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ABSTRACT

MetaboAnalyst (www.metaboanalyst.ca) is a
web server designed to permit comprehensive
metabolomic data analysis, visualization and in-
terpretation. It supports a wide range of complex
statistical calculations and high quality graphical
rendering functions that require significant com-
putational resources. First introduced in 2009,
MetaboAnalyst has experienced more than a 50X
growth in user traffic (=50 000 jobs processed each
month). In order to keep up with the rapidly increas-
ing computational demands and a growing number
of requests to support translational and systems
biology applications, we performed a substantial
rewrite and major feature upgrade of the server.
The result is MetaboAnalyst 3.0. By completely
re-implementing the MetaboAnalyst suite using
the latest web framework technologies, we have
been able substantially improve its performance,
capacity and user interactivity. Three new modules
have also been added including: (i) a module for
biomarker analysis based on the calculation of re-
ceiver operating characteristic curves; (ii) a module
for sample size estimation and power analysis for
improved planning of metabolomics studies and (iii)
a module to support integrative pathway analysis
for both genes and metabolites. In addition, popular
features found in existing modules have been
significantly enhanced by upgrading the graphical
output, expanding the compound libraries and by
adding support for more diverse organisms.

INTRODUCTION

MetaboAnalyst is a widely used, web-based system that
supports comprehensive metabolomic data analysis, visual-

ization and interpretation. The first release of MetaboAna-
lyst (introduced in 2009) contained just a single module fo-
cusing on metabolomic data processing and statistical anal-
ysis (1). The second version of MetaboAnalyst (released in
2012) contained four functional modules that supported ex-
panded capabilities in metabolomic functional analysis and
data interpretation (2). Since its introduction, MetaboAn-
alyst 2.0 has been continuously updated by improving ex-
isting functions, adding minor new features, upgrading the
underlying design framework as well as the server hardware.
These enhancements made the server increasingly popular
within the metabolomics community. Indeed, the number of
data analysis jobs submitted to the server has grown from
~800/month (in 2010) to ~3200/month (in 2013) to a cur-
rent ~40 000/month (in 2014). At the same time there has
also been a significant shift in the type and complexity of
metabolomics studies that are being routinely performed.
In particular, the last several years have seen an increasing
number of metabolomics-based biomarker studies in agri-
cultural, biomedical and clinical settings (3—10). Addition-
ally there are now growing numbers of complex, multi-omic
studies being performed that integrate metabolomics data
with genomics, epigenomics or proteomics data over large
populations (11-15). As a consequence, user-friendly tools
to support biomarker analysis, population-based experi-
mental design and multi-omic data integration have been
among the most requested features by MetaboAnalyst’s
users. Likewise, with continuing advances in web-based
technologies such as HTML5 and AJAX (asynchronous
JavaScript and XML), the demands for more interactive vi-
sualization tools and larger-scale data visualizations have
never been stronger.

Given the demand for new functions to support emerg-
ing applications in metabolomics, the need for a more com-
putationally efficient implementation to accommodate the
tremendous growth in jobs submitted to MetaboAnalyst,
and the growing expectation for more powerful data visu-
alization features we decided to undertake a near complete
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rewrite of MetaboAnalyst. Hence, we developed Metabo-
Analyst 3.0. This new version represents a substantially up-
graded and a significantly improved offering over Metabo-
Analyst 2.0. The main features in MetaboAnalyst 3.0 in-
clude:

1. A completely re-implemented web framework based on
the latest web technologies for significantly improved
speed, performance and user interactivity;

2. A consolidated interface with substantially improved
graphical outputs for MetaboAnalyst’s most popular
analyses along with new features for better interactivity
and customization;

3. Substantial updates to MetaboAnalyst’s compound li-
brary and metabolic pathways library based on the latest
versions of HMDB (16), SMPDB (17) and KEGG (18);

4. A new module for biomarker analysis featuring tools to
perform receiver operating characteristic (ROC) curve
analyses using single or multiple metabolites;

5. A new module to support sample size estimation and
power analysis for designing population-based or clin-
ical metabolomic studies;

6. A new module for integrated pathway analysis for com-
bining results from transcriptomic and metabolomic
studies

General design of MetaboAnalyst 3.0

During the re-implementation of MetaboAnalyst, we made
every effort to maintain the same ‘look and feel’ of the ear-
lier versions in order to reduce the learning curve for cur-
rent users. We only introduced interface changes if they led
to significant performance gains, if they were more intuitive
to use, or if they offered extra functionalities. Perhaps the
most obvious change is the appearance of eight indepen-
dent modules when users start a MetaboAnalyst session.
MetaboAnalyst 2.0 originally offered four functional mod-
ules that shared the same navigation tree, allowing users to
traverse to different modules during a given session. How-
ever, this design required the server to load all analysis
modules, which resulted in large memory footprint. With
the 50X increase in user traffic and server workload, this
large memory consumption became increasingly burden-
some, leading to a substantial slow down in performance.
In version 3.0, each module is now an independent com-
ponent with its own navigation tree. The new design not
only reduces memory usage but also simplifies the naviga-
tion panel making it less prone to operational errors. It also
makes it more straightforward to add new modules to fu-
ture versions of MetaboAnalyst.

The eight functional modules in MetaboAnalyst 3.0 can
be grouped into three general categories—Category 1: ex-
ploratory statistical analysis (Statistical Analysis and Time
Series Analysis); Category 2: functional analysis (Enrich-
ment Analysis, Pathway Analysis and Integrated Pathway
Analysis) and Category 3: advanced methods for transla-
tional studies (Biomarker Analysis and Power Analysis). In
addition, there is also an Other Utilities module currently
containing a compound ID conversion tool and a special-
ized function for lipidomic data analysis (19).

A flow chart describing the overall design, structure and
functional modules for MetaboAnalyst 3.0 is given in Fig-
ure 1. Depending on the selected module and the type of
data uploaded, different processing methods will be applied
to convert the data into a data table (or data matrix) with
samples in rows and features (compounds, peaks or spec-
tral bins) in columns. Advanced data processing steps such
as missing value estimation and data filtering are also avail-
able. Most of the functions implemented in MetaboAna-
lyst 3.0’s data processing steps have largely remained the
same as in the previous version. Some small improvements
have been made. For instance, a modern Color Picker is now
available to allow users to freely select any color to label spe-
cific clusters or groups. The Data Editor now allows users to
exclude samples, features or groups (for multi-group data
only) during an analysis. In addition to the changes (both
large and small) in MetaboAnalyst’s data processing func-
tions, there have also been a number of updates and addi-
tions to MetaboAnalyst’s other functional modules. These
changes are grouped according to their functional cate-
gories and described in further detail below.

Category 1: exploratory statistical analysis

Besides completely re-engineering and consolidating
MetaboAnalyst’s user interface, significant effort was put
into updating many of the exploratory statistical analy-
sis elements in the Statistical Analysis and Time Series
Analysis modules. The most significant enhancements have
occurred with the scores/loadings plots, heatmaps and the
feature details table.

1. Scores/loadings plots. The two common clustering and
classification methods—principal component analysis
(PCA) and partial least squares - discriminant analy-
sis (PLS-DA) continue to be the most popular methods
used in MetaboAnalyst. The most frequently viewed
outputs from these two analyses are the scores and load-
ings plots. The scores plot provides an intuitive sum-
mary of the sample clustering patterns by projecting
high-dimensional metabolomics data into two or three
dimensions in a way that explains the maximal vari-
ance (PCA) or co-variance (PLS-DA) of the data; while
the loading plot shows the underlying compounds re-
sponsible for such separation patterns. In developing
MetaboAnalyst 3.0, we experimented with several dif-
ferent visualization approaches to improve both the
quality and information content of the plots. In par-
ticular, the interface for two-dimensional (2D) scores
plot now allows users to adjust a number of parame-
ters to customize the graphical output. The correspond-
ing loadings plot and the three-dimensional (3D) scores
plot now support interactive visual exploration featur-
ing point-and-click selection, zooming and rotating (3D
only). An example graphical output is given in Fig-
ure 2A. These features run natively on all modern web
browsers with JavaScript enabled. The 2D interactive vi-
sualization support has been extended to volcano plots
as well as results from t-tests and ANOVA. The 3D fea-
ture has also been implemented for the interactive PCA
(iIPCA) method in the Time-series Analysis module.
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Figure 1. MetaboAnalyst 3.0 Flowchart. This figure illustrates the general logic and data processing pipeline behind MetaboAnalyst. Different functions
will be applied to process different types of data into matrices. The red boxes with dashed boundaries indicate functions that are only triggered in certain
data analysis scenarios. After data integrity checks and normalization steps have been completed, downstream statistical analyses (purple box), functional
analyses (green box) or advanced analyses for translational studies (orange box) can be applied. Note that different inputs are required for integrated
pathway analysis and for invoking some of the general utility functions.

il. Heatmaps. Clustered heatmaps are another very pop- work components for displaying overflowing content

ular visualization tool in MetaboAnalyst. Heatmaps
allow users to easily visualize changing patterns in
metabolite concentrations across samples and across ex-
perimental conditions. In contrast to the scores plots,
heatmaps display the actual data values using care-
fully chosen color gradients. In the previous version of
MetaboAnalyst, the heatmap was restricted to a fixed
size, which led to nearly illegible graphs when very large
datasets were being visualized. In MetaboAnalyst 3.0,
we re-implemented the heatmap visualization tool using
the R pheatmap package (version 0.7.7). In addition to
the fixed size ‘Overview’, users can also choose the ‘De-
tail View’ which will automatically adjust the output im-
age size based on the actual uploaded data size to ensure
that the resulting heatmaps will be easily readable (up to
2000 features). This new implementation takes advan-
tage of the auto-scroll capability of newer web frame-

iii.

without distorting the user interface. This enhancement
has been applied to all heatmaps generated via hier-
archical clustering, correlation analysis and two-factor
clustering analysis in the Time-series Analysis module.
An example heatmap is shown in Figure 2B.

Feature details table. The feature details table is used to
complement the graphical output from a standard sta-
tistical analysis by presenting the underlying numerical
details through a hyperlink. It has been implemented for
all methods that generate feature ranking results, such
as t-tests, ANOVA, PCA /PLS-DA loadings, etc. Users
can access the feature details table by clicking the table
icon on the top-right corner of a corresponding image.
To allow facile navigation of very large tables with thou-
sands of features, we have re-implemented the underly-
ing algorithms to be more computationally efficient and
more interactive. These include new functions that al-
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Figure 2. Sample screenshots from MetaboAnalyst 3.0. (A) A PLS-DA 2D scores plot with semi-transparent confidence intervals. The corresponding
interactive 3D plot is shown in its top right corner. (B) Updated heatmaps automatically adjust their image size to ensure all data points are visible. (C)
An ROC curve with a 95% confidence interval (marked in purple) generated from several manually selected biomarkers. (D) A summary plot showing the

relationship between different sample sizes and predicted powers.

low flexible column sorting and name searching, in ad-
dition to the visualization of individual features.

Category 2: functional analysis

There are two main approaches in functional analysis in
MetaboAnalyst—metabolite set enrichment analysis (20)
and metabolic pathway analysis (21). Both approaches

work by comparing the significant compounds identified
from the uploaded data to those pre-defined functional
groups. The required inputs for these two analyses are
metabolite concentration data or a list of metabolite names.
Both inputs require a name-mapping step to standardize the
compound IDs. In version 3.0, we have updated the underly-
ing metabolite library based on the latest version of HMDB
(16). This led to a 5X increase in the number of compounds



or metabolite names available in MetaboAnalyst. We have
also re-implemented the algorithm to improve the perfor-
mance of fuzzy string matching, which has often been a sig-
nificant computational bottleneck when the uploaded data
contains many non-standard compound names. Based on
user requests, we have also added support for more or-
ganisms for metabolic pathway analysis, such as Schisto-
soma mansoni, Plasmodium falciparum, Trypanosoma bru-
cei, Synechococcus elongatus.

New module #1: integrated pathway analysis

This is a new module introduced in MetaboAnalyst 3.0
to allow users to integrate data from two commonly per-
formed omic experiments—gene expression experiments
and metabolomics experiments. This approach exploits the
models from KEGG metabolic pathways to complete the
analysis. The underlying assumption behind this module is
that by combining the evidence based on changes in both
gene expression and metabolite concentrations, one is more
likely to pinpoint the pathways involved in the underlying
biological processes. To this end, users need to supply a list
of genes and metabolites of interest that have been identi-
fied from the same samples or obtained under similar con-
ditions. The metabolite list can be selected from the results
of a previous analysis downloaded from MetaboAnalyst.
Similarly, the gene list can be easily obtained using many
excellent web-based tools such as GEPAS (22) or INVEX
(23). After users have uploaded their data, the genes and
metabolites are then mapped to KEGG metabolic path-
ways for over-representation analysis and pathway topol-
ogy analysis (21). Topology analysis uses the structure of
a given pathway to evaluate the relative importance of the
genes/compounds based on their relative locations. Click-
ing on the name of a specific pathway will generate a graph-
ical representation of that pathway highlighted with the
matched genes/metabolites. Users need to keep in mind
that unlike transcriptomics where the entire transcriptome
is routinely mapped, current metabolomic technologies cap-
ture only a small portion of the metabolome. This difference
can lead to potentially biased results. To address this issue,
the current implementation of this omic integration module
allows users to explore the enriched pathways based either
on the joint evidence or on the evidence obtained from one
particular omic platform for comparison.

Advanced methods for translational or clinical studies

In recent years, there has been an increasing interest in
the application of metabolomics for clinical or translational
medicine studies such as biomarker identification for dis-
ease diagnosis, prognosis or monitoring. These studies often
require specialized statistical analyses that are very differ-
ent from the methods normally used in most metabolomic
data analyses (which tend to focus on biological interpre-
tation). In MetaboAnalyst 3.0, we have introduced two
new modules to address these more pragmatic clinical or
translational needs—the Biomarker Analysis module for
biomarker identification and performance evaluation, and
the Power Analysis module to support sample size estima-
tion for clinical study design.
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New module #2: biomarker analysis

Biomarkers are objectively measurable biological charac-
teristics that can be used to indicate certain conditions or
disease states. The primary goal of biomarker analysis is to
build a predictive model from one or more variables, which
can be used to classify new subjects into specific groups
(e.g. healthy versus diseased) with optimal sensitivity and
specificity. Biological understanding is not a prerequisite
for biomarker development. The procedures for biomarker
analysis are formalized into three major steps: (i) biomarker
selection, (ii) performance evaluation and (iii)) model cre-
ation. Many different approaches are available for each step.
For instance, the performance of a biomarker model can
be assessed in several ways. The two most important per-
formance measures are sensitivity (true positive rate) and
specificity (true negative rate). For any test, there is usu-
ally a trade-off between these two measures. Choosing a
different threshold may increase the sensitivity at the ex-
pense of lowering the specificity or vice versa. One of the
best ways to observe how a decision threshold affects sensi-
tivity and specificity is through an ROC curve. A ROC curve
can be created by plotting the sensitivity against I-specificity
at various threshold settings. It depicts the performance of
a biomarker test over the complete range of possible deci-
sion boundaries. ROC curve analysis is widely considered
to be the most objective and statistically valid method for
biomarker performance evaluation. ROC curves are often
summarized into a single metric known as the area under
the ROC curve (AUC), which is widely used to compare
the performance of different biomarker models. This new
Biomarker Analysis module supports all common ROC-
curve based biomarker analysis. These include:

1. Classical ROC curve analysis. The section allows users
to perform univariate ROC curve analysis for each com-
pound. Users can generate ROC curves, to calculate the
full AUC or partial AUC as well as their 95% confidence
intervals, or to compute optimal cutoffs.

il. Multivariate ROC curve explorer. This section allows
users to explore the performance of different biomarker
models automatically created through the built-in fea-
ture selection and performance evaluation procedures.
Users can choose among three well-established multi-
variate algorithms including PLS-DA, support vector
machines and random forests to perform ROC curve
analyses.

iil. ROC curve based model creation and evaluation. This
section allows users to manually select a subset of fea-
tures and then test their performance using any of the
three algorithms mentioned above. An example ROC
curve output is shown in Figure 2C. This module also
allows users to hold out a subset of samples for sepa-
rate validation in addition to the built-in cross valida-
tion. The significance of the biomarker model can also
be evaluated using permutation-based approaches.

Biomarker analysis often involves a number of very com-
plex statistical procedures. More technical details about dif-
ferent algorithms are provided by the corresponding FAQs
in MetaboAnalyst’s online documentations. A more de-
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tailed introduction on how to use and interpret ROC curves
within the context of metabolomics biomarker analysis can
also be found in a recent comprehensive tutorial (24).

New module #3: power analysis and sample size estimation

Statistical power is defined as the probability of detecting
an effect, when the effect is present. For instance, let us as-
sume a study that compares a specific effect or feature be-
tween a control population and a diseased population has
a power of 0.8. Assuming we can conduct this study many
times, then 80% of the time, we would get a statistically sig-
nificant difference for that effect/feature between the two
groups. The power of a study depends on three factors: (i)
the magnitude of the effect in the population (effect size), (ii)
the statistical significance criterion used in the test and (iii)
the sample size used to detect the effect. In practice, the ef-
fect size can be estimated from a pilot data; the significance
criterion (alpha level) is usually the P value in traditional
univariate power analysis. Given these two constraints, re-
searchers are usually most interested in knowing the sample
size (number of subjects) required in order to obtain suffi-
cient power in a given study.

However, estimating sample size for high-throughput
omics studies is more complicated. Omics datasets are char-
acterized by tens of thousands of features and a relatively
small number of samples. Both the effect sizes and variances
will have many values. A number of different methods have
been proposed during the past years to deal with this issue
(25-29). A general approach is that for high-dimensional
omics data, the average power should be used instead of
power, and significance levels need to take multiple testing
into account using standard methods such as false discov-
ery rate instead of raw P values.

The power analysis algorithm used in MetaboAnalyst 3.0
is based on the Bioconductor package SSPA as described
by van Iterson et al. (26,29). This method uses the entire set
of test statistics computed from the pilot data to estimate
the effect size distribution, the power and the minimal sam-
ple size. Users first need to upload their pilot metabolomic
data and perform the data processing and normalization
steps as usual. Several diagnostic plots are then presented
to allow users to check whether the test statistics follow an
approximately normal distribution, and whether there are
relatively a large number of P values that are close to zero
(i.e. the effect indeed exists). When these assumptions are
reasonably met, users can proceed to estimate the statistical
power with regard to different sample sizes. The current im-
plementation allows users to interactively explore the pre-
dicted powers for sample sizes ranging from 3 to 1000 sam-
ples per group. An example output from MetaboAnalyst’s
power calculations is shown in Figure 2D.

Implementation

MetaboAnalyst 3.0 was implemented using the PrimeFaces
4.0 component library (http://primefaces.org/). The major-
ity of the backend computations are carried out by R func-
tions (www.r-project.org) based on the R programming
language (v3.03). The application is currently hosted on
a Linux server with 16G RAM and eight-core 2.6 GHz

CPUs. For researchers who are routinely generating large
volumes of metabolomic data or for those requiring se-
cure data handling, MetaboAnalyst 3.0 is also available for
download and local installation. Detailed installation in-
structions are available on the ‘Resources’ page. To further
facilitate collaborative research and future development, all
of MetaboAnalyst’s source code is available as an Apache
Maven project upon request. Due to our limited hardware
resources, MetaboAnalyst currently offers only basic sup-
port for raw spectral data processing. Users are encouraged
to use other dedicated and freely available tools such as
XCMSOnline (30) and MZmine (31) for such tasks. The
peak lists generated by these tools can be easily uploaded
into our server for further downstream analysis.

CONCLUSION

The development of MetaboAnalyst 3.0 has been driven
primarily by user demands for new statistical methods to
support emerging trends in metabolomics applications, by
the demands for more efficient implementations and by re-
quests for better data visualization to accommodate the
tremendous increase in data analysis workloads. In re-
designing and re-writing MetaboAnalyst 3.0, we directed
a significant amount of effort and thought toward improv-
ing its computational efficiency. For instance, we made each
module independent to reduce the large memory footprint
and we significantly improved the efficiency in name map-
ping by adding several heuristic rules to the fuzzy search al-
gorithm. We also looked for efficiencies in other areas. For
instance, based on the Google Analytics and our own expe-
rience, we estimated that an average MetaboAnalyst analy-
sis lasts for ~20 min for new users. Therefore to maximize
available computational resources and to reduce the load
from zombie processes or abandoned analyses, we imple-
mented a function to scan and kill processes that have run
for more than 2.5 h to reclaim computational resources.
We have also substantially increased the number (50X) of
concurrent connections that are allowed on the application
server. These procedures have dramatically increased the
overall efficiency, performance and stability of the system.
We are currently in the process of setting up a mirror site
using the cloud service offered by Google Compute Engine.

In terms of overall scope and capabilities, MetaboAna-
lyst continues to be the most complete, freely available web-
based resource for metabolomic data analysis. The main
strengths of this web-based server are its user-friendly in-
terface, its comprehensive data processing options, its wide
array of univariate and multivariate statistical methods and
its extensive data visualization and functional analysis sup-
port. In addition to these features, MetaboAnalyst 3.0 now
offers a number of advanced statistical methods for multi-
omic data analysis and clinical or translational research.
Our intention is to continue to upgrade MetaboAnalyst
over the coming years and to be as responsive to user re-
quests as possible. Several areas of likely upcoming develop-
ment include new modules for metabolite-wide association
studies and environment-wide association studies as well as
new modules for spectral analysis and compound identifi-
cation.
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