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Appropriate time to apply control 
input to complex dynamical 
systems
Ali Ebrahimi1, Abbas Nowzari‑Dalini2, Mahdi Jalili3 & Ali Masoudi‑Nejad1*

Controlling a network structure has many potential applications many fields. In order to have an 
effective network control, not only finding good driver nodes is important, but also finding the 
optimal time to apply the external control signals to network nodes has a critical role. If applied in 
an appropriate time, one might be to control a network with a smaller control signals, and thus less 
energy. In this manuscript, we show that there is a relationship between the strength of the internal 
fluxes and the effectiveness of the external control signal. To be more effective, external control 
signals should be applied when the strength of the internal states is the smallest. We validate this 
claim on synthetic networks as well as a number of real networks. Our results may have important 
implications in systems medicine, in order to find the most appropriate time to inject drugs as a signal 
to control diseases.

Applications of control theory is no longer confined to a small technical system and has been recently expanded 
into complex network  systems1–5. The aim of a control system is to look for a sequence of interventions in the 
network, so that the state of the nodes is hierarchically changed to a desired reference  condition6,7. Finding 
driver nodes is an essential step toward controlling a dynamical system. The study of network controllability 
and determining the minimum number of driver  nodes8, has attracted much attention within the community 
of network science and dynamical  systems9–15. Various applications have for network control  technology16–20.

There is a rich literature on theoretical and empirical studies which have examined how a dynamical system 
responds to external  signals21–27. The degree of flexibility of a dynamical system has been introduced and the 
interaction between the flexibility values of a dynamical system and the effect of an external signal applied to the 
network has been  examined22. In another work, the effect of local divergence on the synchronization capabilities 
of paired oscillators as well as the effect of slow transition have been investigated and some of the dynamical 
systems’ conditions have been depicted, under which the highest ability to synchronize these oscillators could be 
 achieved24. Moreover, concerning the connection between noise in a dynamical system and its stability, random 
intermittent stabilization based on discrete-time or time-delay feedback has been  examined25. It has also been 
proved that a dynamical system stimulated by a noisy input with a time delay can produce the same effects as a 
dynamical system with a typical delay stimulated by the same  noise27.

In a network system, the set of driver nodes with the minimal size is often not  unique28. Choosing the best 
driver nodes to control have an active research topic within the community of network  science29,30. To select a 
set of driver nodes to facilitate an optimal control of the network, one should further consider some important 
secondary issues, such as minimizing the amount of energy required for the  control5,31,32, decreasing mediator 
nodes as well as the possible side effect of the control  process15 and the number of control  steps33.

Determining a set of driver nodes for an optimal control of a network is a necessary but inadequate action. 
Moreover, identifying the type of interventions, which should be applied to the network, is of the utmost impor-
tance. To minimize the energy required to control a network, it is crucial to determine the time that the inputs 
should be fed into the network such that the control performance is maximized.

As an example, in Bioinformatics, suppose we would like to input the signals into some effective agents to 
induce the apoptosis of cancer cells and eliminate this type of cells under minimum effort (energy)34–36. Taking 
the state of network variables and the internal fluxes into account, lack of knowledge about the best time for 
applying the external signals is a major challenge. As another  example37–39, imagine a person would like to take 
control of a society or make some changes in the way a community is being led. If we assume that people are 
network nodes in this community, considering the fact that network nodes are under the influence of signals that 
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agree or disagree to alterations in a particular subject within a population, thereby within their various commu-
nications, it is critical to find the best time when one can input the signals into the network. In this manuscript, 
we propose a methodology to determine the optimal time to apply the external inputs to driver nodes. We apply 
the proposed method on some real networks and reveal its effectiveness.

Results
States of individual nodes in complex dynamical network systems often undergo continuous changes based on 
their interactions with other nodes. Our aim is to find the best time that an external input can be applied to 
nodes in order to have maximum control impact. Our methodology is based on the connection between the 
strength of the system’s internal fluxes and the effect of the external signals on the system. As an external signal 
is applied to the network, the existing interaction between network nodes and the adjacent systems is ignored 
and only the network’s internal connections are taken into account in order to calculate the study the relation 
between the strength of internal fluxes and effect of the external control.

Let’s consider a directed network G with n nodes with equations of motion described by the

where A is the connectivity matrix between the nodes, X is the state vector, U  is the input vector and B deter-
mines the driver nodes to which the external input should be applied. The solution to the above equation will be

 if there are not any external signals, and

if the external signals are applied to the  network40.
In the Methods section, we prove a theorem which specifies that the maximum effect of input signals to con-

trol a system will be produced when the system’s internal fluxes are weak. A dynamical system will have strong 
internal fluxes when it is not in a steady-state mode or when the equilibrium of the system could be related to the 
positive and negative signals that are balanced. In such case, external control signals often have minimal effect 
on the system’s performance. Our proposed method is based on this principle.

Let’s denote the network internal signals of nodes by h(t). This function is differentiable at every point, when 
the left- and right-hand derivatives are equal, and the derivative is the degree of stimulation or the tendency 
for the movement of state of node. We know that the derivative of a function is zero if and only if the function 
is positioned at the extremum points, where the systems is its steady-state. The strength of the input signals is 
a function of the extent of movement in the preequilibrium, the duration of the stay in the equilibrium and the 
network structure.

To evaluate the above idea, here we present evidence on both synthetic and real networks. We compute the 
relationship between the strength of network’s internal fluxes and the degree of the effectiveness of external input 
signals on the network. Negative correlation coefficient between the strength of the internal fluxes and the effect 
of the external inputs denotes an inverse association between them. Our results show that when the strength of 
internal fluxes is high, the impact of external input signals on the network will be low, and vice versa.

As shown below, the functions f (t) and g(t) , respectively, are employed to measure the strength of internal 
network fluxes and the degree of the effectiveness of external signals. The function f (t) determines the sum of 
the derivatives of the states at time t by applying the following equation:

where n is the number of nodes and Re and Im are the real and imaginary parts of the complex number, respec-
tively. The function g(t) is obtained from the following equation:

where Z(t +m) specifies the state of the nodes without applying the external signals to the system after m steps, 
and Y(t +m) determines the state of the nodes by applying the signals to the system at time t after m steps.

Based on the states obtained in the previous step and the available signals, the state of network nodes is 
obtained as:

and eA = MêM−1 in which
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where �1, �2, . . . , �n are eigenvalues and m1,m2, . . . ,mn are eigenvectors of A. In order for the matrices M and 
A to be invertible, det(A)  = 0, and A must have n distinct eigenvalues.

Figure 1 represents a topy network. We take the initial states of the nodes as [1, 1, 1, 1, 1]T and the time inter-
vals as t = 1 to 20 . At times t = 1, 5, 10, 15, and 20, a signal with the value of 1 is applied to the nodes of the 
network. Thus, the amount of internal fluxes of the network at t = 1, 5, 10, 15 and, 20 will be high; otherwise it 
will be low (blue curves). At any specific time, different input signals are applied to the network, and the cor-
relation coefficient between f and g is calculated. There exist two strategies for applying the signal at time t. In 
the first strategy, the signal is applied at the first step, and there are not any signals in the next m-1 steps. While 
in the other strategy, a continuous signal with a length of m is applied to the network. The value of m is 5 or 20.

Results on synthetic networks. A directed network G(A) (with 100 nodes), in which A has 100 distinct 
eigenvalues and det(A)  = 0, was randomly generated with different average degrees of 10, 25 and 50. To pre-
vent an increased state of the network, the weight of edges was considered ±0.01, and the state of each node 
was initially set one. Then, an interval with 100 steps was considered, and signals with size 1 were applied to 
the network at times 0, 20 ,40, 60, 80 and 100. Based on the algorithm that we have provided in order to find 
the driver nodes with the minimal mediator  nodes15, the network driver nodes are specified and then applied 
these signals to either (i) all nodes, or (ii) only driver nodes. At any time from 1 to 100, signals with different 
sizes ( U = −100,−10,−1,−0.1, 0.1, 1, 10, 100 ) were applied to the network. Then, the correlation coefficient 
between f and g was calculated based on both the single and continuous signals (m = 5 and 20). Figure 2 shows 
f and g in a sample network with an average degree of 10, and when an input signal with a value of − 100 was 
applied to all nodes in 20 consecutive steps Figure 3 (Fig. 4) show the correlation coefficient between f and g 
when the input signals are applied to all (driver) nodes. It is seen that when the control is applied to all nodes, 
the correlation takes a larger absolute value than the case when the control is applied to only driver nodes. Fur-
thermore, as the network become denser (i.e. their average degree increases), the correlation becomes stronger.  

Results on real networks. Like the previous section, the correlation coefficient between f and g at the 
given time intervals was calculated under different settings. The results obtained from U = ±1 were listed in 
Table 1 and those obtained from different sizes of U were presented in Fig. 5. The results obtained from differ-
ent sizes of U show that the correlation coefficient between f and g is close to -1, except for the case of small-
size input signal ( U = ±0.1) . Similar to synthetic networks, the correlation is stringer when the input signal is 
applied to all nodes rather than only drivers, which is somehow expected.

(7)M = [m1|m2| . . . |mn] and ê =
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Figure 1.  The results on a toy network: By applying different signals to the network, it is shown that there f and 
g are negatively correlated. (a) A sample directed network with 5 nodes and 6 edges. (b) Adjacency matrix of the 
network; the weights of edges are 0.2 and − 0.2. det (A)  = 0 and A has 5 distinct eigenvalues. c) The graph shows 
f and g in the interval t = 1 to t = 20 . An input signal with a value of -1 is applied to the nodes in 20 consecutive 
steps (m = 20). The correlation coefficient between f and g is − 0.9917 . (d) The graph shows the correlation 
coefficient between f and g with different input signals as U = −100,−10,−1,−0.1, 0.1, 1, 10, 100. If a single 
signal is applied, then m = 5 (5S) and m = 20 (20S), respectively and if a consecutive signal is applied, then m = 5 
(5C) and m = 20 (20C), respectively. 
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Conclusions
A dynamical network is controllable if the state of its nodes can be steered from any initial value to a desired final 
value in a finite time. Often, external control signals are applied to a number of select nodes, called drivers, to 
control the networks. In some applications, it is critical to apply in control signals in appropriate time(s) to obtain 
the maximum control performance. If control signals are applied in appropriate times, the network might be 
controlled with smaller control signals, and thus less energy. Therefore, one may optimize the energy required for 
the control. In this manuscript, we proposed a methodology to final the best times to apply the external control 
signals to network nodes. We showed that applying the external signals to the network is most efficient when 
the value of positive and negative internal fluxes of the system is small. Under this condition, there would be no 
opposite forces in the system, and thus even small control signals could be effective.

Methods
State‑variable response of linear systems. In a network with dynamics of motion as 
Ẋ(t) = AX(t)+ BU(t) , if there are not any external signals, the state of the nodes will be obtained from the 
equation:

If an external signal is applied to the network, the state will be obtained using the following equation:

(8)X(t) = eAtX(0)

Figure 2.  The graph shows f and g in a network with 100 nodes and average degree 〈k = 10〉. The initial value 
of the state of nodes is considered to be 1. (a) The horizontal axis represents the intervals from t = 1 to t = 100 , 
where the input signal is applied to the network at t = 1, 20, 40, 60, 80, 100 . (b) The function g where an input 
signal with a value of -100 is to all nodes in 20 consecutive steps.

Figure 3.  The correlation coefficient between f and g. In random networks with size 100 and different average 
degree 〈k〉. The Absolute value of correlation coefficient is high in all cases except in cases when the value of the 
input signal is very small. U = −100, − 10, − 1, − 0.1, 0.1, 1, 10, 100 are the input signal. The input signal is 
applied to all nodes (a) in 5 Consecutive steps, (b) in 20 Consecutive steps, (c) Single signal applied to the whole 
nodes with m = 5, and (d) Single signal applied to the whole nodes and m = 20. The graphs show the average 
value with bars corresponding to the standard deviation over 20 realizations.
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State transition matrix. The state of network nodes is obtained from the following equations:

and eA = MêM−1 which

�1, �2, . . . , �n and m1,m2, . . . ,mn are eigenvalues and eigenvectors of the matrix A, respectively.
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Figure 4.  The correlation coefficient between two functions f and g when the input signal is applied to only 
drivers. Although the correlation is still negative, its absolute value is less compared to the case of applying the 
input signal to all nodes. Designations are as Fig. 3.

Table 1.  The table shows the Pearson correlation coefficient between f (the strength of internal network fluxes) 
and g (the degree of the effectiveness of external signals) in different measurement modes, when input signals 
of different sizes are applied. Definition of parameters: n is the number of nodes, L is the number of edges, U is 
the input signal applied to the network, which is considered to be 1 or − 1. The correlation coefficient between 
f and g is calculated in different settings as follows. including The input signal is applied to (W5C) all nodes in 
5 Consecutive steps, (W20C) to all nodes in 20 Consecutive steps, (W5S) all nodes and the signal is applied 
at the first step and there are not any signals in the next 4 steps, (W20S) all nodes and the signal is applied at 
the first step and there are not any signals in the next 19 steps (D5C) the driver nodes in 5 Consecutive steps, 
(D20C) the driver nodes in 20 Consecutive steps, (D5S) the driver nodes and the signal is applied at the first 
step and there are not any signals in the next 4 steps, and (D20S) the driver nodes and the signal is applied at 
the first step and there are not any signals in the next 19 steps.

Name Type n L U W5C W20C W5S W20S D5C D20C D5S D20S

Mangrove41 Food Web 97 1492
1 − 0.9958 − 0.988 − 0.9933 − 0.9716 − 0.8144 − 0.7935 − 0.8101 − 0.7933

− 1 − 0.9973 − 0.9933 − 0.9919 − 0.9787 − 0.9223 − 0.8848 0.4258 0.4709

C. elegans42 Neuronal 306 2345
1 − 0.9227 − 0.9199 − 0.9933 − 0.9716 − 0.5941 − 0.4498 − 0.8101 − 0.7933

− 1 − 0.9565 − 0.9537 − 0.9919 − 0.9787 − 0.9916 − 0.8397 0.4258 0.4709

Prison  inmate43 Trust 67 182
1 − 0.9356 − 0.9385 − 0.9355 − 0.9385 − 0.4693 − 0.4359 − 0.4693 − 0.4359

− 1 − 0.9305 − 0.9339 0.6567 0.6851 − 0.6198 − 0.895 0.6524 0.4859

s420a44 Electronic circuits 252 399
1 − 0.9609 − 0.9617 − 0.9616 − 0.9603 − 0.4582 − 0.4004 − 0.4429 − 0.3661

− 1 − 0.9748 − 0.9751 − 0.9634 − 0.9622 − 0.7044 − 0.9225 − 0.5399 − 0.5283
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Theorem In a Linear Time Invariant (LTI) system, the maximum effect of the input signals will be produced when 
the internal fluxes of the system are weak.

Proof If the dynamics of the systems are regarded as Ẋ(t) = AX(t)+ BU(t) , then

The first part of the formula is derived from the initial conditions of the system, while the second part is 
derived from the input signals. So, the fraction

specifies the effect of the input signals based on the initial conditions of the system. By removing eAt from the 
fraction and the placement of the equation

in the fraction, we will acquire the following equation:

When the numerator of the fraction is constant, the maximum value will be obtained when the denominator of 
the fraction converges to zero. Thus, the value of AX(0) will converge toward zero: ( AX(0) = Ẋ(0)− BU(0) ≈ 0 ) 
and this would be achieved when the internal fluxes of the system are weak.
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