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ABSTRACT
Objective  To train and validate a code-free deep learning 
system (CFDLS) on classifying high-resolution digital 
retroillumination images of posterior capsule opacification 
(PCO) and to discriminate between clinically significant and 
non-significant PCOs.
Methods and analysis  For this retrospective registry 
study, three expert observers graded two independent 
datasets of 279 images three separate times with no 
PCO to severe PCO, providing binary labels for clinical 
significance. The CFDLS was trained and internally 
validated using 179 images of a training dataset and 
externally validated with 100 images. Model development 
was through Google Cloud AutoML Vision. Intraobserver 
and interobserver variabilities were assessed using Fleiss 
kappa (κ) coefficients and model performance through 
sensitivity, specificity and area under the curve (AUC).
Results  Intraobserver variability κ values for observers 
1, 2 and 3 were 0.90 (95% CI 0.86 to 0.95), 0.94 (95% CI 
0.90 to 0.97) and 0.88 (95% CI 0.82 to 0.93). Interobserver 
agreement was high, ranging from 0.85 (95% CI 0.79 to 
0.90) between observers 1 and 2 to 0.90 (95% CI 0.85 to 
0.94) for observers 1 and 3. On internal validation, the AUC 
of the CFDLS was 0.99 (95% CI 0.92 to 1.0); sensitivity 
was 0.89 at a specificity of 1. On external validation, the 
AUC was 0.97 (95% CI 0.93 to 0.99); sensitivity was 0.84 
and specificity was 0.92.
Conclusion  This CFDLS provides highly accurate 
discrimination between clinically significant and non-
significant PCO equivalent to human expert graders. 
The clinical value as a potential decision support tool in 
different models of care warrants further research.

INTRODUCTION
The recent progress in artificial intelligence 
(AI) is mainly attributed to the develop-
ment of deep learning (DL), a subdivision of 
machine learning, with major improvements 
in the diagnostic performance of image 
recognition, speech recognition and natural 
language processing.1 Its use in medicine in 
particular has been shown to perform on par 
with humans in imaging-based specialities like 
radiology, dermatology and ophthalmology.2 
Whereas traditional DL relies heavily on vast 
computing power and coding skills, recent 
developments of automated, code-free neural 

networks using transfer learning or neural 
architecture search have allowed clinicians 
to investigate datasets independently and to 
reproduce previously achieved results like 
predicting sex from colour fundus photo-
graphs.3 4

Formation of cataract is the leading cause 
of treatable blindness, with surgical lens 
removal as the only option of treatment.5 
Multiple aspects of cataracts and the respec-
tive surgery have been analysed with AI, 
including screening and grading of colour slit 
lamp photographs, optimisation of preoper-
ative intraocular lens (IOL) calculations and 
posterior capsule opacification (PCO) predic-
tion.6–8 The most common complication after 
cataract surgery with IOL implantation is the 
development of PCO.9 10 Incidence of PCO 
ranges from  <5% to 50%11 and recently was 
reported for monofocal single-piece IOLs to 
range between 7.1% and 22.6% at 5 years.12 
The most common effective treatment of 
PCO is neodymium-doped yttrium aluminium 
garnet laser capsulotomy, which occasionally 

WHAT IS ALREADY KNOWN ON THIS TOPIC?
	⇒ Deep learning (DL) has been proven to be a pow-
erful tool for image analysis and has been applied 
to cataract-related image classification. Posterior 
capsule opacification (PCO) can be detected by 
retroillumination images and is the most common 
complication of cataract surgery.

WHAT THIS STUDY ADDS?
	⇒ Code-free DL can be used to train DL systems to 
detect clinically significant PCO. Clinicians can use 
code-free DL with little coding experience to develop 
clinically relevant artificial intelligence applications.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY?

	⇒ This novel use case of code-free DL explores new 
areas of clinical relevance outside of the classic do-
mains of DL in ophthalmology and serves as a proof 
of concept to help bridge the gap between research 
and potential clinical applications.
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involves the following complications: elevated intraoc-
ular pressure, retinal detachment and endophthalmitis.13 
Therefore, evaluation of clinically significant versus non-
significant PCO is of clinical relevance.

The aim of this study was to investigate a code-free 
deep learning system (CFDLS) trained to detect clinically 
significant PCO on retroillumination photography and 
to compare its outcome to human expert graders.

MATERIALS AND METHODS
This study was in compliance with the Declaration of 
Helsinki andreporting guidelines for diagnostic accu-
racy, the Standards for Reporting of Diagnostic Accuracy 
(STARD).14

Study design
This was a retrospective study using previously acquired 
data as part of a prospective observation cohort.15 The 
optical system at the time of recording consisted of a 
Zeiss 30-slit lamp for observation and imaging, a Zeiss 
retrolux illumination module with illumination provided 
by a Zeiss anterior segment flash pack through a fibre-
optic cable and beam splitters. A Kodak NC2000 digital 
camera with high light sensitivity resulting from a 16.0 
mm×21.0 mm charge-coupled device (CCD) chip was 
used, resulting in a high signal-to-noise ratio in the 
acquired images. The CCD had a geometric resolution of 
1268 pixels×1012 pixels and a radiometric resolution of 
36 bits (red, green and blue). The images were directly 
imported into Adobe Photoshop V.5.5 and saved to a 
hard disk in tagged image file format (TIFF, 3.85 mega-
bytes per image).15

The region of interest (ROI) was defined as the central 
4 mm of the IOL not containing any structures of the 
anterior capsule. This was accomplished by importing 
the images into Gimp V.2.10.14, an open-source cross-
platform imaging editor, and manually cropping the 
images (figure  1). Patient-identifying information was 
not accessible.

Datasets
The training dataset consists of 179 images with various 
grades of PCO, containing at least 12 images per grade 
and is described in detail in table 1. Random partition of 
the dataset into training, tuning and test (internal vali-
dation) was automatically implemented by the Google 
Cloud AutoML Vision application programming inter-
face (API) in an 80–10–10 distribution.

To perform an external validation,16 a set of 100 digital 
images of eyes of 100 patients with an even distribution of 
mild to severe PCO manually selected by an experienced 
examiner for a previous study15 was used; patient-
identifying information was not accessible (table 1). All 
images had been imported to Adobe Photoshop V.5.5 
and processed as TIFF files in 2002 in a similar fashion 
as the training set. The external validation dataset was 
created to assess quality assurance measures in 2002; the 

training dataset consisted of images taken at the same 
institution between 2005 and 2008.

Grading
Labels were defined in a binary fashion as clinically non-
significant or significant. An opacification in the central 
3 mm, previously defined as the most significant area,17 
was determined to be significant; examples of clinical 
grades can be seen in figure 1.

For both training dataset and validation dataset, 
three sets of data in a random sequence were gener-
ated, respectively, using an online randomisation system 
(https://www.randomizer.org). All three sets of each 
training dataset and validation dataset were presented to 
three board-certified ophthalmologists and experienced 
cataract surgeons. The investigators graded the images 
completely independent from each other and were 
masked to the results of each other. The final grading of 
each grader was determined by the majority vote of the 
three votes from the same grader for each image.

Development of the DL algorithm
Whereas DL usually requires advanced coding knowl-
edge and intensive computing power using multiple 

Figure 1  Examples of non-significant (above) and 
significant (below) posterior capsule opacification with 
central 3 mm region of interest highlighted on the left side 
only available for the human expert graders.

Table 1  Distribution of classes in the development and 
external validation datasets

Development External

Train Validation Test Test

Non-significant 67 9 8 37

Significant 76 10 9 63

Total 143 19 17 100

https://www.randomizer.org
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graphical processing units, recent developments of auto-
mated neural networks allow clinicians with little coding 
skills to investigate datasets with AI.3 4 These techniques 
depend on transfer learning (using previously trained 
algorithms for different purposes to retrain for a new 
task) and neural architecture search (a technique of 
automatic neural network architecture selection). APIs 
are available by multiple providers. In this study, we lever-
aged the Google Cloud AutoML Vision API (Google). 
Anonymised datasets are uploaded through graphical 
user interfaces (GUIs) in the API onto a cloud bucket for 
the training and validation process.18 Repeated images 
were removed and the datasets were handled separately 
to avoid overfitting. Due to the architecture of the APIs, 
different experiments were performed for comparability.

Statistical analysis
Intraobserver and interobserver variabilities of categor-
ical variables (significant vs non-significant PCO) were 
assessed using the Fleiss kappa (κ) statistic for categorical 
results by multiple graders as described by Landis and 
Koch with 95% bootstrap CIs estimated through Monte 
Carlo simulations using 1000 iterations.19

Model performance was through sensitivity, specificity 
and area under the curve (AUC) with 95% CIs estimated 
using 2000 stratified bootstrap replicates. Where appro-
priate, fourfold confusion matrices for internal and 
external validations and receiver operating characteristic 
(ROC) curves are shown. All analyses were conducted 
in R V.4.1.0 (R Core Team, R Foundation for Statistical 
Computing, Vienna, Austria) with the caret, pROC and 
raters package for analysis and ggplot for visualisations.

RESULTS
The development dataset consisted of 179 images, 67 
of which were without or with non-significant PCO 
and 76 significant PCOs (table  1). Intraobserver vari-
ability κ (95% CI) for the three gradings for observers 
1, 2 and 3 were 0.90 (95% CI 0.86 to 0.95), 0.94 (95% 
CI 0.90 to 0.97) and 0.88 (95% CI 0.82 to 0.93), respec-
tively. Interobserver κ for the final grading for all three 
observers was 0.84 (95% CI 0.78 to 0.89) and that for 
all nine gradings was 0.82 (95% CI 0.76 to 0.86). Pair-
wise comparisons between each observer as well as the 
majority vote are shown in table 2. Interobserver agree-
ment was generally high, ranging from 0.85 (95% CI 0.79 
to 0.90) between observers 1 and 2 to 0.90 (95% CI 0.85 
to 0.94) for observers 1 and 3.

Fourfold confusion matrices for the internal and 
external validation sets are shown in figure  2. On the 
internal validation dataset, sensitivity was 0.89 at a speci-
ficity of 1 and the AUC was 0.9861 (95% CI 0.92 to 1.0). 
The external validation dataset consisted of 100 images, 
of which 63 were visually significant PCOs. On external 
validation, sensitivity was 0.84 and specificity was 0.92. 
The AUC was 0.9661 (95% CI 0.93 to 0.99). ROC curves 
for the internal and external validation datasets are 
shown in figure 3.

Error auditing
Qualitative review of algorithmic misclassifications were 
carried out by the three observers. In the cases where the 
CFDLS predicted the PCO to be false positively signif-
icant, peripheral PCO outside the 3 mm ROI could be 
observed. When analysing the cases, the DLS wrongly 
predicted as non-significant, two things were striking: 
first, none of the cases presented with pearls, and in 
the majority of cases, posterior capsule folds could be 
observed (online supplemental figure 1).

DISCUSSION
In this study, we developed and validated a CFDLS clas-
sifying between clinically significant and non-significant 
PCO in retroillumination images. The CFDLS showed 
a robust performance in detecting clinically significant 
PCO with a sensitivity of 0.84, a specificity of 0.92 and 
an AUC of 0.9661 (95% CI 0.93 to 0.99) on external 
validation. This proof of concept shows that CFDLS can 
be used to develop potential decision support tools and 
enables clinicians to expand into the clinical research of 
AI and explore novel use cases of AI applications.

Table 2  Fleiss κ between observers and majority vote

Observer 1 Observer 2 Observer 3 Majority vote

Observer 1 X

Observer 2 0.85 (0.79 to 0.90) X

Observer 3 0.90 (0.85 to 0.94) 0.88 (0.82 to 0.93) X

Majority vote 0.93 (0.87 to 0.97) 0.93 (0.88 to 0.96) 0.96 (0.92 to 0.99) X

Figure 2  Fourfold confusion matrices for the internal 
validation and external validation sets.

https://dx.doi.org/10.1136/bmjophth-2022-000992


4 Huemer J, et al. BMJ Open Ophth 2022;7:e000992. doi:10.1136/bmjophth-2022-000992

Open access

The validation dataset was created in 2002 and consists 
of images with different degrees of PCO. Findl et al already 
used the dataset for comparison of four methods (subjec-
tive analysis, Evaluation of Posterior Capsule Opacification 
[EPCO], Posterior Capsule Opacity [POCO] and Auto-
mated Quantification of After-Cataract [AQUA] I studies) 
of PCO quantification.15 Moreover, Kronschläger et al 
applied the same dataset in creating an automated qualita-
tive and quantitative assessment tool of PCO, that is, AQUA 
II.20 AQUA II already showed excellent validity and repeat-
ability. Projecting light into the eye causes Purkinje spots 
on each tissue interface. Additionally, internal reflections 
of the optics of the system used may appear. Those light 
spots and reflections (figure 1) on the image cover patho-
logical changes of the posterior capsule and therefore are 
missing in the grading process. Because the Purkinje spots 
change their position in slightly different directions of gaze, 
merging of images of different gaze positions enables the 
removal of light-reflection artefacts.21 However, at the time 
of data collection, this method was yet not published.

A rigorous and sound grading process to establish 
a ground truth is especially important when labels are 
provided to develop DL classifiers.22 Krause et al demon-
strated the importance of arbitration to improve the 
algorithmic performance for diabetic retinopathy grades.23 
Whereas previous grading approaches for PCO focused on 
quantitative human grading,15 for this study, we decided to 
proceed with a binary grading that was aiming to label clin-
ical significance. The rationale behind this is based on the 

visual significance of the inner area of 3 mm; binary labels 
were used to reduce the risk of PCO underestimation.24 
Good intraobserver and interobserver variabilities were 
achieved by the three expert graders.

Applications using AI are heading towards all fields of 
medicine. A recent survey from the American College 
of Radiology showed that 30% of radiologists were using 
AI in some form in their clinical practice.25 Teleophthal-
mology may serve as a solution to increasing demands 
and stretched services in the field of cataract surgery.8 
Wu et al have presented results of a universal AI model 
for a collaborative management of cataract, with referral 
decisions for preoperative and postoperative grading, 
requiring a large dataset for training and bespoke 
modular architectures.8 The model performance in our 
study in the external validation was respectable, with a 
sensitivity of 0.84 and a specificity of 0.92, with an AUC of 
0.9661, warranting further research using larger datasets.

With CFDLS, clinicians now have the opportunity to 
explore clinical datasets using cloud-based APIs and 
GUIs. The ability to understand the complexity of clinical 
data in combination with code-free platforms will allow 
clinicians to further explore clinical use cases. Although 
little coding skills are required to train such bespoken 
models, the process of data preparation remains to be a 
major part of such studies. Furthermore, clinicians need 
to have a good understanding of the importance of label-
ling, grading, training, well-balanced distributions and 
potential hidden confounders when developing CFDLS.26 
Automated CFDLSs have been shown to perform compa-
rably with bespoke classifiers in ophthalmology and other 
fields of medicine. On the other hand, lack of adjustable 
model architectures during training as well as the ‘black 
box’ phenomena may serve as limitations.27 As explain-
ability methods still remain to be challenging, Ghassemi 
et al have argued that rigorous internal and external vali-
dations serve as a more achievable goal to evaluate the 
performance of DL systems.28 Classifiers as developed in 
this study could help to exclude PCO in triage settings 
and could be externalised into smartphone-based home 
screening applications. Once revalidated, it may serve as 
a decision support tool in a referral refinement process. 
This proof of concept shows that clinicians can use AI to 
explore novel applications in ophthalmology outside the 
classic domains of retinal imaging and glaucoma.

Error auditing showed interestingly that peripheral 
PCO was noted in the cases to be predicted as false 
positive. This could be refined by first incorporating a 
preprocessing step of peripheral cropping. Second, 
formal occlusion testing of the periphery would bolster 
this justification but was outside the remit of this project. 
The importance of error auditing in AI cannot be under-
estimated to identify and prevent algorithmic bias both 
inside and outside of healthcare.29 30

The limitations of our study include the size of the 
datasets and the setting of a single centre with a mainly 
Caucasian population. No multifocal lenses were included 
in the dataset as the curation predated multifocal IOLs. 

Figure 3  Receiver operating characteristic curve showing 
model performance on the internal and external validation 
test sets across different thresholds. The boundary of no 
discrimination is shown in a dotted red line. AUC, area under 
the curve.
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The model design of the CFDLS in terms of model archi-
tecture and hyperparameters is not transparent; it has 
the potential to diminish machine learning explainability 
even further due to a lack of understanding of the model 
architectures and parameters used. Preprocessing of the 
images limits the scalability but could be incorporated 
in a more user-friendly application prior to incorpora-
tion. To explore generalisation, further evaluation using 
a larger dataset representing a multiethical population 
therefore is warranted.

In conclusion, we trained a CFDLS to classify between 
significant and non-significant PCO on retroillumination 
images with high sensitivity and specificity. Moreover, the 
CFDLS equaled human expert graders in reliability. This 
CFDLS for PCO serves as proof of concept to support the 
decision whether PCO needs to be addressed by yttrium 
aluminium garnet capsulotomy, possibly even in a teleop-
hthalmological or triage setting.
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