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Abstract 

Care for patients with acute respiratory distress syndrome (ARDS) has changed considerably over the 50 years since its 
original description.  Indeed, standards of care continue to evolve as does how this clinical entity is defined and how 
patients are grouped and treated in clinical practice.  In this narrative review we discuss current standards – treat-
ments that have a solid evidence base and are well established as targets for usual care – and also evolving standards 
– treatments that have promise and may become widely adopted in the future.  We focus on three broad domains 
of ventilatory management, ventilation adjuncts, and pharmacotherapy.  Current standards for ventilatory manage-
ment include limitation of tidal volume and airway pressure and standard approaches to setting PEEP, while evolving 
standards might focus on limitation of driving pressure or mechanical power, individual titration of PEEP, and moni-
toring efforts during spontaneous breathing. Current standards in ventilation adjuncts include prone positioning in 
moderate-severe ARDS and veno-venous extracorporeal life support after prone positioning in patients with severe 
hypoxemia or who are difficult to ventilate. Pharmacotherapy current standards include corticosteroids for patients 
with ARDS due to COVID-19 and employing a conservative fluid strategy for patients not in shock; evolving standards 
may include steroids for ARDS not related to COVID-19, or specific biological agents being tested in appropriate sub-
phenotypes of ARDS. While much progress has been made, certainly significant work remains to be done and we look 
forward to these future developments.

Keywords:  Acute respiratory distress syndrome, Mechanical ventilation, Prone position, Extra-corporeal life support, 
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Introduction

In the more than 50  years, since the modern advent of 
acute respiratory distress syndrome (ARDS), clinical 
management has progressed significantly—both in venti-
latory management, the mainstay of supportive care, and 
in ventilatory adjuncts. Progress has also been made in 
the realm of pharmacotherapy, though this too remains 
largely as general supportive care rather than specific dis-
ease modifying drugs. In this state-of-the-art review we 
provide updates on the treatment standards for the clini-
cal care of adults with ARDS across these 3 domains and 
categorize these as Current standards—those for which 
there is a strong evidence-base and should be widely 
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implemented—and Evolving standards—those for which 
there is rationale but which might not yet be applied in 
all settings because of weaker evidence or feasibility 
(Table  1). It is important to emphasize that ARDS (as 
indicated in its name) is a syndrome, not a disease, and 
as such there exists significant heterogeneity in terms of 
outcomes and response to treatments among patients 
meeting the same ARDS criteria [1, 2]. As we discuss dif-
ferent treatments, we will attempt to highlight this het-
erogeneity and point out which therapies are applicable 
to all and which are more nuanced.

Defining ARDS
Current and evolving standards
While acute respiratory distress syndrome (ARDS) has 
likely existed, since time in immemorial, it emerged as 
an important clinical entity in the late 1960s with the 
advent of positive pressure mechanical ventilation and 
the development of intensive care units. In their seminal 
case series Ashbaugh and colleagues succinctly described 
the central tenets of the syndrome that still hold true 
more than 50 years later [3]. These include acute onset of 

hypoxemia refractory to supplemental oxygen treatment, 
decreased lung compliance, diffuse pulmonary infiltrates 
seen on chest radiograph, and characteristic pathologi-
cal findings of diffuse alveolar damage including hyaline 
membranes, hemorrhage, edema, and atelectasis.

Following this initial description in 1967, ARDS was 
not given formal defining criteria until the development 
of the Murray Lung Injury Score in 1988 [4], and then 
later the first American-European Consensus Defini-
tion of ARDS [5]. Most recently the syndromic defini-
tion of ARDS was updated in 2012 with the publication 

Take‑home message 

The clinical management of adults with acute respiratory distress 
syndrome (ARDS) continues to progress and evolve. In this review 
we provide updates across the domains of ventilatory management, 
ventilatory adjuncts and pharmacotherapy, categorizing these as 
Current Standards –those for which there is a strong evidence-base 
and which should be widely implemented – and Evolving Standards 
– those for which there is rationale but which might not yet be 
applied in all settings because of weaker evidence or feasibility.

Table 1  Current and evolving standards of care in ARDS

Current standards Evolving standards

Ventilatory support Ventilatory support
Tidal volume limitation–target 6 ml/kg PBW Driving pressure limitation < 15 cmH2O

Plateau pressure limitation < 30 cmH2O Minimize delivered mechanical power

PEEP titrated to oxygenation using a PEEP/FiO2 table or set to keep 
Pplat < 30

Individual titration of PEEP using one of several methods

 • Best compliance

 • Measured recruitability (R:I)

 • Transpulmonary pressure

 • EIT

Spontaneous breathing when appropriate–monitored to avoid dyssyn-
chrony or large efforts

Use of Helmet NIV or HFNO in mild-moderate ARDS to avoid intubation

Ventilation adjuncts Ventilation adjuncts
Prone positioning (16 h/day) in early moderate to severe ARDS (P/F < 150) Neuromuscular blockade when indicated

 • Severe hypoxemia

 • Severe dyssynchrony

 • Markedly increased respiratory drive

 • Difficult to safely ventilate

vvECMO after prone positioning if:
 • P/F < 80
 • Difficult to safely ventilate

Pharmacotherapy Pharmacotherapy
Early steroids for ARDS with COVID-19 Early steroids for other causes

Conservative fluid strategy for patients not in shock Conservative fluid strategy for patients in septic shock

Testing specific biological agents in sub-phenotypes of ARDS more likely to 
respond to specific Rx
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of the Berlin definition [6, 7]. In this classification, ARDS 
was characterized by the acute onset (within 1 week) of 
bilateral chest radiograph opacities not fully explained 
by cardiac failure, and was divided into mild, moderate, 
and severe subgroups according to degree of hypoxemia 
measured with at least 5  cm of water positive pressure 
using upper limits of PaO2/FiO2 of 300, 200, and 100 mm 
Hg, respectively. In the derivation and validation of this 
definition using prior ARDS cohorts, approximately 25% 
of patients were characterized as mild, 50% moderate and 
25% severe, with a stepwise increments of mortality from 
27% in mild ARDS to 45% in the severe group [6]. This 
distribution of ARDS severity and respective mortal-
ity rates were subsequently replicated in the prospective 
LUNG-SAFE observational study [8]. The Berlin defini-
tion remains the current standard for ARDS diagnosis in 
2020, but we anticipate ongoing evolution of the ARDS 
definition in the future [7].

Ventilatory management
Pressure and volume limitation
Current standards
Lung protective ventilation entered mainstream clini-
cal practice with the publication of the first ARDS Net-
work study in 2000; this landmark study demonstrated 
that limiting plateau pressure and reducing tidal volume 
(VT) to 6  mL/kg predicted body weight (PBW), com-
pared with VT of 12 mL/kg, improved survival, shortened 
duration of mechanical ventilation, attenuated systemic 
inflammation and reduced the incidence and amount of 
extra-pulmonary organ failure [9]. Of course these find-
ings were built on more than two decades of laboratory 
work from Webb and Tierney to Saumon and Dreyfuss, 
followed by early observational studies in patients by 
Hickling and colleagues [10–12]. An expert panel con-
vened in the early 1990s called for randomized clinical 
trials of lung-protective ventilation [13], and this led to 
several smaller studies [14–17], that ultimately informed 
this practice-changing trial [9]. Twenty years later the 
volume and pressure limitation strategies tested in the 
first ARDS Network trial remain central to the standard 
of care in lung protective ventilation—targeting tidal 
volume of 6  mL/kg predicted body weight (PBW), with 
adjustments between 4—8  mL/kg PBW to keep plateau 
pressure below 30 cmH2O allowing permissive hypercap-
nia while minimizing dyssynchrony due to high respira-
tory drive [18].

Evolving standards
Increasing recognition of the heterogeneity of ARDS led 
to the call for a more individualized approach to pres-
sure and volume limitation in ventilatory management. 
In 2015, Amato and colleagues published a secondary 

individual patient data meta-analysis of several RCTs 
showing that driving pressure (ΔP = plateau pressure − 
PEEP) was the critical mediator between tidal volume 
limitation and improved survival in ARDS [19]. While 
this paper continues to generate discussion, proponents 
claim that a focus on ΔP is superior to simple tidal vol-
ume limitation, because it is a measure of tidal volume 
corrected for respiratory system compliance [20]. Build-
ing on this, Gattinoni et  al. introduced the concept of 
mechanical power as a unifying theory of ventilator-
induced lung injury [21]. The simplified version of this 
calculation allows one to estimate mechanical power 
with only VT, respiratory rate, peak pressure and ΔP 
[21], and day 1 mechanical power calculated in this man-
ner has been associated with mortality [22]. Further-
more, a recent analysis of a large registry of over 13,000 
patients with hypoxemic respiratory failure showed that 
exposure to higher intensity of mechanical ventilation 
(higher driving pressure or mechanical power), even for 
relatively brief periods, was independently associated 
with increased mortality over the entire duration of ven-
tilation; with stronger association in those with worse 
baseline hypoxemia [23]. Nevertheless, randomized tri-
als demonstrating the superiority of a ventilatory strat-
egy focused on limiting driving pressure or mechanical 
power are still needed, and a recent small trial (n = 31) 
suggest a ΔP-limited strategy may be feasible [24].

PEEP and lung recruitment
Current standards
Positive end expiratory pressure (PEEP) has been used 
in ARDS to improve oxygenation and recruit atelectatic 
lung tissue, since the first description of the syndrome, 
but debate about exactly what level to use in which 
patient has been raging ever since [3]. Suter and Fair-
ley showed that the ‘best’ PEEP that maximized oxygen 
delivery also maximized respiratory system compliance 
and was inversely proportional to the baseline functional 
residual capacity, i.e., the size of the baby lung [25].

There are many methods for selecting PEEP. Two com-
mon approaches are to target respiratory mechanics 
(e.g., use the highest PEEP that maintains the plateau 
pressure below 30  cmH2O as used in the ExPress trial, 
[26]), or to target oxygen saturation (e.g., the use of a 
PEEP-FiO2 table, which assigns higher levels of PEEP 
at higher required FiO2). A PEEP/FiO2 table was used 
in the original ARDS Network trial of low tidal volume 
[9], and was subsequently compared to a modified table 
assigning higher PEEP at moderate FiO2 tables in the 
ALVEOLI and LOVS trials [27, 28]. Individually, none 
of these trials (ExPress, ALVEOLI, LOVS) comparing 
higher (day 1 mean 15.3  cmH2O) versus lower (day 1 
mean 9.0  cmH2O) PEEP strategies showed a difference 
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in mortality. However, when combined in an individual 
patient data meta-analysis, significant heterogeneity 
of treatment effect emerged, with higher PEEP lower-
ing mortality in patients with baseline PaO2/FiO2 below 
200, and a trend for increased mortality in patients with 
PaO2/FiO2 between 200–300 [29]. Similar differential 
mortality effects have been demonstrated in these trial 
populations when grouped according to inflammatory 
profile [30], and according to oxygenation response to 
PEEP increase [31]. Despite the ongoing debate of higher 
versus lower PEEP, in clinical practice, PEEP levels are 
often moderate—around 8–10  cm of water, even in 
severe ARDS [8]. From a physiological and clinical stand-
point, in severe ARDS, where lung compliance is low, it 
makes intuitive sense to cycle tidal volume (and ΔP) from 
a higher opening pressure or higher PEEP. However, the 
extent to which higher PEEP will be tolerated, is largely 
dependent on the severity of lung injury, its impact on 
pulmonary circulation and the patient‘s cardiovascu-
lar reserve. These need to be frequently evaluated at the 
bedside when adjusting PEEP. In part, these complex 
and dynamic influencing factors have made protocolized 
PEEP strategies challenging to study.

Recruitment maneuvers—sustained inflations, inter-
mittent sighs, or stepwise increases in airway pressure—
are sometimes recommended in combination with higher 
PEEP—but their role and benefit to harm ratio need to be 
determined in further studies. The routine use of aggres-
sive staircase recruitment in ARDS patients is not recom-
mended after a large randomized trial found an increased 
mortality in the group treated with a recruitment maneu-
ver combined with decremental PEEP titration based on 
best compliance [32]. Similarly, recruitment with high 
frequency oscillatory ventilation (HFOV) is not routinely 
recommended for most ARDS patients, since two trials 
showed no survival advantage and a potential signal for 
harm [33, 34].

Evolving standards
The individual titration of PEEP, with the target of using 
higher levels of PEEP in patients who are more recruita-
ble, has been a long-sought goal. Indeed, analyses from a 
recent trial suggest outcomes may be worse when ventila-
tory strategy is misaligned with lung morphology [35]. In 
the past it was suggested that setting PEEP 2 cm of water 
above the lower inflection point of the volume-pressure 
curve would keep the lung open, [36]; however, we now 
recognize that with that technique recruitment often 
occurs throughout inspiration [37, 38]. Numerous emerg-
ing methods are available to help guide PEEP titration by 
bedside clinicians. One simple approach is to start with 
PEEP prescribed by a PEEP/FiO2 table and then titrate 
PEEP up or down to achieve the lowest possible driving 

pressure [39]. Another bedside method for assessing the 
impact of PEEP is the recruitment:inflation (R:I) ratio, 
which informs how many new lung units are recruited 
versus existing lung units stretched for a given change 
in PEEP [40]. This can be easily calculated with online 
tools (rtmaven.com), with values > 0.5 indicating higher 
amounts of recruited lung.

Another technique for setting PEEP is to measure 
esophageal pressure (as surrogate for pleural pressure) 
to estimate end-expiratory transpulmonary pressure 
(PLexp); the PEEP can then be set to maintain PLexp 
around 0. This approach was compared with the original 
ARDS Network lower PEEP-FiO2 table in a single-center 
study, leading to large increases in PEEP with concomi-
tant improvements in oxygenation and even a hint at a 
mortality benefit [41]. A subsequent multi-center study 
then compared this approach with a higher PEEP-FiO2 
table; this led to similar levels of PEEP between the two 
groups, and perhaps unsurprisingly, no differences in 
clinical outcomes were detected [42].

Electrical impedance tomography (EIT) is a non-inva-
sive, radiation free, imaging method for assessing lung 
morphology, and guiding ventilatory strategy. EIT can be 
used to titrate PEEP and balance the competing interests 
of recruiting atelectatic lung units while limiting overd-
istention in those already aerated, by assessing aeration 
loss and overdistention [43, 44]. Although physiologi-
cally promising, its availability is currently limited and 
its use is largely confined to research. Before it is widely 
adopted for clinical use, large randomized clinical studies 
would be needed to demonstrate clinical advantages and 
generalizability.

Spontaneous breathing in ARDS patients
Evolving standards
Spontaneous breathing during mechanical ventilation 
has long been recognized to improve oxygenation, and 
to minimize diaphragm atrophy; therefore, it may confer 
advantage in ventilated patients [45]. Partially assisted 
breathing is commonly employed even in moderate-
severe ARDS patients and is associated with improved 
outcomes in observational data [46]. However, there are 
concerns of treatment indication bias in these data, and 
spontaneous breathing with or without assistance may 
lead to further lung injury; this has been termed patient 
self-inflicted lung injury (P-SILI), though we note that 
this does not imply any intent on behalf of the patient 
[47]. In the early phase of ARDS, augmented spontane-
ous breathing may induce patient-ventilator dyssyn-
chrony and high tidal volumes which could promote lung 
injury.[48] Airway pressure release ventilation (APRV) is 
a time-cycled mode in which airway pressure alternates 
between high and low pressure settings, but also allows 
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spontaneous breathing [49]. Although a single center 
RCT recently showed improved physiological and clinical 
outcomes [50], a pediatric ARDS trial was stopped early 
because of increased mortality in the APRV arm [51], and 
a recent meta-analysis 14 studies showed improvements 
in oxygenation with APRV but no difference in ICU stay 
and mortality between groups [52].

Non-invasive ventilation (NIV) and high-flow nasal 
oxygen (HFNO) are increasingly being considered for 
use in the early phase of ARDS, particularly following 
the publication of the FLORALI study [53]. This three-
arm trial suggested that HFNO was better than facemask 
NIV in preventing intubation and even reducing mortal-
ity in more severe hypoxemia. While NIV may be useful 
in selected patients, NIV delivered by facemask does not 
seem protective for patients with early ARDS, especially 
those with moderate or severe ARDS [54]. However, a 
small single-center RCT showed reduced need for intu-
bation and a trend toward improved mortality with hel-
met NIV compared to NIV delivered by face mask [55]. 
The clinical benefits of HFNO in de novo situations of 
respiratory failure have been systematically reviewed, 
showing that it reduced the need for intubation and 
invasive ventilation [56]. More recently, a network meta-
analysis demonstrated that both HFNO and helmet NIV 
each lowered mortality compared with standard oxygen 
therapy in patients with acute hypoxemic respiratory fail-
ure [57], but the relative benefit of HFNO versus helmet 
NIV remains to be determined.

ARDS due to COVID‑19
Evolving standards
In 2020 the coronavirus disease 2019 (COVID-19) pan-
demic has swept across the world and has resulted in 
thousands of patients with severe respiratory failure 
and ARDS, often overwhelming regional healthcare sys-
tems. Early in the pandemic as intensivists were grap-
pling with a new disease, several reports were published 
(and extensively promulgated on both social and main-
stream media) suggesting that ARDS due to COVID-19 
was different than non-COVID ARDS and that different 
ventilatory strategies should be used [58, 59]. As more 
information has emerged in the last several months; 
however, it appears that ARDS due to COVID-19 often 
looks like and behaves similarly to ARDS from other 
causes [60–62]. On the other hand, COVID-19 ARDS 
is still an area of uncertainty. While further knowledge 
about COVID-19 treatment will undoubtedly emerge, 
at this stage it seems reasonable to us to apply the same 
ventilatory approach to patients with COVID-19 ARDS 
[63], taking into account, of course, the specific physiol-
ogy/biology of the individual patient.

Ventilation adjuncts
Prone positioning
Current standards
Prone positioning is one of the most effective strate-
gies in patients with moderately-severe ARDS (PaO2/
FiO2 < 150  mmHg) and is the cornerstone of adjunctive 
therapies in these patients as it improves survival [64]. 
Prone positioning frequently leads to an improvement of 
gas exchange but the improved survival does not depend 
on improved oxygenation [65, 66]. This improved sur-
vival is likely mediated through a decrease in ventilator-
induced lung injury due to a more uniform distribution 
of volume and distending forces across the lung. Several 
clinical trials have convincingly demonstrated that prone 
positioning applied early and for at least 16  h/day in 
ARDS patients with P/F < 150  mmHg reduces mortality 
[64, 67]. Current guidelines recommend long daily ses-
sions of prone positioning in moderate to severe ARDS 
[68]. Of note, the LUNGSAFE study reported that only 
16.3% of eligible patients were treated with proning [8]. 
Logistical difficulties, fear of complications, and under-
recognition of the hypoxemia criteria all contribute to 
the relatively low implementation of prone positioning 
[69]. However, indications for its use are straightforward: 
to achieve improved survival, patients with moderate to 
severe ARDS need prone-positioning early and for a pro-
longed (e.g., 16  h) duration, with the concurrent use of 
lung-protective ventilation and experienced staff to mini-
mize the procedural risks. In short, prone positioning 
should be applied as a first-line therapy in moderately-
severe and severe ARDS and generally be continued daily 
until PaO2/FiO2 is stable above 150 mmHg in the supine 
position [64].

Evolving standards
In patients with ARDS due to COVID-19, use of prone 
positioning for a prolonged period of time (36 h) was safe 
and associated with a more pronounced impact on oxy-
genation compared to 16 h of prone positioning [70]. Ear-
lier in the disease course, awake spontaneous breathing 
COVID-19-patients has been described and promoted, 
with most patients responding with an increase in arte-
rial oxygenation while prone position [71]. However, the 
efficacy of prone-positioning in spontaneously ventilated 
patients remains experimental and limited to case series.

Neuromuscular blockade
Current standards
As discussed above, high respiratory drive and subse-
quent strong spontaneous respiratory effort in ventilated 
patients with ARDS may result in severe patient–venti-
lator dyssynchrony and increased lung injury. Therefore, 
it has been proposed that early neuromuscular blockade 
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might prevent these effects and improve outcomes. 
In 2010, Papazian and colleagues published a multi-
center RCT showing that 48 h of cisatracurium infusion 
improved adjusted survival and increased time off the 
ventilator compared with deep sedation without paraly-
sis in patients with moderate-severe ARDS [72]. Despite 
these encouraging results, neuromuscular blockade was 
commonly (38% of severe ARDS) but not universally 
adopted in clinical practice [8]. Some reluctance to use 
paralysis may arise because of concerns about long-term 
effects on muscle strength [73], or about the need for 
concomitant deep sedation [74].

Furthermore, the recent ROSE trial draws into question 
the utility of neuromuscular blockade in all patients with 
moderate-severe ARDS. In this study, patients with mod-
erate-to-severe ARDS were randomly assigned to infu-
sion of cisatracurium and concomitant deep sedation, or 
to usual-care with lighter sedation targets [75]. The trial 
was stopped early for futility and did not show a differ-
ence in mortality between groups. For now, although 
the evidence is inconclusive, we suggest that neuromus-
cular blocking agents should not be used routinely in all 
patients with moderately severe ARDS, but should be 
reserved for those patients, where there is specific indica-
tion, e.g., those in whom lung protective ventilation is not 
possible because of severe patient-ventilator asynchrony 
or markedly increased respiratory drive, those with per-
sistent high driving pressure, or who are difficult to oxy-
genate or ventilate [76].

Inhaled nitric oxide (iNO)
Current standards
Inhaled nitric oxide (iNO) mediates a selective vasodila-
tion of the pulmonary circulation of ventilated regions, 
reduces right-to-left shunting and, transiently, improves 
oxygenation in some patients with ARDS [77]. To date, 
there are no studies that have demonstrated beneficial 
effects of iNO on clinical outcomes in ARDS patients, 
even for patients with very severe hypoxemia [78]. As 
such, and given the high costs of iNO in many jurisdic-
tions, we do not recommend the routine use of iNO in 
patients with ARDS.

Extracorporeal lung support
Current standards
Veno-venous extracorporeal membrane oxygenation 
(vvECMO) has been proposed for patients with severe 
ARDS based on two potential mechanisms: (1) provid-
ing adequate oxygenation to prevent or reverse tissue 
hypoxia, and (2) allowing for a reduction in the intensity 
of mechanical ventilation substantially reducing VILI. In 
the first of the two modern-era ECMO RCTs, the CESAR 
trial compared transfer to an ECMO center and possible 

ECMO versus ongoing usual care at the referring center 
in patients with severe ARDS [79]. The primary outcome 
of death or severe disability at 6 months was significantly 
lower in the ECMO center group. However, the study has 
several methodological limitations and its interpretation 
is complicated by the large number of control patients 
who did not receive lung-protective ventilation, and the 
significant number of patients in the ECMO group who 
did not actually receive ECMO. During the 2009 influ-
enza pandemic, several observational studies suggested 
beneficial effects of vvECMO in influenza A(H1N1)-
related ARDS [80, 81], though similarly low mortality 
rates were also reported in series, where ECMO was not 
widely applied [82, 83].

Recently, the EOLIA RCT studied early vvECMO in 
adults with severe ARDS and significant hypoxemia 
(P/F < 80) or who were difficult to safely ventilate com-
pared with ongoing conventional treatment with ECMO 
rescue if required [84]. Strengths of this trial include 
high adherence to conventional lung protective ventila-
tion and prone positioning in excess of 90% in the con-
trol group, and ultra-protective ventilation facilitated by 
vvECMO uniformly used in the intervention group. Mor-
tality was lower in the vvECMO group (35% versus 46%) 
despite a high rate of rescue crossover, though the effect 
did not reach nominal statistical significance (p = 0.09). 
The key secondary endpoint of death or crossover to 
ECMO was highly significant, most other secondary 
endpoints favored the ECMO group, and adverse events 
were evenly distributed, leading editorialists to suggest 
that ‘ECMO probably has some benefit in this context, 
despite the trial not being traditionally positive’ [85]. In 
keeping with this thought are results of a meta-analysis 
combining the CESAR and EOLIA trials, which shows a 
statistically significant reduction in mortality [86]. Fur-
thermore, a post hoc Bayesian analysis of EOLIA sug-
gested that vvECMO was very likely to reduce mortality 
in patients with severe ARDS across a broad set of under-
lying prior assumptions [87]. All of these data suggest 
that vvECMO should be considered in patients still meet-
ing EOLIA inclusion criteria, after less invasive therapies 
including prone positioning have been implemented or 
considered [88]. In other words, currently available data 
suggest that outcomes in ECMO are best when used in 
severe ARDS patients who are younger, with reversible 
etiology, few co-morbidities and when employed in expe-
rienced centers [89].

Evolving standards
The role of vvECMO in the supportive care of patients 
with COVID-19 ARDS was initially questioned, but a 
recent analysis from the ELSO registry showed mortal-
ity of around 40% in these patients, similar to patients 
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receiving vvECMO for other causes of ARDS and sug-
gesting similar indications could be used [89].

The role of ECLS to facilitate ultra-lung protective 
ventilation is an evolving area, with a recent individual-
patient data analysis from CESAR and EOLIA showing 
that vv-ECMO was most beneficial in patients with only 
1 or 2 organ failures and was not as helpful in those with 
the most severe hypoxemia [90]. This concept has been 
explored with lower flow extra-corporeal CO2 removal 
(ECCO2R) in pilot studies [91], a single small RCT [92], 
and is the subject of ongoing RCTs. Because of the uncer-
tainty around efficacy and potential risks, we believe that 
this indication of ECLS should be reserved for patients in 
the context of clinical trials at the current time.

Pharmacotherapy
Steroids
Evolving standards
Due to their anti-inflammatory and immune-modulat-
ing properties, glucocorticoids have been considered 
and studied as a therapy for ARDS for decades. Many 
such trials have been small single center studies with 
potential for bias. One exception to this was the ARDS 
Network late ARDS steroid trial, which showed no differ-
ences overall, but a suggestion of harm if steroids were 
started more than 2 weeks after ARDS onset [93]. Meta-
analyses of all these trials have suggested that steroids 
may decrease mortality, some with statistical significance 
[94], some without [95]. However, these meta-analyses 
predated a recently published multicenter RCT in 277 
patients by Villar et al. that found that early administra-
tion of dexamethasone (20  mg/day from days 1–5, and 
10 mg/day from days 6–10) reduced duration of mechan-
ical ventilation and mortality. A subsequent sequential 
meta-analysis published this year does show a significant 
reduction in mortality with the use of corticosteroids, but 
the low number of total patients randomized raised con-
cerns about false positive results in the sequential analy-
sis [96]. Thus, the role for corticosteroids in early ARDS 
remains controversial.

A number of recent studies have evaluated the role of 
corticosteroids in respiratory failure due to COVID-19. 
The RECOVERY trial demonstrated that low-dose dexa-
methasone for 10-day reduced mortality in hospitalized 
patients with COVID-19 who required oxygen or res-
piratory support [97], A recent prospective meta-analysis 
of clinical trials of critically ill patients with COVID-19 
included more than 1700 patients from 12 countries and 
demonstrated that administration of systemic corticos-
teroids, compared with usual care or placebo, was associ-
ated with lower 28-day all-cause mortality [98]. Thus, in 
contrast to ARDS from other causes, we have a moder-
ate degree of certainty that corticosteroids may improve 

outcomes in patients with COVID-19, although some 
basics of this disease are not yet understood. The extent 
to which these results might apply to non-COVID ARDS 
are uncertain, but we hope that these positive results 
from the pandemic will spur renewed interest in steroid 
RCTs in other patients.

Fluid management
Current standards
The clinical axiom that ARDS patients who are not in 
shock should be treated with a conservative fluid treat-
ment strategy is supported by the FACCT trial, which 
showed improved lung function and more ventilator-
free days with this strategy [99]. These findings have 
been extended with similar outcomes using a simplified 
version of the conservative strategy, considering only 
CVP and urine output, enacted once the blood pressure 
is stabilized off vasopressors [100]. It has been recom-
mended that patients with ARDS who no longer have 
shock should have their overall fluid balance reduced by 
500–1000  mL per day by use of diuretics, and reducing 
intravenous fluids until they are euvolemic.

Evolving standards
A secondary analysis of the FACCT trial found signifi-
cant heterogeneity of treatment effect in terms of mor-
tality based on baseline central venous pressure levels; 
those with CVP of 8 or less had significantly lower mor-
tality when managed with the conservative fluid strategy 
[101]. This result, which might initially seem paradoxical, 
suggests it may be avoidance of excess fluid administra-
tion that is of most value, rather than diuresis. This same 
dataset was examined for the effect of hypo- and hyper-
inflammatory phenotypes, and again the fluid restric-
tive strategy was beneficial in the hyper-inflammatory 
group, while the opposite was true in the hypo-inflam-
matory group [102]. These findings are in keeping with 
a recent clinical trial in septic children in Africa, and 
with an ovine sepsis study suggesting harm and inflam-
mation with fluid administration [103, 104]. A large RCT 
is ongoing in patients with septic shock, many of whom 
will likely have ARDS, comparing a strategy of restrictive 
fluid and early vasopressors with liberal fluids, which will 
likely inform future practice in this area (NCT03434028).

Other specific pharmacotherapies
Evolving standards
Multiple pharmacological therapies to improve clini-
cal outcomes of ARDS have been evaluated, but none 
of them have proved effective. Surfactant, β2-adrenergic 
agonists, prostaglandin E1, activated protein C, several 
antioxidants, omega-3 supplementation, ketoconazole, 
recombinant human factor VIIa, statins, interferon beta, 
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vitamin C, and many others have been tested in clinical 
and pre-clinical trials without showing beneficial out-
comes [95, 105]. Given the lack of specificity of the Ber-
lin definition of ARDS, it is perhaps unsurprising that 
pharmacotherapies targeting specific biological path-
ways have failed to show benefit in outcomes. Subsumed 
within the Berlin definition of ARDS are multiple etiolo-
gies and dysfunctional biological pathways. While the 
definition probably captures a consistent physiological 
end-manifestation of critical illness, it does not capture 
biological uniformity. Therefore, for biological therapies, 
and perhaps even some supportive therapies, more con-
sidered approaches that seek to enrich the study popu-
lation to test interventions are needed. Interestingly, 
PROSEVA, ACURASYS, and DEXA-ARDS trials, where 
positive findings were observed with interventions, 
tested efficacy in an enriched population based on sever-
ity of ARDS [64, 72, 106]. Elsewhere, investigators have 
sought phenotypes in secondary analyses of RCT based 
on biological markers, with hypo- and hyper-inflamma-
tory phenotypes being consistently identified [107]. As 
with interventions of PEEP or fluids, retrospective analy-
ses of ARDS clinical trials have suggested there may be 
subsets of patients for whom pharmacotherapies such as 
statins may be of benefit [30], but the findings have not 
always been consistent [108]. Further research is needed 
to identify subgroups of patients that benefit from spe-
cific pharmacological treatments.

Conclusion
In this review we have chronicled current and evolving 
standards of care from the definition itself and across the 
domains of ventilatory management, ventilatory adjuncts 
and pharmacotherapy for adults with ARDS. While it is 
clear that much progress has been made, there remains 
much work to be done. Now, 10  years after the Berlin 
definition was conceived, an update to our standard defi-
nition of ARDS is needed. This may then impact future 
research with targeted investigations in patients most 
likely to benefit. Areas ripe for investigation are many 
and across all domains, including for example ultra-pro-
tective ventilation facilitated by ECLS, stromal cell thera-
pies, and prospective replication of effects by hyper/hypo 
inflammatory sub-phenotype. We look to these future 
developments with much anticipation.
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