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Abstract: The interest in research on up-flow anaerobic sludge blanket (UASB) reactors is growing.
The meta-analysis of bibliometric data highlighted the growing interest in four diverse topics: (i) en-
ergy recovery production; (ii) combination with other treatments; (iii) the study of processes for the
removal of specific pollutants and, (iv) characterization of microbial community and granular sludge
composition. In particular, the papers published in the first 6 months of 2021 on this process were
selected and critically reviewed to highlight and discuss the results, the gaps in the literature and pos-
sible ideas for future research. Although the state of research on UASB is to be considered advanced,
there are still several points that will be developed in future research such as the consolidation of
the results obtained on a semi-industrial or real scale, the use of real matrices instead of synthetic
ones and a more in-depth study of the effect of substances such as antibiotics on the microbiota and
microbiome of UASB granular biomass. To date, few and conflicting data about the environmental
footprint of UASB are available and therefore other studies on this topic are strongly suggested.

Keywords: anammox; microbial community; anaerobic digestion; wastewater; sewage; granular biomass

1. Introduction

The up-flow anaerobic sludge blanket (UASB) systems were first proposed in the 1970s
and, recently, the interest in using this technology has grown [1]. In the UASB process,
the biomass is not of the flock type but of granular consistency due to a phenomenon in
which microorganisms formed granular groups with a more compact structure, a higher
dimension, higher density and higher settling capacity than in the conventional active
sludge (CAS) [2]. The process is activated using selective environmental conditions that
generate a spontaneous involvement of microorganisms commonly present in CAS [3,4].
One of the most significant disadvantages is represented by the low rate of formation and
growth of granular biomass that make necessary long start-up periods [5]. However, the
inoculation of biomass already granulated proved to be an effective method to reduce the
start-up phase [6]. Other drawbacks of this technology include the difficulty associated
with the operation of the three-phases separation, the possible sludge washout and foam
formation [7–10].

UASB can be operated in psychrophilic, mesophilic, or thermophilic conditions de-
pending on the type of matrices fed. Generally, higher temperatures allowed researchers to
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also degrade recalcitrant chemical oxygen demand (COD), particularly in the case of indus-
trial wastewaters (WWs) [1]. The high concentration of biomass (60–100 kgVSS m−3) [11]
and the high microbial diversity present in the granules allow for the rapid degradation of
the organic substance. In compact reactors, the UASB process can also be applied to waste
with high organic concentration [12].

One of the main advantages of UASB system is represented by the production of
methane and therefore the feasibility of energy recovery. This aspect contributes to the
significant widespread of these reactors in low–middle-income countries [13,14]. This is a
crucial aspect since water sanitation and energy production are inserted in the Sustainable
Development Goals (SDGs) of the United Nations (SDG 6 and SDG 7, respectively) [15].
The other main advantage of this system is represented by the low sludge production with
respect to other types of biological treatments [5]. Additionally, this point is a very current
aspect since on the one hand legislation about sludge reuse is becoming stricter [16,17]
and on the other hand waste (and also sludge) prevention and minimization is strongly
stimulated by regulatory bodies (e.g., [18]).

Despite the high organic substances removal efficiencies, the final effluent of a UASB
process generally requires subsequent treatments to remove the residual pollutants, par-
ticularly nutrients and pathogens [5]. Many studies evaluated the efficiency of diverse
post-treatment in order to increase the effluent quality. For instance, de Oliveira and
Daniel [19] found 28–33 oocysts L−1 of Cryptosporidium spp. and 3177–4267 cysts L−1 of
Giardia spp. in UASB effluent and obtained good removal rates (2-log) treating it with
dissolved air flotation. In another case, dos Santos and van Haandel [20] used waste stabi-
lization ponds to treat UASB effluent pointed out an acceleration of the decay of pathogens
and the removal of nutrients.

This paper aims to review the existing literature on UASB for two different purposes:
(i) to analyse bibliometric trends from 1990 to date with a particular focus on those of 2021,
and (ii) to present and critically review the results of the first semester of 2021 focusing on
the applications of this technology (conventional and combined), on the recent findings
concerning the microbiota and the microbiome of the UASB granular biomass and on the
environmental footprint of the process. The goal is on the one hand to highlight the hottest
issues of UASB on which research is most focused and on the other hand to highlight
the gaps in research that still persist. This work therefore aims to be a useful tool for the
researcher, suggesting future research ideas based on the results obtained so far, and for
UASB plants operators, presenting the most recent results on this topic.

2. Methodology
2.1. Criteria of Identification, Screening, and Inclusion

In order to develop the following review, scientific peer-reviewed literature was
searched and selected according to preferred reporting items for systematic reviews and
meta-analysis (PRISMA) guidelines [21].

To consider only peer-reviewed documents, the Scopus® database was used to search
relevant literature on this topic. The analysis has been conducted on 5 July 2021, searching
the keyword “UASB” on fields “Article title, Abstract, Keywords” using the following
query: (TITLE-ABS-KEY (UASB)).

Two diverse screenings were made to obtained diverse groups (G) of data. Criteria
of selection were English language, publications on journals, as books or as scientific
proceedings for both screenings. Moreover, in screening 1 only literature published from
1990 to 2021 was assessed of eligibility. In the case of screening 2, the period of selection
was 1 January 2021 to 5 July 2021.

In the case of screening 1, all records assessed for eligibility were included in G1.
Considering that the aim of this review is to analyse very recent applications of UASB and
findings on its microbial community, the 109 remaining documents of screening 2 were
verified individually to exclude papers that do not treat specifically subject in the scope of
the present work (e.g., studies specifically focused on the treatment of UASB effluents) or
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that do not present new original results (e.g., other review papers). Only remaining works
were included in G2.

2.2. Analysis of Data

This analysis aims to investigate two different aspects: (i) evaluate the literature trend
about UASB technology and applications (based on data selected in G1 and G2), and
(ii) present and critically discussed the recent results of literature about the application of
UASB, the structure of its microbial community and environmental footprint of the process
(based on data selected in G2).

Selected records of both groups were subjected to meta-analyses using VOSviewer
software [22,23]. In the case of G1, co-occurrences by author keywords were analysed
setting “full counting” mode and limiting visualization only to the set of connected items.
Considering that the term UASB may have also been used as an abbreviation in records
that deal with issues other than those that are the subject of this review, to avoid this
interference, the minimum number of occurrences of each keyword was set to 20.

In the case of G2, the same analysis was developed considering a minimum number
of occurrences of each keyword equals 2. Selected records in G2 were also qualitatively
and critically analysed to present recent results but also to discuss the current main gaps of
literature and possible tips for future research.

3. Results
3.1. Literature Trend

The literature trend on UASB was analyzed selecting two groups of records. 3608 and
86 works were included in G1 and G2, respectively, according to Figure 1.
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Data in G1 were analysed to evaluate the trend of literature in the last 30 years, finding
a very heterogeneous situation. 89 keywords responding to the criteria of the analysis
were grouped in six diverse clusters (Figure 2). Excluding the term “UASB”, which was
selected as keywords for records identification in Scopus®, the terms “anaerobic digestion”,
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“anaerobic”, “anaerobic treatment”, “biogas”, and “wastewater treatment” were among
the most used.
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In cluster 1, mainly studies about the optimization of existent reactors (“olr”, “hrt”) to
produce methane and biohydrogen are enclosed. These records are strictly interconnected
with cluster 2 in which one of the main topics is represented by “food waste”. Considering
the age of literature, cluster 1 and cluster 2 include more recent studies especially about
energy recovery, specifically biohydrogen and methane production (Figure 3). Cluster 3
and 4 are strictly interconnected and included mainly studies about UASB functioning and
granulation activity as the most used keywords are “anaerobic granular sludge”, “egsb”,
“methanogenic activity” (cluster 3) and “methanogenesis”, “biodegradation”, “wastew-
ater”, “anaerobic”, “granulation” and “thermophilic” (cluster 4). Based on the present
analysis, these keywords are not very current (Figure 3). On the contrary, cluster 5 presents
very hot topics keywords such as “anammox” and “microbial community” highlighting a
growing interest in processes for nitrogen removal and on studies about microbiota and
microbiome of granular sludge. In cluster 6 “anaerobic treatment”, “municipal wastewa-
ter”, and “domestic sewage” are among the most used keywords pointing that this cluster
mainly includes works on the application of UASB on urban wastewater. In this case, a
high number of studies are published between 2000 and 2010. Despite UASB were first
proposed about fifty years ago [1], considering all the clusters together (Figure 3), it can be
said that before the 2000s the publications on UASB were still limited.

Data in G2 were analysed to evaluate trend of literature in the last six months. 31 key-
words responding to the criteria of the analysis were grouped in eight diverse clusters
(Figure 4). Excluding the term “UASB”, the keywords “anaerobic digestion”, “microbial
community”, “biogas”, and “anammox” were the most used confirming results of data
analysis of G1. To date, the research is focused on four diverse hot topics: (i) methane and
biohydrogen production and subsequent energy recovery (C1, and C2); (ii) combination
with other treatments (e.g., GAC (C3) or CAS (C6)); (iii) the study of processes for the
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removal of specific pollutants (e.g., nitrogen removal (C7)); and (iv) characteristics of the
microbial community (C4, and C5) and granular sludge composition (C8).
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3.2. Organic Substance Removal and Biogas Production

To degrade organic substances and produce methane, the UASB process was tested on
synthetic matrices [24–29] and real feed, mainly toilet wastewater [30,31], urban wastew-
ater [32], distillery wastewater [33], mining wastewater [34,35], leachate [35,36], brewery
wastewater [37], food waste [38], soybean molasses [39], pharmaceutical wastewater [40],
and pulp mill wastewater [41].

The results of the literature analysis highlighted that UASB used in the research were
mainly at lab-scale with few studies conducted at semi-industrial or full-scale reactors
(Table 1). The few studies at full-scale concerned the optimization and/or the monitoring
of the existing plant. For instance, Omine et al. [33] evaluated the minimum alkalinity
supplementation to optimize COD removal from a distillery wastewater. They monitored
a real UASB operating in thermophilic conditions (55 ◦C) for more than one year and
they found that 0.045 mgCaCO3 mgCOD−1 is required to obtain 87% of the COD removal
rate. Monitoring two real full-scale UASB reactors, de Freitas Melo et al. [42] studied the
seasonality of biogas production finding a negative correlation with the rainfall events.

Lab-scale reactors have been mainly used to investigate the effect of diverse types
of matrices on UASB performance but also to simulate critical conditions. For instance,
Cervantes-Avilés et al. [43] tested the effect of chronic exposure to titanium dioxide nanopar-
ticles and their accumulation in the granular sludge demonstrating that this aspect did
not affect badly the removal of organic substances (92–98%). In their study, an increase in
biogas production by 8.8% was evaluated but no significant changes in terms of methane
content (78–90%) were detected. Other results of UASB applications in lab-semi-industrial
or full-scale reactors are reported in Table 1.

In some cases, UASB technology was also tested to produce volatile fatty acids (VFAs).
For instance, Eregowda et al. [44] fed the foul condensate collected by a Kraft paper mill
to a UASB reactor operating with HRT equal to 75 h and diverse temperature conditions
(22 ◦C, 37 ◦C and 55 ◦C). Their results showed that 52–70% of the organic carbon used
(42–46%) was converted into VFAs. Moreover, after more than 5 months of operational
activity, Eregowda et al. [44] also found that the biomass of the UASB reactor at 55 ◦C
exhibited the highest activity.
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Table 1. Several applications of UASB technology for organic substance removal and biogas production. S: Synthetic substrate; R: real matrix. n.a.: not available. a: referred only to soluble
COD. b: value deduced by figure analysis. c: tests were performed in batch with granular sludge extracted from a UASB. d: expressed as BOD. e: two reactors in series. ∅: diameter.

Substrate Volume of the
Reactor (L)

[Scale]

Influent COD
(mg L−1) Operational Parameters COD Removal

(%)
Biogas and/or Methane

Production Other Results References
S/R Type of Real

Substrate

R Toilet
wastewater

2
[Lab] 18,800–33,500

OLR: 0.9–12.4 kgCOD m−3 d−1;
T: 52 ◦C;

HRT: 2.5–20 d
77.5–83.6 methane yield: 55.9–60.8% High phosphorus precipitation [31]

R Mining
wastewater

1.9
[Lab] 116.9

T: 28.1 ◦C;
HRT: 12.6 d;

pH: 6.1
88 n.a. High heavy metals precipitation [34]

R Leachate and
carob powder

200
[Sem-ind] 26,100

OLR: 26.1 kgCOD m−3 d−1;
T: 35.2 ◦C;
HRT: 1 d;

pH: 6.9–7.2;
carob powder (∅: 0.250 mm)

97 Biogas: 2.06 L/Lleachate [36]

R Toilet
wastewater

1
[Lab] 2000–7000

OLR: 16 kgCOD m−3 d−1;
T: 35 ◦C;

HRT: 0.25 d
75.6 methane production

potential: 61.9%

The methanogenic activity and the
hydrolysis of particulate COD

were promoted by the formation
of calcium phosphate granular

sludge

[30]

S 6
[Lab] n.a.

OLR: 4.9–7.8 kgCOD m−3 d−1;
T: 19.7–25.6 ◦C;

HRT: 30 h;
SRT: 82–92.3 d;

pH: 6.5;
intermittent conditions with 0.5 d (feed period
per cycle) and 3 d (feedless period per cycle)

26.8–78.5 methanization of COD:
2.5–37.8%

Contemporary removal of
estrogens by biological

degradation and adsorption
[24]

R Ethanol
wastewater

4 + 24 e

[Lab] 65,800
OLR: 20–32 kgCOD m−3 d−1;

T: 37 ◦C;
pH: 5.5

47–56

Biogas production: up to
67 L d−1 (first reactor);

up to 300 L d−1 (second
reactor) c

[45]

S Lab 9500–16,700 pH: 7–7.9 63.7–82.2 methane production:
0.4–0.6 dm3 gCOD reduced

−1

The core microbiome was
composed of Methanothrix

soehngenii, Methanoculleus sp.,
unknown Bacteroidales and

Spirochaetaceae

[25]

R Brewery
wastewater

592,000
[Full] 1057–2866

T: 30.6–35.8 ◦C;
HRT: 11 h;

pH: 6.3–9.07
71.8–85.5 methane production:

1170.1 Nm3 d−1 [37]

R Urban
wastewater

2500
[Sem-ind] 95–256

T: 20–25 ◦C;
HRT: 3–5 h;
pH: 6.9–7.3

38–85 biogas production:
61–75 L m−3 d−1 [32]
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Table 1. Cont.

Substrate Volume of the
Reactor (L)

[Scale]

Influent COD
(mg L−1) Operational Parameters COD Removal

(%)
Biogas and/or Methane

Production Other Results References
S/R Type of Real

Substrate

S 1
[Lab] 10,000

T: 35 ◦C;
OLR: 2.5–10 kgCOD m−3 d−1;

HRT: 1–4 d;
High salinity conditions (10 gNa+ L−1);

pH: 6.9–7.5

40–80 b methane production:
0.4–1.73 L L−1 d−1

Biochar/Fe addition improved the
biofilm formation under high

salinity conditions allowing the
effective treatment of high saline

wastewater

[26]

R Soybean
molasses

12
[Lab] 500–4000

HRT: 12–48 h;
OLR: 0.25–7 kgCOD m−3 d−1;

T: 23–25 ◦C;
pH: 7.6–7.9

70–83

methane production:
23.3–376.2 mL gCOD−1;

methane content in biogas:
75.5–82.1%

[39]

R Food waste 6.15
[Lab] 30,000

HRT: 10 d;
OLR: 21.9 kgVS m−3 d−1;

T: 36.5–37 ◦C;
pH: 6.8–7.2

88.8

biogas production:
640 L kg food waste−1;

methane content in biogas:
62.2%

[38]

S 4
[Lab] 3000–6000

HRT: 12 h;OLR: 6–12 kgCOD m−3 d−1;
T: 37 ◦C;

pH: 7–8 b

80
42.6 (in

shocking load
phase)

n.a.
Variation in microbial community

after the restoration from shock
loading.

[27]

S 3.5
[Lab] 4000

Wastewater with allicin: 12.47 mg L−1;
T: 30 ◦C;

HRT: 6–24 h;
Up-flow velocity: 0.04–0.64;
OLR: 4–16 kgCOD m−3 d−1;

pH: 7.5–8

74.3–93.3 n.a. [28]

R Barley crop
residues

0.3 c

[Lab] 168.8 T: 37 ◦C;
pH: 6.85–6.97 n.a. methane production:

18.02 N mL gVS
−1 [46]

R
Urban and

food
wastewater

2.2
[Lab] 26,500

MgSO4: 150 mg L−1

T: 35 ◦C;
intermittent feeding

83.1

methane production:
0.36 L gCODrem−1;

methane content in biogas:
61.4%

The addition of Mg2+ also
stimulated the ammonia-nitrogen
removal, reducing the inhibitory

effect of ammonia on the
performance of the process

[47]

R Pulp mill
wastewater

3
[Lab] 2616 a

HRT: 18 h;
Flowrate: 4.08 L d−1;

pH: 7.5–8.5;
T: 22 ◦C

78 a n.a. [41]

R Fish cannery
wastewater n.a. 5992 d HRT: 33 h 90 d n.a. [48]

R Pharmaceutical
wastewater

5.2
[Lab] 1976 OLR: 0.5–2 kgCOD m−3 d−1;

HRT: 18 h
49 n.a. [40]
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Table 1. Cont.

Substrate Volume of the
Reactor (L)

[Scale]

Influent COD
(mg L−1) Operational Parameters COD Removal

(%)
Biogas and/or Methane

Production Other Results References
S/R Type of Real

Substrate

S 7.8
[Lab] 4300–8300

+chitosan;
OLR: 2.1–13 kgCOD m−3 d−1;
Up-flow velocity: 0.05–0.15;

T: 23.3 ◦C;
pH: 7–7.5

≥70

0.19 Nm3CH4 kgCOD−1

(intermittent feeding);
0.31 Nm3CH4 kgCOD−1

(continuous feeding)

[29]

R
Leachate and

mining
wastewater

7
[Lab] 2000–2500 b

HRT: 8–30 h;
pH: 7.5;
T: 35 ◦C

67–83
methane production:
1600–1800 mL d−1 b [35]
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Recently, UASB reactors have also been tested coupled with other technologies such
as polishing ponds [49], sponge filters [49–52], granular activated carbon [53], aerobic
treatments [54,55]. Additionally, in this case, diverse matrices were evaluated as possible
feed to UASB but very few experiments have been conducted on a larger scale while the
majority have been studied in laboratories (Table 2).

The aim of coupling technologies was the improvement of organic substance removal
efficiency and methane yields production. For instance, Rahman et al. [56] evaluated the
performance of UASB reactor, coagulation–flocculation, and aeration to remove organic
substances from wastewater of rubber latex production. They found that this combined
system proved to be effective by reducing total Kjeldahl nitrogen (TKN) by 68–87%, and
BOD and COD by more than 80% [56].

In another study, Zhang [57] treated oilfield wastewater with a multi-system in which
UASB is combined with dissolved air flotation, yeast bioreactor, and biological aerated
filter, highlighting organic substance removal equals 96%.

Mazhar et al. [49] compared the performances produced by two combined systems on
urban wastewater: (i) UASB + polishing with ponds and (ii) UASB + downflow hanging
sponge (DHS) system. The results of their monitoring pointed out the higher removal yields
on COD, BOD and TSS feasible with UASB + DHS system (92%, 82%, and 91%, respectively)
compared to UASB + polishing ponds (82%, 74%, and 84%, respectively) and predicted
the lower operational costs of UASB + DHS with respect to the other combination [49].
Additionally, Asano et al. [51] evaluated the coupling of UASB and DHS, in this case,
to treat food wastewater. Further, in this case, their system allowed to obtained high
performance in term organic substance conversion into methane: 58% of total COD was
removed and 63–87% of soluble COD was converted into methane.

The coupling of UASB reactors with other treatments was also evaluated by
Dohdoh et al. [55]. Based on their results, they suggested the combination of hybrid
UASB and integrated fixed-film activated sludge (IFAS) as an alternative to conventional
UASB + conventional activated sludge (CAS) in treating urban wastewater obtaining about
95% of COD removal after 6 h of HRT [55]. El-Khateeb et al. [58] tested the coupling of
UASB reactor with a downflow reactor in which a hanging non-woven fabric made by
polyethylene terephthalate (PET) is located. They demonstrated the ability of this system
in removing up to 88% and 90% of COD and BOD, respectively. Moreover, their results
suggested that coupling these two technologies allowed to reach high removal rates of
bacteria (i.e., faecal coliforms and E.coli) [58].

Petropoulos et al. [59] compared the performances of two UASB reactors operating
in an extreme condition of low temperature (4 ◦C), with and without an ultrafiltration
membrane. They pointed out two interesting aspects: (i) organic substance conversion
into methane occurred also in this condition with an HRT equals to 3 days, and (ii) both
systems produced comparable results proving that degradation efficiency was not affected
by the coupling with an ultrafiltration membrane [59].

The research has also been focused on evaluating solutions for reducing the impact
of load shock. In fact, Soh et al. [60] proved that organic load shock can also stimulate
the production of soluble microbial products (SMPs) and identified cyclooctasulfur as
a potential indicator of reactor performance. Wang et al. [61] tested the effectiveness of
biochar against high organic loading shock in up-flow anaerobic sludge blanket (UASB)
reactors. They found that the addition of biochar stimulated the development of an enriched
microbiota which helped the system to restore quickly maintaining high performances in
terms of organic substances removal and methane production in contrast to irreversible
acidification which conventional UASB reactors met [61].

Other results of UASB applications in combination with diverse treatments are re-
ported in Table 2.
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Table 2. Several applications of UASB coupled with other treatment phases for organic substance removal and biogas production. S: Synthetic substrate; R: real matrix. n.a.: not available; TF: Trickling
filters; ST: Sedimentation tank; preAC: Pre acidification in continuous-flow stirred reactor; HCPB: hollow centred packed bed; SBTF: Sponge-bed trickling filters; PMR: Photocatalytic membrane
reactor; JN: Jet-nozzle; AR: Aerobic reactor; ABF: anaerobic biofilter; BE-UASB: bioelectrochemical UASB; AnMBR: anaerobic membrane bioreactor; GAC: Granular activated carbon; LBR: Leaching
bed reactor; DHS: Downflow hanging sponge. a: referred only to soluble COD; b: value deduced by figure analysis; c: value deduced by the comparison of influent and effluent data; d: value
reported following equivalence of units of measure; e: in the same reactor; f: five in series; g: for each UASB; h: system composed of a mixed reactor (hydrolysis and acidogenesis) and a UASB reactor
(methanogenesis).

Technologies
Substrate Volume of the

UASB Reactor (L)
[Scale]

Influent
COD

(mg L−1)
Operational Parameters COD Removal

(%)
Biogas and/or Methane

Production Other Results References
S/R Type of Real

Substrate

UASB + TF + ST R Urban
wastewater

n.a.
[Full] 252

HRTUASB: 7.7 h;
SRTUASB: 40 d;

Percolating timeTF: 20–25 min;
HRTUASB: 6.1 h

82.9 c n.a. High removal of
micropollutants [62]

preAC + UASB S 6
[Lab] 814–917

OLR: 0.5–8 kgCOD m−3 d−1;
T: 35 ◦C;

HRTUASB: 1.5–24 h;
HRTTOTAL: 3–48 h;

pH: 5.5 (using HCl)

86.6–95 a methane production:
0.2–0.3 L gCOD removed

−1 b

With pre-acidification phase,
the granules performed more

superior stability in the
microbial community

structure

[63]

UASB-HCPB e R Palm oil mill
wastewater

5
[Lab] 23,100–30,200

T: 55 ◦C;
pH: 6.8–7.2;

HRT: 2 d;
OLR: 11.55–16.05 kgCOD m−3 d−1

97.5

methane production:
0.26–0.414 L gCODremoved

−1 d;
methane content in biogas:

77.8%

[64]

UASB + SBTF R Urban
wastewater

14,100
[Full] 514

HRT: 8.5 h;
pH: 7.1–7.4;
T: 25.4–25.5

89 n.a. [50]

UASB-PMR e S 3
[Lab] 1054

HRT: 8 h;
T: 37 ◦C;

Pore size of membrane: 0.1 µm;
Membrane resistance: 6.38 × 1011 m−1;

UV flux: 8 mW cm−2

85 (overall)
91 (after

acclimatization)
99 (with PMR at

6.4 h HRT)

methane production:
0.30 L gCODremoval

−1

Photocatalytic and photolytic
quorum quenching can

operate as antifouling also
improving the performance of

the system.

[65]

JN-UASB e S 4[Lab] n.a.

jet nozzle for hydrogen injection;
T: 35 ◦C;

Up-flow velocity: 3.18;
OLR: 3.8 kgCOD m−3 d−1;

pH: 7.5

89.7
methane production:

0.63 L d−1 (theoretical
production: 0.7 L d−1)

The analysis of archaeal
community confirmed that the
dominant of hydrogenotrophic
methanogen increased up to

75.8% in JN-UASB

[66]

UASB f + AR R
Hydrothermal
liquefaction
wastewater

0.4 g

[Lab] 189,000

T: 65 ◦C (in the first UASB reactor);
T: 40 ◦C (in the other UASB reactors);

HRTUASB: 20 d;
HRTAR: 10 d;

OLR: 0.5 kgCOD m−3 d−1

97

Biogas production: 10–80%
yields (gCOD gCODIN

−1)
depending on the
monitored period

[54]
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Table 2. Cont.

Technologies
Substrate Volume of the

UASB Reactor
(L)

[Scale]

Influent
COD

(mg L−1)
Operational Parameters COD Removal

(%)
Biogas and/or Methane

Production Other Results References
S/R Type of Real

Substrate

UASB+ABF S 50
[Lab] 1262

HRTUASB: 1–10 d;
HRTABF: 0.25–5 d;

OLRABF: 0.03–0.6 kgCOD m−3 d−1

pHUASB: 7;
Packed media porosity: 57–86%;

ABF media: Polyethylene
terephthalate;

Surface area per unit volume of
packed media: 1425–1903 m2 m−3

80–90 (UASB)
70–94 (ABF)

methane production:
0.15–0.35 L gCODremoved

−1

(in UASB) b d;
methane content in biogas:

60–80 % b

[67]

BE-UASB e R Tequila
vinasses

4.25
[Lab] 105,000

HRT: 1–7 d;
Voltage: 0.1–1 V;

T: 35 ◦C;
pH: 7

24–45
methane production:

0.274–0.327 NL
gCODremoved

−1 d

In BE-UASB, high CO2 and
H2 production were

observed
[68]

UASB-GAC e R Urban
wastewater

4.7
[Lab] 96–260

GAC: (25 g L−1);
HRT: 8–12 h;

T: 19 ◦C
69–70

methane production:
45–70 mg gVSS

−1 d−1 b

GAC showed a protective
effect on methanogenic

biomass
[53]

mixed
reactor+UASB h R Baker’s yeast

wastewater
0.84

[Lab] 1550–4100

OLRmixed reactor: 2.2–13.7 kgCOD m−3

d−1;
OLRUASB: 2.2–6.58 kgCOD m−3 d−1;

pHmixed reactor: 4.4–7;
pHUASB: 5.5–7.9;

T: 35 ◦C

11.7–36 methane production:
0–1.2 L gCODremoved

−1 [69]

LBR+UASB R Ensiled corn
stover

2
[Lab] 1000–10,000

HRT: 1 d;
pH: 8;

T: 38 ◦C;
OLR: 1–10 kgCOD m−3

41.1–100

methane production:
0.114–0.329 L

gCODinfluent
−1 d;

methane production:
0.066–0.548 L gVS

−1 d

Methanosaeta and
Methanobacterium played

synergistic roles with
acetogens to effectively

convert volatile fatty acids.

[70]

UASB-DHS e S 10
[Lab] 1000–6000

T: 35 ◦C;
HRTUASB: 17–34 h;

HRTDHS: 10.9–21.8 h;
OLRUASB: 0.8–8.48 kgCOD m−3

85.7–87.3 methane production:
0.29 L gCODremoved

−1 [52]
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3.3. Target Pollutants Removal

Recently, UASB reactors have been studied not only for organic substances degra-
dation and methane production but also for emerging contaminants removal. These
contaminants (such as androgens, progestogens, glucocorticoids and steroids) can affect
badly human and wildlife health if present in water and wastewater [71].

The occurrence and removal of these pollutants in two swine farms by the UASB
system have been widely investigated by Zhang et al. [72]. They pointed out that among
diverse treatment processes (e.g., lagoon and sedimentation tank), UASB and conventional
anaerobic digester exhibited the higher removal of steroids.

However, the effectiveness of UASB depends mainly on the type of emerging con-
taminants. In another study, Deng et al. [73] used UASB coupled with Fe-modified GAC,
microbubble ozonation and conventional activated sludge (CAS) or membrane biological
reactor (MBR) to remove phenolic compounds from a petrochemical industrial wastewater.
They proved that bet performance was obtained with Fe-modified GAC + MBR while
UASB was not able to remove effectively phenolic compounds [73].

Additionally, nitrogen could represent a problem in UASB effluents. Thanks to
the lower sludge production and the not required additional carbon source, the anam-
mox process represents a valid alternative to conventional aerobic treatment for nitrifica-
tion/denitrification [74]. For this reason, studies concerning the optimization of nitrogen
removal by anammox bacteria in anaerobic conditions were developed. For instance,
Wang et al. [75] coupled UASB with gel beads in which anammox bacteria were immo-
bilized aiming to optimize the ratio of polyvinyl alcohol and sodium alginate (PVA/SA)
gel in beads. They found that highest performance in term of specific anammox activity
(0.365 gN gVSS

−1 d−1) were achieved with PVA/SA (12%/2%) gel beads [75].
Karasuta et al. [74] evaluated the influence of HRT and pH in anammox reactors and

interestingly, they concluded that the varying pH in the effluent not necessarily means a
lower nitrogen removal rate while anammox performance is strictly negatively correlated
with the HRT of the system.

Considering that anammox bacteria growth is generally slow [76], researchers try to
speed up the process of adding carriers. For instance, Lu et al. [77] evaluated the effects on
anammox bacteria growth of the addition of GAC and Fe-modified GAC in UASB reactor
finding that carriers addition can increase the aggregation of anammox microorganism and
strongly reduce the start-up period of the system from 108 d to 94 d (in case of GAC) and
to 83 d (in case of Fe-modified GAC).

The necessity of post-treatment UASB effluents has been pointed out by several
authors [19,78]. One of the main reasons is the residual presence of microorganisms
and chemical pollutants that could be a potential threat to human and wildlife health.
Espinosa et al. [79] evaluated the performance of a combined system UASB-high-rate algal
ponds (HRAP) to treat urban wastewater demonstrating that UASB exhibited a lower
log-removal against E.coli and Somatic coliphages (1.09 and 0.4) with respect to HRAP
(4.06 and 1.15), respectively. Their study also highlighted a different behaviour of E.coli
and virus in the UASB: 90% of E.coli coming out of the UASB can be found in the sludge
while only 10% in the liquid effluent while for viral indicators, the percentages are exactly
reversed [79].

However, the effect of the UASB process on microbiological parameters depends
mainly on the type of microorganism. Kumar et al. [80] studied the effect of the UASB
reactor on SARS-CoV-2 during the recent COVID-19 obtaining the first values concerning
the detection and the removal of this virus in UASB reactors and demonstrating that the
UASB process was able to reduce SARS-CoV-2 presence up to 1.3 log.

Other cases of UASB investigations on specific pollutants removal are reported in
Table 3.
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Table 3. PCPs: Pharmaceutical and care products; TCE: trichloroethylene; TP: total phosphorus; TF: Trickling filters; Sedimentation tank; PAH: polycyclic aromatic hydrocarbons; PBDE:
polybrominated diphenyl ether; ECA-UASB: Electrochemical assisted UASB. AnMBR: anaerobic membrane bioreactor. MPs: microplastics. a: both in aqueous and particulate form.
b: removed partially (12.8%) by sulfide-driven partial denitrification and the remaining (87.2%) by anammox. c: value deduced by figure analysis. d: in case of adding anthraquinone-
2,6-disulfonate (0–100 µM) and microaeration (0.1 mL min−1). e: in case of adding NO3

− (in a COD (NO3
−)−1 ratio of 2.5–10). f: in the same reactor. g: info reported in [81]. h: as

sum of oxytetracycline, doxycycline, enrofloxacin, chlorotetracycline, lincomycin, sulfamonomethoxine, ofloxacin, norfloxacin, sulfadiazine, bacitracin, tetracycline, erythromycin-H2O,
ciprofloxacin, trimethoprim, sulfachlorpyridazine, leucomycin.

Target Pollutant Technologies
Substrate Volume of the

UASB Reactor (L)
[Scale]

Characteristics of the Influent Operational Parameters Target Pollutants Removal
(%) References

S/R Type of Real
Substrate

Heavy metals UASB R Mining
wastewater

1.9
[Lab]

Cu2+: 0.18 mg L−1

Pb2+: 1.72 mg L−1

Zn2+: 3.07 mg L−1

Fe2+: 1.76 mg L−1

T: 28.1 ◦C;
HRT: 12.6 d;

pH: 6.1

Cu2+: 70
Pb2+: 39
Zn2+: 79
Fe2+: 65

[34]

Micropollutants UASB + TF + ST R Urban
wastewater

n.a.
[Full]

triclosan: 67.05 µg L−1 a

PAH: 20.19 µg L−1 a

estrogen E1: 106.5 ng L−1

estrogen E3: 1547.9 ng L−1

PBDE: 222.4 ng L−1 a

HRTUASB: 7.7 h;
SRTUASB: 40 d;

Percolating timeTF: 20–25 min;
HRTUASB: 6.1 h

triclosan: 95 a

PAH: 92.2 a

estrogen E1: 88.9
estrogen E3: 99.2

PBDE: 85.6 a

[62]

Nitrate and
ammonium UASB S 2.0

[Lab]

nitrate: 100 mgN L−1

ammonium: 80 mgN L−1

sulfide: 20–80 mgN L−1

T: 30 ◦C;
HRT: 12 h;
pH: 7.8–8.2

total nitrogen: 80 b

sulfide: 100
[82]

Micropollutants UASB S 6
[Lab]

estrone: 7000 µg L−1;
17α-ethinylestradiol: 3500 µg L−1

OLR: 4.9–7.8 kgCOD m−3 d−1;
T: 19.7–25.6 ◦C;

HRT: 30 h;
SRT: 82–92.3 d;

pH: 6.5;intermittent conditions
with 0.5 d (feed period per cycle)

and 3 d (feedless period per
cycle)

estrone: >90
17α-ethinylestradiol: >90 [24]

Heavy metals UASB S 1
[Lab] Pb2+: 80–2000 ppm

T: 30–35 ◦C;
HRT: 1 d;

pH: 4–7.5 c;
Pb2+: 90–100 [83]

PCPs UASB+MBR S 20
[Lab] carbamazepine: 10 µg L−1

OLR: 0.1–0.7 kgCOD m−3 d−1;
TUASB: 29–31 ◦C;
HRTUASB: 37 h;
SRTUASB: >90 d;

pHUASB: 7–8;
TMBR: 26–29 ◦C;
HRTMBR: 30 h;
SRTMBR: 90 d;

pHMBR: 6.8–8.1

carbamazepine:
38.2–48.9 (UASB alone);

carbamazepine:
49.8–70 (UASB + MBR)

[84]
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Table 3. Cont.

Target Pollutant Technologies
Substrate Volume of the

UASB Reactor (L)
[Scale]

Characteristics of the Influent Operational Parameters Target Pollutants Removal
(%) References

S/R Type of Real
Substrate

Phosphorus ECA-UASB f R Dairy manure 1.2
[Lab] TP: 264 mg L−1

T: 37 ◦C;
Voltages: 0.5–1 V;

HRT: 1–12 d c;
pH: 7.25–7.75 c

TP: 61.8–65.1 [85]

Toxicity on D. rerio
and D. dubia UASB R Urban

wastewater
3

[Lab]
LC50 D. rerio: 0–30% c

LC50 D. dubia: 0–10% c

T: 34 ◦C;
HRT: 9 h;

OLR: 1.7 kg DQO m−3 d−1

LC50 D. rerio: 0–30% c

LC50 D. dubia: 10–25% c [86]

Microplastics UASB+AnMBR R Urban
wastewater

16
[Lab] MPs: 3.64 MPs L−1

Pore size: 0.03 µm;
T: 30 ◦C;
HRT: 6 h

94 [87]

Nitrate and
ammonium UASB S 4.5

[Lab]
nitrate: 50–200 mgN L−1;

ammonium: 0–140 mgN L−1

T: 25 ◦C;
HRT: 3.8–4.5 h;

pH: 7.9–8.7
total nitrogen: >85 [88]

Emerging
contaminants UASB S 8 g

[Lab] TCE: 1.46–73 mg L−1
T: 35 ◦C;

HRT: 15 h;
pH: 7.9–8.7

TCE: >85 [89]

Antibiotics UASB R Swine
wastewater

500,000
[Full] 30,000 ng L−1 h HRT: 2.7 d 82.6 h [90]

Heavy metals and
sulphate UASB R

Leachate and
mining

wastewater

7
[Lab]

Mn: 26.80 mg L−1

Zn: 0.47 mg L−1

Ca: 410.57 mg L−1

Mg: 139.85 mg L−1

Fe: 1.25 mg L−1

Sulphate: 700–900 mg L−1 c

HRT: 8–30 h;
pH: 7.5;
T: 35 ◦C

Mn: 93.3
Zn: 99.3
Ca: 54.5
Mg: 41.9
Fe: 95.1

Sulphate: 66–78

[35]

Nitrates UASB S 1.4
[Lab] Nitrates: 50 mgN L−1

T: 26–33 ◦C;
HRT: 12 h;

COD (N-NO3
−)−1 ratio: 2–8

Nitrates: 30–100 c [91]

Antibiotics UASB S 3.5
[Lab]

Sulfamethoxazole: 194–219 µg L−1; d

Trimethoprim: 198–216 µg L−1; d

Sulfamethoxazole: 194–213 µg L−1; e

Trimethoprim: 202–215 µg L−1; e

HRT: 7.4 h;
T: 28 ◦C;

pH: 7

Sulfamethoxazole: 6.2–77.1; d

Trimethoprim: 6.2–91.1; d

Sulfamethoxazole: 11.8–85.8; e

Trimethoprim: 13–86.2; e

[92]

Nitrite and
ammonium UASB S 0.3

[Lab]
nitrite: 70–150 mgN L−1;

ammonium: 70–150 mgN L−1
HRT: 12–24 h;
T: 23–28 ◦C Total nitrogen: 55–85 [93]
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3.4. Microbiota and Microbiome in UASB Reactors

To date, research on the UASB system is focusing also on the characterization of the
microbial community in granular sludge and its response to diverse substances. Authors
agree that microbiota in UASB reactors depends on operational conditions (e.g., tempera-
ture) but also on substrate fed. Kuramae et al. [94] focused on the microbial community
in UASB reactor fed with blackwater finding a high correlation between the toilet paper
and the methanogenic process. They highlighted that the partial degradation of cellulose
by Bacteroidetes and Firmicutes present in fed blackwater activated the methanogenesis
process allowing the conversion of the cellulose in methane, thanks also to Chloroflexi and
Synergistetes presence in the granular sludge [94].

Yangin-Gomec and Engiz [95] evaluated the effect on the microbial community of
propylene glycol in urban wastewater. They proved that a high concentration of this
substance can inhibit the biomass and change the microbiota. Specifically, increasing
initial glycol concentration, Firmicutes replaced Proteobacteria and Methanoculleus replaced
Methanocarcina [95].

The biomass adaptation mechanism in the UASB reactor according to the feed was
also highlighted by Gao et al. [96]. In their tests, co-digesting black water and food waste,
rather than just blackwater, determined a change in the dominant groups: from the genus
Bacteroides to T78, from the genus Methanogenium to Methanoculleus and Methanospirillum [96].
Li et al. [97] studied the effect of dodecylbenzene sulfonate- and sulphate-containing
wastewater highlighting that a low concentration of this surfactant can accelerate the
production of methane and, with low COD (SO42−)−1 ratio, Desulfomicrobium can be
identified as the dominant sulphate-reducing bacteria.

Syutsubo et al. [98] studied the case of a psychrophilic UASB reactor fed with wastew-
ater from the electronics industry containing also tetramethylammonium-hydroxide, mo-
noethanolamine, and isopropyl-alcohol. In the acclimatized sludge, they found a higher
number of Methanomethylovorans-like cells and Methanosaeta-like cells at the surface and in
the core of the granular sludge. Until the concentration of pollutants remains tolerable, this
adaptation allowed UASB sludge to achieve high performance on organic substances [98].

The adaptation of microbiota to the feed was also confirmed by Callejas et al. [99]
which evaluated the temporal evolution of the microbial community in a full-scale UASB
reactor treating sugarcane vinasse. They noted the progressive reduction in the microbial
diversity since the inoculum and the spontaneous selection of a less diverse microbiota
to treat organic substances producing methane. In the treatment of vinasse, they also
suggested that Firmicutes played a key role due to their abundance [99].

The importance of this phylum was also pointed out for the degradation of citrus peel
waste by Camargo et al. [100]. In this case, Clostridium (Ph. Firmicutes) and Escherichia
(Ph. Proteobacteria) were identified as the main microorganism involved in H2 and volatile
fatty acids production in the UASB reactor [100]. Fang et al. [101] observed that 6 months of
continuous feeding with synthetic sewage, and increasing nitrogen concentration, changed
the most abundant phyla from Proteobacteria (69.5%), Bacteroidetes (12.1%), and Firmicutes
(11.8%) to Proteobacteria (71.7%) and Actinobacteria (16.7%).

In recent years, the combination of the UASB reactor with other processes is gaining
attention. Very recently, the impact on the microbial community has also been stud-
ied. For instance, Yu et al. [102] studied the effect of the addition of self-fluidized GAC
into the UASB reactor. In the GAC-amended reactors, they found that the better perfor-
mance in terms of methane production with respect to UASB alone can be explained by
the enrichment of interspecies electron transfer participants (for instance, Geobacter and
Methanosarcina).

Additionally, the location of GAC can influence microbiota and reactor performances.
Yu et al. [103] compared microbial communities of settled and floated GAC finding strong
differences. For instance, floated GAG biofilm was primarily constituted by Methanosarcina
while settled GAC by Methanobacterium. These differences in microbiota are reflected in
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the performance of the system. In fact, their study showed that floated GAC allowed to
obtained higher methane production and effluent quality with respect to settled GAC [103].

Xue et al. [104] treated coal gasification wastewater by microelectrolysis-assisted
UASB. In this process, a Fe(II)/Fe(III) cycle was triggered by mycroelectolysis with the
aim of organic substance and nitrogen removal. In this system, they found that the more
efficient removal of pollutants could be related to the spontaneous contemporary presence
of iron-oxidant denitrifying microorganisms (Thiobacillus spp. and Acidovorax spp.) and
iron-reducing bacteria (Geothrix spp. and Ignavibacterium spp.) [104].

Denitrification in UASB sludge and the influence of microbial community were also
studied by Carboni et al. [105]. Adding electron donors (such as sulfur, pyrite, thiosulfate,
and sulfide), the microbial community diversity significantly reduced and only several
genera of autotrophic denitrifiers (such as Thiobacillus, Thioprofundum, and Ignavibacterium)
were selected and therefore becoming dominant as reported by [105]. Zhang et al. [106]
found that mixotrophic conditions can inhibit the denitrification in the anammox system
but at the same time can enhance the ability of Candidatus Kuenenia to use diverse types of
carbon sources.

Microbial blend to enhance COD removal and methane production performances
in bioelectrochemical systems was exploited by Gunaseelan et al. [107]. Mixing anoxy-
genic photosynthetic bacteria-rich effective microbes with UASB sludge, they obtained
higher performances thanks to the synergetic effects of a very heterogeneous microbiota
with 28.4% of anoxic photosynthetic bacteria (specifically, R. palustris and R. sphaeroides)
and other microorganisms (71.6%). According to their results, this strengthens the secre-
tion of metabolic intermediates, which stimulate the electron transfer mechanism in the
bioelectrochemical system enhancing the performance of the process [107].

Zhang et al. [90] focused their research on the effects of antibiotics and antibiotics
resistance genes (ARGs) in swine manure on the microbial diversity of the reactor. They
highlighted that biomass was able to effectively remove 82.6% and 71% of 16 diverse
antibiotics and ARGs, respectively. However, they found an accumulation of pathogens in
the UASB reactor with enrichment of metal resistance genes. Zhang et al. [90] also identify
Proteobacteria as the dominant multi-drug resistant microorganism and found Bacteroides
and Mycolicibacter carrying ARGs in untreated swine manure.

He et al. [108] focused their studies on performance recovery by a UASB reactor which
was strongly inhibited by oxytetracycline. They highlighted that the organic substance
removal and nitrification capacity of the UASB reactor can be easily recovered thanks to
the quick rebound of the functional bacteria (e.g., Mesotoga, Longilinea) once the antibiotic
concentration was removed. The researchers also highlighted that the ARG abundance in
sludge sampled in the UASB system was lower than in aerobic sludge probably due to
the lower horizontal ARGs frequency caused by the lower metabolic activity of anaerobic
bacteria [108].

3.5. Environmental Footprint of UASB Technology

Several authors tried to assess the environmental impact related to the use of UASB
reactors for the treatment of wastewater and sewage sludge. Amaral et al. [109] used
the life cycle assessment (LCA) on a sludge treatment plant consisting of a UASB reactor
followed by trickling filters, identifying that the biogas produced and subsequently burned
was the weak link of the whole system being the main responsible for the emissions of
greenhouse gases. Amaral et al. [109] also assessed the impact of the different uses/disposal
of the sludge generated in the process by comparing two diverse solutions: (i) reuse in
agriculture and (ii) landfill disposal. Their results highlighted that agricultural reuse of
sludge achieved a greater environmental impact on the categories of (i) ozone formation,
(ii) terrestrial ecotoxicity, (iii) freshwater ecotoxicity, (iv) human toxicity, and (v) terrestrial
acidification mainly due to longer transport phase, more sludge treatments, and high heavy
metal concentration [109].
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However, research has shown conflicting results on this aspect. For instance,
Cañote et al. [110] compared three diverse scenarios for the reuse/disposal of biological
sludge produced by a UASB reactor: (i) landfill, (ii) further energy recovery, and (iii) reuse
in agriculture. Their LCA analysis considered 11 different categories and showed that the
recovery option in agriculture is the one that allows for the lowest environmental impact,
ensuring the best results in over 70% of the categories studied [110].

The LCA tool was also used by Foglia et al. [111] to determine which plant solution
can increase the quality of the effluents for the purpose of irrigation reuse guaranteeing
a lower environmental impact at the same time. They evaluated three diverse scenarios,
two of which involved the insertion of a polishing treatment with chemical or physical
disinfectants to remove the microbial load still present while a third scenario considered
the replacement of the CAS with UASB technology followed by an anaerobic membrane
reactor. Their results showed that for all categories studied (7 out 8, with the exception
of freshwater eutrophication), coupling UASB and anaerobic membrane reactors can
guarantee the greatest benefits [111].

4. Discussion about Literature Results, Gaps, and Tips for Future Research

The bibliometric review shows that interest in UASB reactors has grown significantly,
especially after the 2000s, but has also changed. While in the past, the research topics
were mainly based on understanding how the process works, more recently, research has
been mainly based on: (i) energy recovery production; (ii) combination of UASB reactors
with other treatments; (iii) the study of processes for the removal of specific pollutants
(e.g., nitrogen removal); and (iv) characteristics of microbial community and granular
sludge composition.

4.1. Performances on Organic Substance and Specific Pollutants

Focusing on the literature published in the first semester of 2021, tests on UASB
reactors (both single and coupled with other treatments in more complex treatment lines)
have alternately focused on two aspects: (i) optimizing the conversion of organic matter
into methane for energy production, and (ii) evaluating the removal of specific pollutants
such as emerging contaminants and nutrients. The results show that the UASB process
can anaerobically treat a wide selection of different types of matrices with different HRTs
depending on the type of matrices and the reactor operating temperature. Generally,
industrial matrices required a higher HRT (and lower OLR) than urban wastewater due
to the greater recalcitrance of the organic substance [32,39,41]. Furthermore, thermophilic
reactors have generally allowed researchers to operate in lower HRT conditions thanks to
the faster reaction kinetics that permit to fed higher OLR, as has already been confirmed by
the previous literature [112]. The methane production was variable and mainly influenced
by the process conditions and the matrix used. For instance, Estrada-Arriaga et al. [68]
obtained 0.274–0.327 NLCH4 gCODremoved

−1 from tequila vinasses using UASB coupled with
bioelectrochemical system. Urban and food wastewater has been treated in a mesophilic
UASB obtaining 0.36 LCH4 gCODremoved

−1 [47].
The application of the UASB process in more complex treatment lines has highlighted

the good complementarity with aerobic biological systems and with finishing treatments
such as ponds and constructed wetlands. In some cases, the coupling with other tech-
nologies had the purpose of obtaining a “hybrid” UASB reactor that could better meet the
needs of the case in question. To give some examples, the coupling with media such as
GAC for instance to overcome organic overloads [53,61], the upgrading of UASB reactors
in bioelectrochemical systems or photocatalytic systems [65,68], the inclusion of sponge
bed trickling filters [49,51,52] has all proved to be very promising solutions.

Although the results are to be considered important and can serve as a starting point
for future lines of research, some aspects should be highlighted. To date, many of the tests
have been conducted on synthetic matrices recreated in the laboratory to simulate water of
industrial origin or urban waste. However, this can lead to testing matrices which, although
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similar, are not comparable in complexity to those of a real nature with results that could be
difficult to repeat on real case studies. In future research, therefore, the confirmation of the
results using real matrices is to be considered necessary, before a possible large-scale use of
plant solutions such as, for example, the coupling of UASB reactors with GAC, the upgrade
to bioelectrochemical or photocatalytic systems. It should also be noted that currently
most of the research has been conducted on a laboratory scale with reactors of a few L,
while the cases of studies on semi-industrial scale plants or full-scale plant monitoring are
very limited. On the other hand, the number of research that also takes into consideration
the co-digestion of two or more matrices inside UASB reactors is extremely limited. This
is an aspect that will certainly have to be further investigated especially in view of a
future large-scale application to treat livestock and industrial waste in a more realistic
situation. It should be noted that current low-scale tests concern not only the studies on
the development of new combined technologies, in this case essentially due to the low
maturity of the processes, but also cases of tests with conventional UASBs. Operational and
investment costs of these technologies to determine the feasibility of large-scale application
of UASB coupled with other technologies represents another aspect in which literature
information is almost absent and that should be further investigated.

Given the growing interest in the removal of emerging contaminants, UASB reactors
have been tested for the removal of pollutants such as antibiotics, estrogen, pesticides but
also nutrients and heavy metals [24,34,72,82,89,92]. The results showed that the process
generally guarantees a good coverage of the removal of these pollutants even if there are
still some criticalities on the microbial load and on the overall toxicity of the effluent that
requires a subsequent finishing treatment [86], as already highlighted previously in the
literature [5,112].

4.2. Microbiota and Microbiome of Granular Sludge

The study of the microbiota and microbiome of the granular biomass of UASB reactors
has been the subject of intense research. Studies have confirmed that the microbiota is able
to change its structure to better adapt to external stimuli such as conditions of temperature,
feed, and pollutants (e.g., [95–99]). These works could be the starting point for future
studies aimed at better exploiting this biomass “adaptation” capacity by optimizing the
operation of UASB reactors and increasing their performance. The research interest focused
mainly on the possibility of removing nitrogen in anaerobic conditions using anammox
processes is attracting increasing interest and for this reason, studies are underway not
only to optimize the process within the UASB reactors and but also to better understand
the responsible microbiological dynamics.

Studies were also conducted on the effects of antibiotics, which may be present within
the treated matrices, on granular biomass and on the responsiveness of UASB systems.
UASB systems have not only proved effective in removing antibiotics but also ARGs
present in the treated matrix [90,92,108]. This is a very topical issue considering that the
resistance of pathogens to antibiotics is now a full-blown problem. The promising results
of UASB systems also against these pollutants and ARGs push the need for further studies
about the presence, the implications, and the fate of antibiotics in zootechnical slurry but
also urban wastewater where the amount of data is very limited.

4.3. Environmental Footprint

Some recent studies applied LCA analysis to UASB technology considering the system
as a whole or focusing on possible forms of reuse/disposal of the biological granular sludge
produced. It should be noted that the results on this issue are still few and sometimes
conflicting. Although the results of LCA analysis depend very much on the context in
which the technology is inserted, in a case-by-case perspective, it is nevertheless possible
to state that the main critical issues highlighted mainly concern (i) the significant emission
of greenhouse gases and (ii) the eco-toxicity of the effluent. The first of the two aspects
mainly due to the combustion of biogas had already been highlighted in other previous
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studies [1,113]. The second aspect, on the other hand, is linked to the need for post-
treatments, an aspect already highlighted by numerous previous studies [5,112].

Regarding the impact of the reuse of sludge produced by UASB processes in agri-
culture, the recent LCAs have provided conflicting results [109,110] even if it should be
remembered that this result may depend on numerous factors such as, for example, the
hypotheses assumed in the realization of the LCA, the typology of matrix treated by the
UASB, the operating conditions. Instead, LCAs that compare the solution of the recovery of
granular sludge in agriculture with incineration are completely absent but, in the opinion
of authors, are strongly suggested.

In fact, it should be noted that the data on this issue are very scarce considering that
just three LCA studies concerning UASB implants were published in the first six months
of 2021. This aspect is certainly an important gap that should be filled. The authors also
suggest evaluating the effect of different post-treatments downstream of the UASB on the
results of the LCA, implementing comparative LCAs to identify those processes that best
guarantee a reduced impact in environmental terms.

5. Conclusions

The meta-analysis of bibliometric data highlighted the change in main aspects of
research and the current hot topics: (i) energy production; (ii) combination with other
treatments; (iii) the study of processes for the removal of specific pollutants and, (iv) char-
acterization of microbial community and granular sludge composition. UASB proved to
effectively remove organic substances with variable yields in terms of methane production.
Several applications of UASB in more complex treatment lines are reported in the literature.
However, gaps of literature still persist since: (i) many tests have been conducted on
synthetic matrices which, although similar, are not comparable in complexity to those of a
real nature; (ii) most of the research has been conducted on a laboratory scale reactors while
the studies on semi-industrial scale plants or full-scale plant monitoring are very limited;
(iii) the research about co-digestion of two or more fed in UASB reactors is extremely
limited; (iv) information on operational and investment costs are almost absent. Moreover,
studies of the microbiota of the granular biomass confirmed the ability to change its struc-
ture to better adapt to external stimuli being the starting point for future studies to optimize
the operation of UASB reactors and increasing their performance. Research on the effects
of antibiotics proved also that UASB reactors can effectively remove antibiotics and ARGs
pushing the need for further studies about the presence, the implications, and the fate of
antibiotics in zootechnical slurry but also urban wastewater due to the limited amount
of data. Research on UASB environmental footprint gave contrasting results especially
concerning the reuse/disposal of excess granular sludge. However, low amounts of data
are available so far and other studies on this topic are strongly suggested.
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