had an alternative lockdown policy taken place 

in the focal municipality or its neighbors (Figure 3B). We provide open-source code with step-

by-step explanations to replicate the analyses and implement them in related settings (see the 

Web Appendix). 

 

Integrated surveillance records, survey measurements, and census data 

Our data set combines information from administrative COVID-19 surveillance records, a 

nationally representative household survey, and census data. Specifically, we use epidemiologic 

surveillance records from the Department of Epidemiology of the Chilean Ministry of Health 

(34). COVID-19 cases are defined in our dataset as symptomatic and asymptomatic SARS-CoV-

2 infections confirmed by a positive PCR test. Throughout the pandemic, Chile has tested for 

COVID-19 at a higher rate than any other Latin American country (38, 39) and features a high 

level of effective universal health coverage (40). We characterized municipalities based on 

Chile's National Socioeconomic Characterization Survey (CASEN), a nationally representative 

household survey that collects data on education, employment, income, health, and housing (28). 

Finally, we employed population data from the 2017 National Census (29). All data are publicly 

available.  

 

We adjusted the COVID-19 case incidence series to correct the lag in reporting and some 

incomplete municipality-level data. First, we imputed the incomplete data by interpolating 
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between the closest dates with complete data. In the data, the number of cumulative cases was 

reported typically every 2-4 days. Second, we estimated the lag in reporting using the PELT 

algorithm (41). Third, we adjusted the incidence series for space- and time-varying reporting lags 

using the approach by Zhao et al. (42). These adjustments considered that the lag between 

symptom onset date and report date could vary across municipalities and over time. We 

estimated the instantaneous reproduction number following Cori et al. (43) using the adjusted 

COVID-19 series. See the Web Appendix for details. 

 

Instantaneous reproduction number 

We characterized transmission by the instantaneous reproduction number (𝑅𝑡); that is, the 

average number of secondary cases per primary infected case (43). We did this using the daily 

series of COVID-19 cases reported by the Ministry of Health (34), adjusted for the time-lag 

between onset of symptoms and case report (Figure 1) (42, 43). Following Cori et al. (43), the 

instantaneous reproduction number can be estimated by 𝑅𝑡 =
𝐼𝑡

∑ 𝐼𝑡−𝑠
𝑡
𝑠=1 𝑤𝑠

, where 𝐼𝑡 is the 

incidence at time 𝑡 and 𝑤𝑠 is the infectivity function or density of the serial interval at time 𝑠. 

Cori et al. (43) propose estimating 𝑅𝑡 over a window of time 𝜏 as 

𝑅𝑡 =
∑ 𝐼𝑠

𝑡
𝑠=𝑡−𝜏+1

∑ ∑ 𝐼𝑠−𝑟
𝑠
𝑟=1

𝑡
𝑠=𝑡−𝜏+1 𝑤𝑟

. 

See Gostic et al.(44) for a discussion of the method by Cori et al.(43) and other related 

approaches to estimating the instantaneous reproduction number. Based on data from the SARS-

CoV-2 outbreak in Wuhan, Li et al. (45) estimated that the serial interval distribution had a mean 

of 7.5 days, a standard deviation of 3.4 days, and a 95% confidence interval of [5.3, 19] days. 

Thus, following Cori et al. (43), we assumed that the serial interval has a Gamma distribution 
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with a mean of 7.5 days and a standard deviation of 3.4 days and 𝜏 = 5. Assuming homogeneous 

mixing of the population within a municipality, we calculated 𝑅𝑖𝑡 for each municipality 𝑖 (Figure 

3A). 

 

Potential outcomes  

We base our analysis on the potential outcomes framework for causal inference (13, 36, 37) 

under interference (32, 33, 46). Let 𝐿𝑖𝑗𝑖𝑡 denote the lockdown indicator for municipality 𝑖 =

1, … , 𝐼 in cluster 𝑗𝑖 = 1, … , 𝐽𝑖 at time 𝑡 = 1, … , 𝑇, with 𝐿𝑖𝑗𝑖𝑡 = 1 if the municipality is under 

lockdown at time 𝑡, and 𝐿𝑖𝑗𝑖𝑡 = 0 otherwise. In our analysis, since the cluster of the municipality 

𝑖 is defined as the union of 𝑖 and its adjacent municipalities, we can omit the index 𝑗𝑖 for 

simplicity in the notation, but our approach is more general. Write 𝐿𝑖𝑡 for the lockdown history 

of municipality 𝑖 until time 𝑡. Analogously, define 𝑃(𝑖)𝑡 as the proportion of the population in the 

cluster of municipality 𝑖 under lockdown at time 𝑡, excluding municipality 𝑖, and 𝑃(𝑖)𝑡 as the 

corresponding history until time 𝑡. In this framework, 𝐿𝑖𝑡 can also denote the proportion of the 

population under lockdown in municipality 𝑖, beyond whether or not the municipality is under 

lockdown (see Web Table 1 for an example). Following the frameworks for causal inference 

under interference by Sobel (32) and Hudgens and Halloran (33), we put 𝑅𝑖𝑡 (𝐿𝑖𝑡 = 𝑙𝑖𝑡, 𝑃(𝑖)𝑡 =

𝑝(𝑖)𝑡) for the potential instantaneous reproduction number for municipality 𝑖 in its cluster at time 

𝑡 under lockdown histories 𝑙𝑖𝑡 and 𝑝(𝑖)𝑡 for the municipality and its neighbors until time 𝑡, 

respectively. Finally, we designate 𝐼𝑖𝑡 (𝐼𝑖𝑡−1(∗), 𝑅𝑖𝑡 (𝐿𝑖𝑡 = 𝑙𝑖𝑡, 𝑃(𝑖)𝑡 = 𝑝(𝑖)𝑡)) as the potential ORIG
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incidence in municipality 𝑖 at time 𝑡, which is a function of its potential incidence history 

𝐼𝑖𝑡−1(∗) and potential instantaneous reproduction number 𝑅𝑖𝑡 (𝐿𝑖𝑡 = 𝑙𝑖𝑡, 𝑃(𝑖)𝑡 = 𝑝(𝑖)𝑡).  

 

Direct, indirect, and total effects of lockdowns 

For any given municipality 𝑖, we aim to estimate the effect of lockdowns on the instantaneous 

reproduction number 𝑅𝑖𝑡 when intervening both on the duration of the lockdown 𝐿𝑖𝑡 and on the 

proportion of the population under lockdown in the neighboring municipalities 𝑃(𝑖)𝑡. We are 

particularly interested in the municipality-level direct, indirect, and total effects of lockdowns 

across time (33). See the Web Appendix for precise definitions of these estimands. 

 

Synthetic controls 

We used the augmented synthetic control method (30, 31) to estimate the potential instantaneous 

reproduction number 𝑅𝑖𝑡(∗) and calculate the potential incidence 𝐼𝑖𝑡(∗) from 𝑅𝑖𝑡(∗) according to 

𝐼𝑖𝑡(∗) = 𝑅𝑖𝑡(∗) ∑ 𝐼𝑖𝑡−𝑠(∗)𝑤𝑠
𝑡
𝑠=1  (see the Web Appendix for details). The intuition behind this 

method is, for a given lockdown intervention in municipality 𝑖, to build a synthetic control 

municipality with very similar covariate, intervention, and outcome histories leading up to the 

time of the intervention by appropriately weighting control municipalities over time. We 

adjusted for (or balanced) several municipality-level characteristics that may affect virus 

transmission (Web Table 2). Adjustments included the proportion of females in the population, 

older than 65 years of age, in rural areas, under poverty, in overcrowded households (≥2.5 people 

per room), with inadequate sanitation infrastructure (access to potable water and sewage), 

average monthly income, and municipality area. Furthermore, we adjusted for the seven-day 

history of lockdown interventions in the municipality 𝐿𝑖[𝑡−7,𝑡−1] and its neighbors 𝑃𝑖[𝑡−7,𝑡−1], and 
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for the instantaneous reproduction number 𝑅𝑖[𝑡−7,𝑡−1]. We analyzed all the municipalities in 

Greater Santiago that started their first lockdown after March 15, 2020, and completed it by May 

15, 2020 (Figure 2A); that is, the first period of confinement that arguably shaped the evolution 

of the pandemic (Figure 1, Figure 2B).  

 

RESULTS 

Balance and predictive power  

All intervention and corresponding synthetic control municipalities were closely balanced in 

terms of their baseline sociodemographic characteristics 𝑋𝑖, in addition to their seven-day 

trajectories 𝐿𝑖[𝑡−7,𝑡−1], 𝑃𝑖[𝑡−7,𝑡−1], and 𝑅𝑖[𝑡−7,𝑡−1] (see Web Figure 2 and Web tables 2-6). In 

terms of predictive power, the out-of-sample proportion of the variation of the outcomes 

explained by the synthetic controls (defined by 𝑟𝑂𝑢𝑡
2 : = 1 − ∑ (𝑦𝑖 − �̂�𝑖)

2
𝑖∈Test ∑ (𝑦𝑖 − �̅�𝑖)2

𝑖∈Test⁄ , 

where 𝑦 denotes the outcome and Test comprises its out-of-sample observations in the post-

intervention period, which extended up to 21 days after the intervention) was 64% for the 

instantaneous reproduction number 𝑅𝑡 and 92% for the incidence 𝐼𝑡. 

 

Duration and indirect effects of localized lockdowns  

Overall, our results suggest that the effectiveness of localized lockdowns is strongly modulated 

by the duration of the intervention and the magnitude of the indirect effects from neighboring 

geographic areas. The larger the proportion of neighbors under lockdown, the higher the 

effectiveness of the lockdown in controlling transmission.  

 ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T



 12 

We illustrate our findings with three representative municipalities in Greater Santiago that were 

placed under lockdown on March 26: Lo Barnechea, Providencia, and Santiago (Figure 4; see 

Web figures 3-8 and supporting Web tables 7-14 for results from other municipalities). We chose 

these municipalities because they were among the first to be placed under lockdown, and they 

have substantial interdependence with other municipalities in Greater Santiago. The municipality 

of Santiago concentrates the country’s financial, commercial, and political activity, including all 

major government infrastructure. Providencia is an upper-middle-class urban municipality with 

substantial commercial activity, high-rise apartment buildings, and the highest proportion of the 

population over 65 years of age. Lo Barnechea is primarily a residential area, with limited 

commercial activity, few buildings, and a heterogeneous population. In the Web Appendix (Web 

Figures 3-6) we present additional results for other municipalities in Greater Santiago (Ñuñoa, 

Independencia, Las Condes, Vitacura) and elsewhere in Chile (Arica and Punta Arenas, the 

northernmost and southernmost cities in Chile, respectively); the findings for these 

municipalities are consistent with our main results. 

Figure 5 shows a large reduction in 𝑅𝑡 (Fig. 5A) and COVID-19 cases (Figure 5B) with an 

extended lockdown. Had the lockdown been extended for three additional weeks, maintaining 𝑃𝑡 

constant, we estimate that the reduction in 𝑅𝑡 would have been larger. The average 𝑅𝑡 would 

have decreased from 1.83 to 1.27 (difference: -0.56, 95% confidence interval [CI]: [-0.63,-0.50]) 

in Lo Barnechea, from 1.82 to 1.34 (difference: -0.47, 95%CI: [-0.59,-0.36]) in Providencia, and 

from 1.95 to 1.23 (difference: -0.72, 95%CI: [-0.85,-0.58]) in Santiago. These reductions in 𝑅𝑡 

are equivalent to 177 (95%CI: [167,188]; or 143 per 100,000 population) averted COVID-19 

cases over three weeks in Lo Barnechea, 94 (95%CI: [76,111]; or 59 per 100,000 population) 

averted cases in Providencia, and 1343 (95%CI: [1245,1441]; 267 per 100,000 population) 
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averted cases in Santiago, which would represent 33-62% reductions in reported cases in that 

time frame.  

The reductions in transmission would have been even larger if lockdowns in neighboring 

municipalities had taken place. Assuming municipalities adjacent to Lo Barnechea, Providencia, 

and Santiago maintained their lockdown status (𝑃𝑡  = 53.0%, 𝑃𝑡 = 80.3%, and 𝑃𝑡  = 35.8%) for 

three additional weeks, we estimate that the average 𝑅𝑡  would have decreased to 1.19 (95%CI: 

1.13, 1.25), 1.25 (95%CI: 1.14, 1.37), and 1.21 (95%CI: 1.08, 1.34), respectively (Figure 5A).  

Figures 6A and 6B show the relationship between daily COVID-19 incidence and days of 

extended lockdown as a function of changes in 𝑃𝑡, after adjusting for observed covariates. The 

larger 𝑃𝑡, the greater the number of averted cases. Overall, results in Greater Santiago suggest 

that the decision to reopen these municipalities was premature, especially when lockdowns were 

brief, because the effectiveness of lockdowns strongly depends on their duration and the 

magnitude of indirect effects (findings for other municipalities with lockdowns are consistent 

with these results; see Web figures 3-6).  

Lockdowns without indirect effects 

Web Figure 5 reaffirms the results from a different perspective. As happened with Lo Barnechea, 

Providencia, and Santiago, the municipality of Punta Arenas in the south of Chile was placed 

under lockdown early in the pandemic, from April 1 to May 7. It initiated lockdown with one of 

the highest case incidences per 100,000 population in the country. Notably, Punta Arenas is 

geographically isolated and has few local interdependencies that could result in active 

transmission networks during a localized lockdown. Our estimates show negligible indirect 

effects: increasing 𝑃𝑡 from 0 to 1 would only result in a reduction of 𝑅𝑡 of 0.02 (Figure S5 and ORIG
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Table S14), arguably due to its geographical isolation and minor interdependencies with 

neighboring municipalities. 

 

Varying the area under lockdown 

Having assessed the role of duration and indirect effects, we evaluate the impact of lockdowns in 

geographic areas of increasing size. We considered three target lockdown areas (Figure 7A): the 

municipality of Ñuñoa (red), a cluster of six municipalities (orange), and Greater Santiago 

(green). We extended the study period to encompass the mandatory lockdown for Greater 

Santiago that began on May 15. We varied the population under lockdown in the targeted area 

and the proportion of the population under lockdown in neighboring municipalities (𝑃𝑡). Note 

that the municipality of Ñuñoa had only about half its population under lockdown between April 

14 and May 7, as indicated by the blue line in Figure 7B. Figure 7B shows the estimated 𝑅𝑡 from 

March 15 to June 15. In general, an epidemic will continue to grow as long as 𝑅𝑡 is greater than 

one. Figure 7 shows that the pandemic kept expanding in all three target areas until a city-wide 

lockdown was implemented on May 15. These results highlight the challenges of suppressing 

virus transmission in areas with a high degree of economic and social interdependencies, such as 

Chile’s capital, where a substantial proportion of the municipalities were not under lockdown.  

DISCUSSION 

Using augmented synthetic control methods, we estimated the effects of localized lockdowns on 

COVID-19 transmission, incorporating the effects of lockdown duration as well as lockdowns 

occurring in neighboring areas. We found that localized lockdowns can help contain the 

transmission of the virus. However, their effectiveness is dependent on lockdown duration and 

potential indirect effects from neighboring geographic areas with high social interconnectivity. 
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For instance, the effectiveness of localized lockdowns within Greater Santiago, where there are 

high economic and social interdependencies between municipalities, was strongly affected by the 

extent of suppression measures concurrently in place in neighboring municipalities. As expected, 

as the proportion of neighbors under lockdown increased, so did the effectiveness of localized 

lockdowns in controlling pandemic spread. However, our estimates also show that in Greater 

Santiago, the epidemic is only controlled (i.e.,  𝑅𝑡 < 1) when generalized lockdowns are in 

place. In contrast, localized lockdowns showed promising results in municipalities such as Punta 

Arenas, which are geographically isolated and thus have transmission networks that are 

relatively unaffected by neighboring areas.  

 

The marginal effectiveness of localized lockdowns may decline over time, as suggested by the 

results in Web Figure 7. On one hand, lockdowns may be particularly challenging for socially 

vulnerable individuals who depend on daily wages, have limited savings, or do not receive 

external support, as their need to secure income may conflict with policy (47, 48). On the other 

hand, lockdowns may not immediately decrease 𝑅𝑡 to their full potential because transmission 

within households or other group residences, such as nursing homes, account for a substantial 

proportion of new cases (6, 49). There are sustained close contacts within households, 

particularly where people cannot isolate themselves in a separate room or where members share 

common spaces such as restrooms (50-52). It is also possible that lockdowns may not be 

sufficient to contain an epidemic. For instance, 𝑅𝑡 was significantly reduced in Wuhan after 

implementation of a city-wide lockdown. However, control of the pandemic (𝑅𝑡 < 1 ) was only 

achieved through a system of centralized quarantines and treatment for COVID-19 patients in 

field hospitals (6, 26). Our results suggest that the effectiveness of lockdowns depends upon their 
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duration and on potential indirect effects from neighboring geographic areas; therefore, if 

interdependencies exist, then achieving 𝑅𝑡 < 1 may not be possible. 

 

To evaluate the effectiveness of localized lockdowns, our approach implicitly models the 

transmission process across municipalities by adjusting for the preceding seven-day trajectories 

of lockdown interventions in the municipality 𝐿𝑖[𝑡−7,𝑡−1], its neighbors 𝑃𝑖[𝑡−7,𝑡−1], and the 

instantaneous reproduction number 𝑅𝑖[𝑡−7,𝑡−1], in addition to the baseline sociodemographic 

characteristics 𝑋𝑖. We assume that this process is similar for municipalities with comparable 

observed baseline characteristics and trajectories of lockdowns and contagion over time. In this 

context, our approach estimates the expected number of new cases (𝑅𝑡) from each infected case 

in the municipality, considering that some individuals may have infected elsewhere, and from 

this number calculates the incidence (𝐼𝑡) in the municipality. To reduce the complexity and 

increase the generalizability of our approach, we assumed that lockdowns affect only 

neighboring municipalities. We lack data on mobility between specific municipalities to test this 

hypothesis. In large urban areas, the degree of commuting beyond neighboring municipalities 

may be non-negligible. However, at least 50% of trips in Greater Santiago were walking, bicycle, 

or short-distance car trips (53), and mobility was significantly reduced during the pandemic. 

Estimates suggest traffic decreased by 54-59% between early March and the first week of June in 

Greater Santiago (54, 55). Also, lockdowns were enforced at the municipality level (34). When 

under lockdown, individuals need a valid police-issued permit for street travel. Our estimation 

approach can be modified to control for a network of influence that does not necessarily 

correspond to the nearest geographic neighbors but to the most influential entities through 𝑃(𝑖)𝑡 

in the potential instantaneous reproduction number. 
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Our study centers on the first three months of the pandemic in Chile. During this period, the 

proportion of the susceptible population decreased slightly. While it is possible that changes in 

the susceptible population may affect the infection rates, these changes were limited during the 

study period. In fact, between March 3 and June 15, 2020, there were 179,436 reported COVID-

19 cases and 4,883 deaths in a total population of nearly 19 million. As noted earlier, Chile has 

had the highest total testing rate in Latin America throughout the pandemic (56), and all cases 

are lab-confirmed by RT-PCR. Also, since our synthetic control approach adjusts for the 7-day 

moving history of 𝑅𝑡, it captures the downward trend of 𝑆𝑡/𝑁, the ratio of the susceptible 

population at time t over the total population. In fact, for each intervention municipality at time t, 

when we move to build its synthetic control in time t + 1, we also move one period ahead in the 

control set. Therefore, the underlying susceptible proportions are decreasing in a similar way in 

the intervention municipality and its synthetic control. 

 

Our analysis and the currently available data have limitations. First, we based our analysis on 

reported COVID-19 cases (27), which may be affected by underreporting. SARS-CoV-2 

infection can result in a broad spectrum of clinical outcomes, including asymptomatic infection, 

mild symptoms, hospitalization, or death (57-59). Mild cases without apparent symptoms may be 

undetected (26, 60, 61). However, Chile has conducted tests at a substantially higher rate than 

any other country in Latin America, with approximately 130 total RT-PCR tests per 1,000 people 

by August 31, 2020 (39). Also, it is possible that differences in health-seeking behavior and the 

severity of illness, for example, by age group, may bias the COVID-19 case data. However, since 

the population characteristics hardly changed during the study period, this potential bias should 
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be stable and not meaningfully affect the results as long as reporting rates are consistent in time. 

Second, in Chile the Ministry of Health does not report COVID-19 cases by the onset of 

symptoms but by the day of reporting to the health system. We addressed this limitation by 

adjusting the time series, according to Zhao et al. (42). Third, the causal validity of our estimates 

is predicated on identification assumptions (such as direct interference and ignorable treatment 

assignment) often invoked in related studies. While strong, these assumptions are necessary to 

identify the direct and indirect effects of lockdowns from the available data. See the Web 

Appendix for further details. 

 

It is well-known that the only way to stop an epidemic is to break the transmission chain. To this 

end, non-pharmaceutical interventions have been extensively used in the COVID-19 pandemic 

(62). Large-scale interventions have imposed high social and economic costs to societies 

worldwide (47, 63-65). As they are less disruptive than large-scale interventions, localized 

lockdowns can help reduce those costs and provide a more sustainable strategy over time (66). 

Also, localized lockdowns may provide a gradual, more controlled exit relative to larger-scale 

strategies if effectively implemented. In principle, localized lockdowns can break transmission 

chains by limiting contact between infectious and susceptible individuals, and this goal could be 

achieved at household, neighborhood, municipality, county, or state levels. However, the social 

distancing imposed by a lockdown must be maintained and enforced until adequate control of 

transmission is achieved. The effectiveness of non-pharmaceutical interventions depends on the 

willingness and capacity of the population to comply. Compliance may be particularly 

challenging in low- and middle-income countries, where a substantial proportion of the 

population works informally (67). Hence, the ability to comply with stay-at-home restrictions is 
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at odds with the need to secure income on a daily basis (47, 68). While localized lockdowns may 

show promise in mitigating social costs and extending their length can be beneficial, this study 

shows that their effectiveness can be attenuated by indirect effects from neighboring areas where 

transmission networks exist, such as in cities. The growth of disease transmission is reversed 

only when lockdowns are implemented in a coordinated fashion across interconnected 

geographic areas. 
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Figure 1. Incidence of COVID-19 cases in Chile, March 1 to July 15, 2020. The majority 

(66%) of cases were reported in Greater Santiago (solid line).  

Figure 2. Lockdowns and instantaneous reproduction number. (A) Municipality-level 

lockdowns in Greater Santiago on March 31, April 15, April 30, and May 15, 2020. (B) 

Variation of the instantaneous reproduction number (𝑅𝑡) and the proportion of the population 

under lockdown in Greater Santiago over time. 

Figure 3. Histogram of daily Rt and alternative lockdown interventions. (A) Histogram of 

daily Rt for all municipalities in Chile from March 15 to June 15, 2020, divided into the periods 

before lockdown, during the first lockdown, during the first reopening, and during the second 

lockdown. Municipalities with fewer than 10 COVID-19 cases were excluded. (B) Illustration of 

alternative lockdown interventions of varying durations (blue area) and proportion of neighbors 

under lockdown (grey line). 

Figure 4. Distribution of cumulative cases of COVID-19 and illustration of lockdown 

implementation. (A) Cumulative COVID-19 cases in Chile and (B) Greater Santiago before 

May 15, 2020. (C) Municipalities of Lo Barnechea, Providencia, and Santiago (red diamonds), 

and their corresponding neighbors (blue for the immediate neighbors under lockdown and white 

otherwise) on the last date under lockdown, April 13.  

Figure 5. Estimated instantaneous reproduction number 𝑹𝒕 and incidence It under 

different lockdown interventions by municipality. In (A), the grey solid and blue dashed lines 

show the proportion of the population in the surrounding municipalities under lockdown, 

respectively for the observed and the intervened 𝑃𝑡 (𝑃𝑡  𝑜𝑏𝑠. and 𝑃𝑡  𝑖𝑛𝑡.). In (A, B), the lighter 

shade of blue extends the duration of the lockdown. The solid black lines show the reproduction 

number 𝑅𝑡 (A) and daily incidence 𝐼𝑡 (B), and the dashed lines show the predicted 𝑅𝑡 and case 
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incidence 𝐼𝑡 for the extended lockdown. The direct and total effects of the extended lockdown 

are the difference between the solid black line and dashed line with grey (𝑅𝑡 𝑑𝑖𝑟. , 𝐼𝑡 dir.) and 

blue (𝑅𝑡  𝑡𝑜𝑡. , 𝐼𝑡 tot.) bands, respectively. The bands around the curves indicate 95% confidence 

intervals (see Web Figures 3-8 for additional results). 

Figure 6. Duration and indirect effects strongly modulate the effectiveness of lockdowns. 

From top to bottom, the municipalities in the figures are Lo Barnechea, Providencia, and 

Santiago, March 15 to May 15, 2020. (A) Average daily COVID-19 incidence over three weeks 

with varying duration of extended lockdown (Δ𝐷 = 0-14 days) and a varying proportion of the 

neighboring population under lockdown (𝑃𝑡 = 0-1). (B) Prediction of the instantaneous 

reproduction number 𝑅𝑡 as a function of time with 50 percent of the neighboring population 

under lockdown (𝑃𝑡 = 0.5) since intervention (lockdown extended for 0-14 days).  

Figure 7. Effectiveness of lockdowns for different target areas. (A) In blue, municipalities of 

Greater Santiago under lockdown at different points in time; outlined in red (Ñuñoa), orange 

(cluster of six municipalities), and green (Greater Santiago), lockdown target areas of increasing 

size. (B-D) Estimated instantaneous reproduction number 𝑅𝑡, with changing proportions of the 

population under lockdown in each geographic area and its immediate neighboring areas. From 

top to bottom the figure shows the municipality of Ñuñoa, a cluster of six municipalities, and the 

city Greater Santiago. (B-C) Also show the predicted 𝑅𝑡 (dashed line) had the lockdowns in the 

geographic area and for its immediate neighbors been extended. We estimate that the epidemic 

would have continued to grow (𝑅𝑡 ≥ 1) even with the extended localized lockdowns. The 

epidemic kept growing until Greater Santiago was put under lockdown on May 15, 2020. 
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