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Probabilistic computing using Cu0.1Te0.9/
HfO2/Pt diffusive memristors

Kyung Seok Woo1,2, Jaehyun Kim1,2, Janguk Han1, Woohyun Kim 1,
Yoon Ho Jang1 & Cheol Seong Hwang 1

A computing scheme that can solve complex tasks is necessary as the big data
field proliferates. Probabilistic computing (p-computing) paves the way to
efficiently handle problems based on stochastic units called probabilistic bits
(p-bits). This study proposes p-computing based on the threshold switching
(TS) behavior of a Cu0.1Te0.9/HfO2/Pt (CTHP) diffusive memristor. The theo-
retical background of the p-computing resembling the Hopfield network
structure is introduced to explain the p-computing system. P-bits are realized
by the stochastic TS behavior of CTHP diffusive memristors, and they are
connected to form the p-computing network. The memristor-based p-bit is
likely tobe ‘0’ and ‘1’, ofwhichprobability is controlledby an input voltage. The
memristor-based p-computing enables all 16 Boolean logic operations in both
forward and inverted operations, showing the possibility of expanding its uses
for complex operations, such as full adder and factorization.

With the rapid development of big data, computing hardware that can
handle complex tasks and exceed the conventional von Neumann
architecture is being implemented1,2. The so-called memory wall issue
is a critical problem for big-data-based computing in von Neumann
computers. TheQuantum computer shows the potential to exceed the
performance of the classical computer3–7. However, maintaining the
quantum-mechanically entangled state of themultiple quantum bits is
challenging, and its cryogenic operating temperature leads to enor-
mous energy consumption. Recently, probabilistic computing (p-
computing) has been introduced to address the problems of the
computing methods presented above8,9. The p-computing uses prob-
abilistic bits (p-bits), which give ‘0’ and ‘1’ continuously changing over
time. Thep-bit has both the probability of being ‘0’ and ‘1’, and an input
variable can change theseprobabilities. Its behavior is similar to that of
a binary stochastic neuron in a neural network or neuromorphic
computing system10,11. A magnetic tunnel junction (MTJ) was most
recently used as the stochastic element in p-bits12. By reducing an
energy barrier, which controls the resistance states of the MTJ, the
magnetization direction of the MTJ fluctuated even with the thermal
noise. The stochastic MTJ was connected with an n-type metal-oxide-
semiconductor (NMOS) transistor to form a three-terminal p-bit.
However, based on the p-bit principle, there is no reason for theMTJ to

be the only viable p-bit source. Any stochastic electronic device can be
used if an external input voltage can control its internal state. Table 1
shows the comparison of different computation methods.

Memristor is a strong candidate for the next generation of
memory technology, but its significant non-uniformity issue must be
resolved for commercialization13–17. The variability is due to the sto-
chastic nature of the switching mechanism. On the other hand, the
stochastic phenomena in memristors are being exploited for security
and computing primitives. Hardware security applications, such as
true random number generators (TRNGs) and physically unclonable
functions (PUFs), have been demonstrated by the inherent stochasti-
city ofmemristors18–23. The stochastic source can also be harnessed for
computing approaches, such as stochastic neural networks24,25. This
work suggests another utilization of the stochastic property of a dif-
fusive memristor as the p-bits in p-computing.

A diffusivememristor is a two-terminal ionic device with a volatile
threshold switching (TS) behavior. It switches to an on (TS-on) state at
a specific threshold voltage and relaxes back to an off (TS-off) state
upon the voltage removal. A diffusivememristor has been adopted for
various applications, such as biological neurons26, TRNGs19–22, PUFs23,
and sensory circuits like a nociceptor27. It has outstanding device
performance regarding power consumption, scalability, switching
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speed, and endurance16,28. Its switchingmechanism is based on ametal
ion-based filamentary conducting mechanism. When a positive bias is
applied to an active electrode, the metal ions generated from the
active electrode migrate through an insulating layer to form a weak
conductive filament (CF) between the active electrode and a passive
electrode. The TS device differs from the electrochemical metalliza-
tion cell, in which the metallic CF was strong enough to remain intact
for a sufficiently long time, ensuring its feasiblememory performance.
By contrast, the metallic CF in the TS device, or diffusive memristor, is
weak enough to be ruptured by even thermal energy at room tem-
perature, driven by the high interface energy effect29. Therefore,
careful control of (minimal) injection of the metal ions into the insu-
lator (or electrolyte) layer is crucial to fabricating a viable TS device.
Variousmaterials have been investigated for the active electrode, such
as Cu, Ag, Ni, and Ru13,27,30,31. However, the pure metal active electrode
generally injects too many metal ions during the on-switching step,
hindering reliable TS device fabrication. Recently, a Cu alloy was
introduced as the active electrode, showing a promising TS
behavior22,32,33. The CuxTe1-x active electrode shows both volatile TS
behavior and non-volatile resistance switching (RS) behavior by con-
trolling the number of Cu ions drifting out of the electrode. This is
because of the lower activity of the active elements in the alloy elec-
trode, enabling a more controlled injection of themetal ions when the
voltage is applied.

This work suggests a p-computing scheme using a Cu0.1Te0.9/
HfO2/Pt (CTHP) diffusive memristor as the p-bit generation element.
Numerous studies have reported the utilization of memristors as
synaptic devices in hardware neural networks or neuromorphic cir-
cuits, but they do not require Boolean logic operations. On the other
hand, p-computing pursues the Boolean logic operation, and thus, is
closer to the in-memory logic operation. All 16 Boolean logic opera-
tions were implemented in this study by designing a p-computing
system based on the CTHP memristor-based p-bits.

Results
Theoretical model of p-computing
Thep-computingnetwork is anenergy-basednetwork thatupdates the
network to minimize the total energy. The main idea of the probabil-
istic network stems fromquantum annealing6. In quantum computing,
the system energy, consisting of lattice sites with spin states xi, is
explained by the Ising model, which was originally proposed to
describe a ferromagnetic phase34. A summary of the Ising model for a
quantum system is presented in Supplementary Note 1. The operation
principle of p-computing is derived from the theoretical background
of quantum annealing, which shares similar features with a stochastic
Hopfield network35. Quantum annealing is based on an energy-based
model to solve combinatorial optimization problems. In quantum
annealing, the energy of a quantum system comprised of “qubits” is
defined as Hamiltonians, further divided into the initial and final
Hamiltonian. The initialHamiltonian denotes the initial ground state of
the system, where each qubit remains in a state with the quantum
superposition of 0 and 1. As the system undergoes the annealing
procedure, the initial Hamiltonian slowly develops into the final
Hamiltonian, which provides a low-energy solution to the given

problem36. Similarly, for p-computing, each qubit can be substituted
withmultiple “p-bits,” in which the binary statesfluctuatewith time37,38.
For simplicity, the equations of a stochastic Hopfield network or a
Boltzmann machine39 are introduced, which may provide the con-
ceptual framework of the present p-computing principle.

Figure 1a shows the architecture of the Hopfield network. The
energy function of the Hopfield network follows that of the Ising
model as follows.

E = �
X
j≠i

wijxixj +
X
i

θixi ð1Þ

� ∂E
∂xi

=
X
j≠i

wijxj � θi, ð2Þ

wherexi and xj are the neuronoutputswith values of either0or 1,wij is
the fixed weight value connecting the two neurons, and θi is the
applied bias. The neuron output is updated to minimize the energy
function of the system for a given input, where the direction of the
update is determined by the partial derivative of the energy by xi,
expressed in Eq. 2. If the input exceeds the threshold θi, or Eq. 2 is
greater than 0, xi increases to 1 to lower the energy. Equation 2 is also
related to the input (zi) to the ith neuron. The input into the binary
stochastic neuron is processed to output xi, which can be written as

xi = u σ zi
� �� rand

� �
, ð3Þ

where uðxÞ is the step function for binary output update, σ xð Þ is the
sigmoid function, zi is the input into the neuron i, and rand is the
random number uniformly distributed between 0 and 110,11. The rand
term gives stochasticity to the output, granting the probability to fire
even with small zi values.

As shown in Fig. 1b, the inputs andoutputs of p-bits are similar to a
stochastic Hopfield network and are defined as follows:

E = �
X
j≠i

Sijpipj +
X
i

θipi ð4Þ

Ii = I0 Sijpj + θi
� �

= � ∂E
∂pi

ð5Þ

pi≈u σ Ii
� �� rand

� �
, ð6Þ

where Ii is the ith p-bit input, pi is the ith p-bit output, and I0 is an
arbitrary parameter for keeping the calculated p-bit input voltages in
the valid p-bit window9. Here, the synaptic connection Sij corresponds
to Jij of the Ising Hamiltonian. However, Sij is not limited to the
connection weight between just two p-bits; it can be extended to the
connection weight between 3 (e.g., Sijk) or more p-bits, depending on
the applications. Table 1 shows the comparison between the
p-computing and other computation methods5,9,40. Classical comput-
ing is deterministic because the data is represented as discrete ‘0’or ‘1’.

Table 1 | Comparison of different computation methods

Computation methods Classical computing Quantum computing Probabilistic computing

Data expression 0 or 1 deterministic values Superposition of 0 and 1; an infinite number of states
between 0 and 1

Probabilistic 0 or 1

Hardware implementation CMOS-based digital logic circuits Computing system based on electron spin
resonance

Oscillating digital outputs based on sto-
chastic devices

Output Deterministic Probabilistic Probabilistic

Power consumption High High Low

Article https://doi.org/10.1038/s41467-022-33455-x

Nature Communications |         (2022) 13:5762 2



The quantum state is expressed by the superposition of ‘0’ and ‘1’ bits,
making the outputs probabilistic. On the other hand, in p-computing,
the data is represented as the probability of output pi fluctuating with
time between ‘0’ and ‘1’. Compared to quantum computing, which
requires cryogenic temperature operation, p-computing is more
energy-efficient because it can operate at normal temperature.

Another essential feature of p-computing is that the result is not
fixed into a deterministic output. Instead, the outputs fluctuate
between several energy function values; themost probableoutput, the
output with theminimum energy function, is chosen as the result. The
main difference betweenp-computing andmachine learning is that the
p-computing can calculate the results in one shot without training the
weights at the expense of the loss of computing accuracy. In contrast,
machine learning takes multiple training epochs, which consumes
more power. However, machine learning can perform the tasks more
accurately by optimizing the weight matrix.

Memristor-based p-bit and p-computing system
Figure 2a shows the current-voltage (I-V) curves of the TS behavior of
the CTHP diffusive memristor with a compliance current (Icc) of 10 nA.
Details of the device fabrication have been reported elsewhere22. A
10 × 10 µm2 electrode areaof theCTHPdevicewas fabricated in a cross-
point structure, as shown in the scanning electron microscopy (SEM)
image (Supplementary Fig. S1a). The structure of the CTHP device was
confirmed using transmission electronmicroscopy (TEM) and a depth
profile using Auger electron spectroscopy (AES) (Supplementary
Fig. S2b, c). The TS behavior of the CuxTe1-x-based memristor was
observed only at x = 0.1.

Depending on the level of Icc, which controls the number of Cu
atoms forming the CF, the device can exhibit either TS or RS
behaviors41–43. A weak CF is formed at low Icc, so the Cu atoms com-
posing the CF diffuse away from the weak CF quickly when the voltage
is removed. A thicker CF is formed at high Icc, turning the device into
the RS mode, which is irrelevant to this study. After an electroforming
process at 4.0V, the TS behavior was confirmed in 20 consecutive
sweeps with the threshold voltage (Vth) ranging from 1.5 to 2.5 V. The
CTHP device achieved high cycling endurance (>106), as shown in
Supplementary Fig. S1e. The endurance of Cu-based threshold
switching can reach 1010 cycles, showing the potential for stable bit
generation44,45. However, its threshold switching performance could
be frustrated by changing it to the resistive switching mode, accom-
panied by the excessive Cu atom migration into the insulating layer.

The inset of Fig. 2b shows the circuit design of the memristor-
based p-bit unit, consisting of a CTHP memristor and a comparator
(HA17393, Renesas, Japan). Figure 2b shows the averaged Vout as a
function of Vin at different voltages, and the plot follows a sigmoidal
fitting curve. 500 samplings, shown in Fig. 2c, are averaged for each

data point. Figure 2c shows the comparator output voltage (Vout) as a
function of time at Vin (input pulse voltage applied to the memris-
tor) = 5.10 V, 5.23 V, and 5.32 V. The Vin duration was fixed to 150 μs
with 25μs leading and trailing times. A rest timeof 800μs was given to
allow the memristor to relax fully. At higher Vin, the device is more
likely to switch to a low resistance state. This property results in a high
Vout occurringmore frequently. In this case, the critical property of the
p-bit is that the Vin can control the probability of device switching (or
p-bit state) following the sigmoidal function. This behavior is similar to
the stochastic neuron in Eq. 6; the nth p-bit output for the circuit
parameters (pn =

VOUT
VDD

) can be written in the following form:

VOUT

VDD
≈u σ

VIN � VO

VS

� 	
� rand


 �
, ð7Þ

where VDD is the supply voltage of the comparator, VO is the offset
voltage at which the probability of output ‘high’ is 50%, which was
~5.23 V in this work, VIN is the input voltage into the circuit, and VS is
the scaling voltage35. VIN�VO

VS
is the normalized input, Ii, which deter-

mines the probability of the p-bit state (Supplementary Fig. S2).
Still, the bit generation speed of memristor-based p-bits can be

further improved through device engineering. Substituting the insu-
lator with a higher Cu ion diffusivity can further accelerate the CF
formation and dissolution processes29. The switching time of mem-
ristors canbe as short as tens of picoseconds, showing thepotential for
fast and low-power computing18,46. The electrode structure of a
memristor is much simpler than the MTJ. They also have a larger tol-
erance for the thickness variation of the insulating layer compared
with the extremely tight allowable thickness of the insulating
layer in MTJ.

Logic operations
Logic operations can be executed with the p-computing network
based on the memristor-based p-bits. For instance, an ‘AND’
operation returns ‘true’ when all the inputs are ‘true.’ Otherwise,
the output is false. The corresponding equation that satisfies these
conditions is written as y1 = x1x2, which is then used to create a cost
function for the AND operation. The input functions are obtained
by differentiating the corresponding cost functions following
Eq. 5. Each variable is assigned to the p-bit; thus, a three-p-bit
network is required to operate the AND logic, as shown in Fig. 3a.
Similarly, all 16 Boolean logic operations can be performed with
appropriate cost functions. Definitions of cost (or energy) func-
tions and the resulting input functions for all 16 Boolean logic
operations are shown in Supplementary Table 1. The cost function
of AND logic, for example, is given as the square of the difference
between the true value (x1x2) and current value (y1), which is

Fig. 1 | Architecture of the computing networks. a Network architecture of a stochastic Hopfield network. b Network architecture of a probabilistic network.
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similar to how the cost function is defined in deep learning of
neural networks. When the cost function of the AND logic is fully
expressed, E x1,x2,y1

� �
= x1x2 � 2x1x2y1 + y1, there are multi-

plications and summations of the inputs, x1,x2, and output, y1, with
the relevant coefficients, 1, −2, and 1. The coefficients define the
connection strength between the p-bit outputs, which is analogous
to the role of synaptic weights connecting the neurons in machine
learning. When different logic gates are necessary, these func-
tional relationships between the terms and relevant coefficients
should be modified. Supplementary Table 1 summarizes all these
relationships and coefficients for the 16 Boolean logic gates. As
shown later, even complex gates, such as full adder, can be defined
similarly. Besides, there is a crucial difference between synaptic
weights in p-computing and neural networks. In p- computing, the
synaptic weights are fixed for a given logic operation, but they
evolve with training for a given task in the neural networks.

Next, more detailed explanations are given on how the
p-computing can be executed. First, the input functions should be
realized by networking the synaptic hardware and multiple p-bit cir-
cuits. Programmable digital circuits such as a field programable gate
array (FPGA) are the most suitable approach to demonstrate such
input functions with the multiplications of p-bit outputs by hardware.
Figure 3b shows the schematic diagram of such hardware construc-
tion. Three p-bit circuits for x1, x2, and y1, each composed of a CTHP
memristor and a comparator, are connected to the inputs of FPGA, and
the FPGA outputs three bits corresponding to x1,x2, and, y1. The FPGA
is programmed to output the correct bits depending on the given logic
operations using the input and cost functions. In this work, all logic
operations were implemented by simulation based on the CTHP-based
p-bit characteristics and the cost functions. The simulation was per-
formed using the fitted sigmoid relation and parameters calculated
fromEq. 7. The sigmoidfitting curve in Fig. 2b is based on the averaged
Vout, but variations exist, as shown in Fig. 3c. The widest distribution is
found at 5.23 V, the point at which the p-bit exhibits the most sto-
chastic behavior. As the Vin value deviates farther from 5.23 V, the

distributions become narrower, and the p-bit becomes deterministic
to ‘0’ or ‘1.’ Since the memristor always has variability issues, such as
cycle-to-cycle and device-to-device variations, these variations were
considered for all logic operations in the simulation. For each clock
cycle, a random output of 0 or VDD is generated from the comparator.
This output is normalized to 0 or 1 by the relation, pn =

VOUT
VDD

.
For the forward operations, the input voltages into the p-bits,

corresponding to x1, and x2, are derived from Eq. 7 by VIN = IiVS +VO.
When the inputs are 0, VIN,x1 and VIN,x2 are fixed to sufficiently low
voltage, ca. 5.10 V, to ensure switching probability close to 0. Under
this circumstance, the p-bit circuits for the two inputs most frequently
output zero voltage, which drives the FPGA to output the corre-
sponding bit of 0. For input 1, theVIN value of the corresponding input
p-bit circuit is settled to 5.32 V, which renders the FPGA mostly pro-
duce the corresponding bit of 1. Next, the corresponding y1 valuemust
be determined for the given inputs. For this operation, the VIN,y1 is
initially settled to VO (~5.23 V in this case), which is the voltage of 50%
switching probability, then it is floated. Next, the VIN,y1 must be
changed to a value, which can represent the AND logic operation. By
the definition of the input function of AND logic, Iy1 = 2x1x2 � 1, Iy1 is
calculated to be −1 for x1orx2 =0. In this case, the switching probability
is ~27% (See Supplementary Fig. S2). VIN,y1 is then calculated to show
the y1 p-bit outputs <

VOUT
VDD

> ~27%, and is inputted to the y1 p-bit. Under
this circumstance, the FPGA outputs the y1 bit mostly 0. However, it
should be noted that there is a significant chance for the output y1 bit
of FPGA is 1 due to the involvement of CTHP variation and rand.
Therefore, when the procedures discussed above are simulated 100
times, the probability of the outputs of the FPGA ðx1,x2,y1Þ to be (000)
and (001) are ~0.84 and ~0.16, respectively, as shown in the left panel of
Fig. 3d (i, forward operation). The corresponding probabilities for
(010), (011); (100), (101); (110), (111) are ~0.84, ~0.16; ~0.84, ~0.16; ~0.25,
~0.75, indicating that the correct AND logic operations are acquired.
However, it can be argued that one of the fundamental assets of any
logic operation, i.e., logic correctness, is only probabilistically con-
firmed. Therefore, it can be questioned the merit of such logic gating
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using the p-bits. One of the reasonable rationales is the invertible
calculation. The following inverted calculation canbe performedusing
the same hardware for AND logic. In this case, y1 is given first to be0 or
1, which then requires x1,x2 = 0,0ð Þ, 0,1ð Þ,ð1,0Þ or (1,1). For this opera-
tion, the VIN,y1 is fixed to low (5.10 V) or high (5.32 V) voltage, while the
VIN,x1 andVIN,x2 inputs are first settled to 5.23 V and thenfloated. Then,
VIN,x1 and VIN,x2 values are determined based on their respective input
functions, Ix1 and Ix2. Subsequently, similar procedures are repeated to
determine the x1,x2 for the given y1 value. The right panel of Fig. 3d (ii,
inverted operation) reveals that (000), (010), and (100), correspond-
ing to the correct case for y1= 0, have a probability of ~0.3, whereas
other incorrect cases have a probability of < ~0.1. For the y1= 1, the
correct and incorrect cases have their respective probability of ~0.5
and < ~0.2. Therefore, it can be inferred that the inverted AND logic
operation could be feasibly (statistically) achievedusing the givenp-bit
circuits. The supplementary information (Supplementary Figs. S3–S17)
also shows that inverted logic operations for all the remaining Boolean
gates are possible.

In the field of memristor-based logic-in-memory (LIM), several
studies have implemented such logic operations47. However, the non-
uniformity issues in the memristor’s performance adversely affect the
accuracy of the logic operations. In the case of memristor-based p-bit
computing, in contrast, the calculation results are less prone to error
by the diverse variability since the answer is found probabilistically.
Also, any calculation is possible in a one-shot method with a suitable
cost function for a particular operation. The following section dis-
cusses this crucial feature.

Complex operations
Memristor-based p-computing can function as an arithmetic logic unit
(ALU), a digital circuit for arithmetic operations. Although the com-
plementary metal-oxide-semiconductor (CMOS)-based ALU can per-
form complex operations, drawbacks arise in power consumption,
circuit complexity, scalability, andoperation speed.On theother hand,
memristor-based p-bit computing can perform any functions without
the drawbacks above. For instance, a 1-bit half-adder operation was
performed in a four-p-bit network, as shown in Fig. 4a. With the cost
function for the half-adder, both forward and reverse operations were
achieved using four p-bits (each for two inputs, sum, and carry) in
Fig. 4b. The half-adder can be extended to the full adder, which can be
implemented in a five-p-bit network by simply adding a p-bit repre-
senting a bit carried in from the previous operation (Supplementary
Fig. S18). A more complex 2-bit by 2-bit binary multiplier operation is
shown in Fig. 4c, which can demonstrate the feasible operation. The
reverse operation of this multiplier is factorization, which can effi-
ciently be executed in the same manner. More p-bits are required for
larger integers in binary form.

Unlike CMOS-based ALU, logic cascading is unnecessary in the
p-computing for many complex logic operations. They are possible in
a one-shot method as long as the cost function is given. However, the
probabilistic approach has a problem because the criterion for the
correct answer may be unclear. If there is one solution for a specific
operation, the highest probability can be set as the answer. On the
other hand, when there are two or more solutions, it can be proble-
matic to set the standard for the correct answers.
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Another potential problem could arise. For highly complex logic
operations, the number of involved memristors should be increased
accordingly. In this case, a too high cell-to-cell variation could induce a
malfunction. Furthermore, too large fan-in and fan-out could be
another problem, whichmay increase the overhead of driving circuits.
Therefore, these aspects must be considered carefully.

Since p-computing is conceptually related to machine learning
and quantum annealing, its applications can be expanded into these
fields. As the behavior of the p-bit is similar to that of the stochastic
neuron, it can be utilized to implement Bayesian inference and the
Boltzmann machine in a probabilistic framework48–50. Adopting the
theoretical background of quantum annealing, p-computing can effi-
ciently solve optimization problems, such as traveling salesman
problems51.

Discussion
This study proposes a p-computing scheme using the CTHP diffusive
memristor. The theoretical model of p-computing resembles the
Boltzmann machine, which is based on the Ising model of a recurrent

neural network. The p-computing can execute the Boolean logic
operations and produce results in one shot without training the
weights. The data in p-computing is stored as the p-bit, which has the
probability of being ‘0’ and ‘1’. The stochastic behavior of the CTHP
memristor successfully demonstrated the p-bit property.

Moreover, the cost and input functions for all 16 Boolean logic
operations were derived in a more straightforward form than the
previous works. All logic operations were implemented in forward and
reversed directions through the memristor-based p-computing net-
work. Complex functions, such as full adder and multiplication/fac-
torization, were also suggested, showing the methodology’s potential
to be applied to more complex logic circuits. Finally, a comparison
between other p-computing hardware and this work is shown in
Table 218,46,52,53. The average power consumption of the p-bit circuit was
calculated using the pulse output of the device (Supplementary
Fig. S19). Based on a 2-terminal metal-insulator-metal structure, p-bits
built with memristors are advantageous in area efficiency and pro-
duction cost compared with other p-bits when integrated into a larger
network. Thememristor-based p-bit demonstration showspromise for

a

i. Forward operation

ii. Inverted operation

c

b

Fig. 4 | Complex operations through the memristor-based p-computing. a A
half-adder using a four-p-bit network and its input functions. b Forward and

inverted half-adder operations with I0 = 1. c Design for a 2-bit by 2-bit binary mul-
tiplier using an eight-p-bit network.
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computing hardware using diffusivememristors,whichmayovercome
the memory wall issue of the current von Neumann computing
method.

Methods
Memristor fabrication
To fabricate a cross-point structure of the CTHP device, an 8 nm thick
Ti adhesion layer and a 50 nm thick Pt bottom electrode (BE) were
deposited on a SiO2/Si substrate using an electron beam evaporator
(SRN-200, SORONA), followedby a lift-off process. Then, a 10 nm thick
HfO2 insulating layer was deposited using thermal atomic layer
deposition (Plus 200, CN-1 Co.) using Hf[N(CH3)(C2H5)]4 and O3 as Hf
precursor and oxygen source, respectively at a 280 °C substrate tem-
perature. A 50-nm-thick Cu0.1Te0.9 top electrode (TE) was DC-
sputtered by co-sputtering from Cu and Te targets (07SN014,
SNTEK) with the power of 10W and 120W, respectively. Finally, a
40 nm thick Pt passivation layer was deposited using the electron
beam evaporator, followed by the lift-off process. The DC electrical
characterizations were conducted using a semiconductor parameter
analyzer (HP4145B, Hewlett-Packard). An Agilent 81110 A pulse gen-
erator was used for the pulse measurements. During the electrical
measurements, the TE was biased, and the BE was grounded. The p-bit
circuit was built on a breadboard consisting of a memristor and a
comparator. The cross-point structure was confirmed using an SEM (S-
4800, Hitachi) image. The depth profile and the cross-sectional image
of the device were acquired using AES (PHI-700, ULVAC-PHI) and TEM
(JEM-ARM200F, JEOL), respectively.

Data availability
All the relevant data are available from the corresponding authors
upon reasonable request.

Code availability
Computational results were obtained using Python software. Python
was also used to perform the logic operations. All the relevant codes
are available from the corresponding authors upon reasonable
request.
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