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Abstract
Background: Optical coherence tomography (OCT) imaging has emerged as a promising diagnostic 
tool, especially in ophthalmology. However, speckle noise and downsampling significantly degrade 
the quality of OCT images and hinder the development of OCT‑assisted diagnostics. In this 
article, we address the super‑resolution (SR) problem of retinal OCT images using a statistical 
modeling point of view. Methods: In the first step, we utilized Weibull mixture model (WMM) 
as a comprehensive model to establish the specific features of the intensity distribution of retinal 
OCT data, such as asymmetry and heavy tailed. To fit the WMM to the low‑resolution OCT images, 
expectation–maximization algorithm is used to estimate the parameters of the model. Then, to reduce 
the existing noise in the data, a combination of Gaussian transform and spatially constraint Gaussian 
mixture model is applied. Now, to super‑resolve OCT images, the expected patch log‑likelihood 
is used which is a patch‑based algorithm with multivariate GMM prior assumption. It restores the 
high‑resolution (HR) images with maximum a posteriori (MAP) estimator. Results: The proposed 
method is compared with some well‑known super‑resolution algorithms visually and numerically. In 
terms of the mean‑to‑standard deviation ratio (MSR) and the equivalent number of looks, our method 
makes a great superiority compared to the other competitors. Conclusion: The proposed method is 
simple and does not require any special preprocessing or measurements. The results illustrate that 
our method not only significantly suppresses the noise but also successfully reconstructs the image, 
leading to improved visual quality.
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Introduction
Optical coherence tomography (OCT) 
is a noninvasive imaging technology 
that captures cross‑sectional, two‑ and 
three‑dimensional views of tissue structures; 
retinal OCT imaging is a clinical method 
for diagnosing many ocular damages.[1,2] 
However, there are two major challenging 
issues which are preventing the development 
of OCT‑based diagnostics. First, because of 
the low coherence interferometry imaging 
mode,[3] OCT images are inevitably 
polluted by heavy speckle noise, which 
severely reduces the quality of OCT images 
and also the accuracy of diagnosis of ocular 
disorders. Noiseless OCT images are most 
often generated in commercial scanners 
by registering and averaging many B‑scan 
OCT images captured at the same position, 

repeatedly. The second issue arises as 
a result of this recording method. It is 
almost impossible to capture OCT images 
from exactly same position for averaging, 
because of eye movement or unconscious 
jitter.[4] As a result, a low sampling rate 
is employed in clinics to speed up the 
acquisition procedure and limit the impact 
of unconscious movements. Hence, it is 
important to propose a method that operates 
well on both OCT image denoising 
and super‑resolution (SR) to restore 
high‑resolution (HR) OCT images.

Over the last two decades, several 
approaches have been offered to address 
these challenges. Methods for OCT 
denoising are primarily separated into 
hardware‑based and software‑based 
approaches.[5,6] Hardware‑based methods 
usually work on developing the light 
source of the imaging system.[7,8] These 
methods can reduce the noise of scanners 
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and detectors. In software‑based methods, different kinds 
of digital filters can be applied from a global or local 
statistical modeling point of view in both spatial and sparse 
domains.[9‑11] Besides, for the super‑resolution application 
of OCT images, some papers are reported on sparse 
domain.[12‑14]

In our previous study,[15] we proposed a method to denoise 
the OCT images and now we address a method for SR 
problem. It is generally modeled as Eq. 1

y = DHx + n  (1)

Where y is a low‑resolution (LR) observed image, x is an 
unknown HR image to be estimated, H and D are blurring 
and decimation operator as 2D signals, respectively, and 
n represents the additive white Gaussian noise. For the 
SR of OCT images, H considers the identity matrix. 
Here, we present a SR algorithm based on statistical 
modeling of retinal OCT images and expected patch 
log‑likelihood (EPLL)[16] as a patch‑based super‑resolution 
method, which has the following contributions:
•	 Our previous study aimed at noise reduction of retinal 

OCT images. Whereas, now, we intend to reconstruct 
the retinal OCT images with a higher number of 
A‑scans (upsampling with different scales in lateral 
direction) and high resolution together

•	 Previous studies related to the EPLL algorithm have 
presented the effect of the image prior to Gaussian 
distribution on the different processing tasks such as 
noise reduction, deblurring, and inpainting for the 
natural images. Now, we handled this algorithm for the 
first time with the retinal OCT images in order to both 
denoising and SR applications

•	 Furthermore, from a modeling point of view, in contrast 
to previous EPLL‑related works, we provide the needed 
presumption prior by finding the appropriate distribution 
and converting it to the Gaussian distribution.

In this regard, this article is organized as follows. In 
the next section, we describe the way of reconstructing 
HR‑OCT images that include statistical modeling, 
denoising, and SR. In the result section, we present our 
method results and compare it with some well‑known SR 
methods quantitatively and qualitatively. At the end, we 
present the conclusion of the work.

Methods
The proposed method to restore HR‑OCT images can be 
described in some parts including preprocessing, statistical 
modeling, denoising, and SR.

Statistical modeling and denoising

First, the multiplicative noise of LR OCT images 
was converted to an additive Gaussian noise using 
the logarithmic operator. Then, Weibull mixture 
model (WMM), as an appropriate model for OCT 

image’s statistical characteristics such as heavy‑tailed and 
asymmetric distribution, is fitted to the normalized intensity 
histogram of OCT image.[15] It is formulated as Eq. 2.
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Where αι and βι are scale and shape parameters of the ith 
component of the aforementioned model, respectively, 
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component. The critical problem in statistical modeling 
is to estimate the parameters correctly. For this aim, it is 
handled by expectation–maximization (EM) algorithm. 
This technique estimates the parameters in two steps, 
iteratively. In the expectation step, an auxiliary variable is 
defined to calculate the probability of belonging of pixels’ 
intensity to each component of mixture model. In the next 
step (maximization step), the value of the parameters is 
updated by maximum likelihood estimator.

After parameter estimation and fitting the WMM to 
the intensity of data, we aimed to denoise the LR OCT 
images. In recent years, patch‑based processing has been 
used in many picture restoration techniques. The basic 
concept is to decompose the target image into overlapping 
patches, restore each one, and then combine the results 
using simple averaging. This idea has been shown to 
be extremely effective, yielding state‑of‑the‑art results 
in denoising, inpainting, segmentation, deblurring, and 
other tasks. Hence, we select a patch‑based algorithm 
considering spatial distance called spatially constraint 
GMM (SCGMM).[17] It clusters similar image patches 
in a specific window by k‑nearest neighbor algorithm 
concerning some predefined exemplar patches. Then, 
a multivariate GMM is applied for each cluster with a 
specific mean vector and covariance matrix. Figure 1 is 
illustrated the clustering step.

Finally, a Wiener filter is used to denoise the patches. 
However, as we mentioned, the appropriate model for 
OCT images is a WMM while SCGMM needs a GMM 
distribution as a prior probability of image. Hence, the 
prior distribution of OCT images should be converted 
to the Gaussian distribution using histogram matching 
method. This step is called Gaussianization transform (GT) 
that the formulation is in the following:
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The left side of the first Eq. 3 is the cumulative distribution 
function (CDF) of the Weibull model which is placed 
equally to the CDF of Gaussian distribution, and finally, 
in the second equation, the Gaussian random variable xG 
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is calculated in terms of Weibull random variables xW, 
Weibull parameters αi and βι, and Gaussian parameters μiG 
and σiG. More details can be found in the study of.[15] Now, 
we purpose to upscale the OCT images.

Super‑resolution: Expected patch log‑likelihood

EPLL is a patch‑based method by Zoran and Weiss.[16] Its 
fundamental goal is to increase expected patch log‑likelihood 
while remaining as close to the corrupted image as possible 
in a manner that depends on the prior model. Hence, due to 
its definition, it is formulated under the prior ρ as Eq. 4

( )p i
i

EPLL x = log p(Px), ∑  (4)

Where x is the vectorized form of image and Pi is an 
operator to extract the ith patch of x from all overlapping 
patches. Furthermore, log p(Pix) is the log‑likelihood of 
the ith patch under the prior of p. Now, for the corruption 
model such as Eq. 1, the cost function which is purposed to 
minimize under the prior of p for finding the reconstructed 
image has the form as

 2
 2( ) D log ( )

2
 p i if x | y = x - y - p Pxλ

Σ  (5)

Where D is a matrix with zero values for missing pixels. 
Due to the suggested prior, optimizing Eq. 5 may be very 
hard as direct. Therefore, half‑quadratic splitting as an 
alternating optimization method was presented to solve 
Eq. 5. In “half quadratic splitting,” a set of auxiliary 
patches { }

1
i

N
z  defined as a way in which each zi is 

associated to the each overlapping patch pix. Eventually, 

the cost function is provided as
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The patch Pix is restricted to be equal to zi, auxiliary 
variable, as β → ∞, then zi → Pix. The distance between 
the auxiliary patches and the patches of image x is 

therefore controlled by this parameter. The cost function 
is divided into a two‑step inner minimization for a fixed 
value of β. First step: Fix zi and then differentiate from Eq. 
6 with respect to x and equal to zero and finally the x is 
calculated as Eq. 7

( ) ( )1
ˆ

-T T T T j
j j j j jx = D D+ P P D y+ P zλ β λ β∑ ∑ . (7)

In the second step, the x would be fixed with updated value 
and next zi is solved by the MAP estimation for each patch 
under the prior use. These two steps have been iterated 
4–5 times before increasing β and repeating the whole 
algorithm. At each iteration, patches are extracted from the 
estimated image. The selection of β is crucial for the EPLL 
algorithm. In Zoran and Weiss’s study,[16] the values of β 
were selected as the coefficient of the inverse of variance 

such as [ ]2

1 1,4,8,16,32,
σ

 and we tried our work with 

this coefficient and GMM prior. Algorithm 1 summarizes 
the proposed method for restoring HR‑OCT images.

Results
This section is divided into some subsections. First, 
the study dataset is described and then the quantitative 
metrics for evaluating the compared algorithms are 
mentioned in subsection “Quantitative evaluation 
metrics.” Finally, the SR results of retinal OCT images 
are reported both visually and numerically in subsection 
“Super‑resolution results of retinal optical coherence 
tomography image.”

Dataset

The collected data included 13 3D macular OCT data 
that were obtained from Topcon OCT‑1000 imaging 
device at Feiz Hospital, Isfahan, Iran. The x, y, z 
scale of the collected volumes is 650 × 512 × 128 
voxels, 7 mm × 3.125 mm × 3.125 mm, voxel size 
13.67 µm × 4.81 µm × 24.41 µm. We randomly selected 
60 B‑scans from the dataset and with 50% and 75% 
A‑scans missing. Furthermore, we examined our results 

Figure 1: Steps of spatially constraint algorithm. The left image shows the clustering step. GMM: Gaussian mixture model, MAP: Maximum a posteriori,  
KNN: K‑Nearest neighbor
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on the dataset with abnormality symptoms of pigment 
epithelial detachment which was captured from the device 
with previous specifications.

Quantitative evaluation metrics

The performance of the proposed method was evaluated using 
the mean‑to‑standard deviation ratio (MSR),[18] the equivalent 
number of looks (ENLs), the contrast‑to‑noise ratio (CNR),[19] 
the texture preservation (TP), and the edge preservation (EP)[20] 
which were compared to other SR methods. Furthermore, the 
proper regions of interest for each metric are selected. MSR is 
calculated by averaging the mean to standard deviation ratio 

in foreground sections of an image. The CNR metric is used 
to determine the contrast between foreground and background 
noise by taking into account both foreground and background 
regions. To evaluate the smoothness in background regions, ENL 
measures the mean and standard deviation of the background 
region. Within the corresponding region, a large ENL results 
in more noise smoothing. The preservation of texture and edge 
of an image after reconstruction is measured using TP and EP, 
respectively. The range of these criteria is 0–1, so the values 
close to zero indicate that the reconstruction method smoothed 
out the texture and blurred the edges. It may suggest a lack of 
proper filtering if the texture criterion is close to 1. In fact, there 
should be a compromise between image contrast and TP.

It is worth noting that the mentioned dataset is not included the 
reference or HR images which is the reason for not reporting 
the peak signal‑to‑noise ratio and structural similarity criteria.

Super‑resolution results of retinal optical coherence 
tomography image

The results of retinal OCT image SR are illustrated in terms 
of both quality and quantity in Figures 2‑4 and Tables 1 and 2. 
Furthermore, to investigate the performance of the proposed 
method, some candidate algorithms are implemented on 
our dataset and used for comparison including bicubic, 
Block Matching 3D (BM3D)[21] + bicubic, and sparsity‑
based simultaneous denoising and interpolation (SBSDI),[12] 
and Tikhonov.[22] In addition, the LInear estimator with 
Neighborhood patch Clustering (LINC),[17] which also is 
based on Gaussian assumption, is considered as a suitable 
comparison method. LINC in conjunction with our modeling 
approach (WMM‑GT‑LINC) produces a realistic restoration 
of OCT image with random data missing. However, for 
regularly 50% or 75% A‑scans missing, the outcome is 
unsatisfactory due to the covariance matrix order. In order to 
resolve this issue, a random shift was applied to all pixels in 
each row of OCT image. After restoration, they were shifted 
to the true position and the final image was obtained.

Table 1: Mean and confidence interval of 95% of the contrast‑to‑noise ratio, equivalent number of looks, texture 
preservation, expected patch, and mean‑to‑standard deviation ratio for 60 retinal optical coherence tomography 

images (with 50% data missing) reconstructed with bicubic, block matching three‑dimensional + bicubic, Tikhonov, 
sparsity‑based simultaneous denoising and interpolation, Weibull mixture model‑Gaussian transform‑linear estimator 

with neighborhood patch clustering, Weibull mixture model‑Gaussian transform‑spatially constraint Gaussian 
mixture model‑bicubic, and proposed method (Weibull mixture model‑Gaussian transform‑spatially constraint 

Gaussian mixture model‑expected patch log‑likelihood)
Original Bicubic BM3D + 

bicubic
Tikhonov SBSDI WMM‑GT‑LINC WMM‑GT‑SCGMM 

+ bicubic
Proposed 
method

CNR 2.4±0.16 2.6 4.91±0.52 4.28±0.3 7.94±0.64 4.28±0.31 5.56±0.59 6.22±0.73
ENL 27.09±0.66 27.85 41.36±6.96 18.4±0.85 12.06±0.94 55.37±5.33 38.28±5.64 70.72±9.38
MSR 4.92±0.12 5.06 5.01±0.39 5.11±0.23 6.32±0.55 6.09±0.29 6±0.48 6.41±0.61
TP 1±0.0 0.95±0.04 0.82±0.06 0.92±0.06 0.82±0.08 0.63±0.04 0.89±0.07 0.87±0.07
EP 1±0.0 0.82±0.01 0.79±0.01 0.8±0.01 0.77±0.01 0.85±0.01 0.81±0.01 0.83±0.01
BM3D: Block matching three‑dimensional, SBSDI: Sparsity‑based simultaneous denoising and interpolation, WMM: Weibull mixture model, 
GT: Gaussian transform, LINC: Linear estimator with neighborhood patch clustering, SCGMM: Spatially constraint Gaussian mixture model, 
CNR: Contrast‑to‑noise ratio, ENL: Equivalent number of looks, MSR: Mean‑to‑standard deviation ratio, TP: Texture preservation, EP: Edge 
preservation

Algorithm 1: The summary of the proposed method to super‑resolved of 
retinal OCT image
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In Figure 2, the result of OCT image SR with 50% data 
missing is placed and quantitative results can be shown 
in Table 1. According to Table 1, the proposed method 
makes a great improvement in ENL and MSR. Although 
in other metrics, it did not catch the first place, it is 
indeed competitive among them. It should be mentioned 
that in image restoration problem in addition to improving 
the contrast of the image, preserving the edge and texture 
is also very important. Hence, as can be observed, the 
proposed method not only produces great contrast but 
also preserves the texture and edge of the image well, 
unlike other competitive methods. Furthermore, the 
proposed method has been examined on 75% data missing 
of one sample. In Figure 3, the result of 75% data missing 
has been compared with other competitive methods on 
one OCT data sample. The numerical measurements are 
reported in Table 2. In addition to two criteria of MSR 
and ENL, our method has better performance in the edge 
preserving than other methods. Moreover, in Figure 4, 
the comparison of aforementioned algorithms has been 
implemented on an abnormal OCT sample with the 
characteristics mentioned in 3.1 section. As depicted in 
the Figure 4, the proposed SR method has a significant 
effect on noise reduction of this image compared to the 
other methods.

Conclusion and Future Work
The data acquisition at a quick speed and high quality 
in OCT device is a critical challenge. In this study, we 
suggested an SR algorithm to restore the HR‑OCT 
images. It is based on statistical modeling and GT. The 
results of SR were enhanced by using a well‑designed 
statistical model that included key aspects of the intensity 
distribution of retinal OCT images, such as asymmetry and 
heavy tailed. The proposed method is simple and does not 
require any special preprocessing or measurements and 
its acceptable evaluation results confirm its outstanding 
performance. Furthermore, this research established 
two other reconstruction methodologies founded on the 
proposed statistical modeling. The first scenario involved 
the utilization of the study in[17] subsequent to the 
Gaussianization transform step. This approach is based 
on the multivariate GMM. Nevertheless, this approach 
encounters two major limitations. The first limitation 
revolves around the regular and patterned reconstruction 
of missing pixels, while the second limitation focuses on 
the denoising from OCT images with high noise levels. 
The first challenge was addressed by employing random 
displacement within each row of the image. To tackle 
the second limitation, other denoising algorithms can be 

Figure 2: Visual comparison of super‑resolution results on a sample low‑resolution retinal optical coherence tomography (OCT) B‑scan using the different 
algorithms: (a) A raw OCT image (X × 256) (with 50% data missing), (b) bicubic, (c) BM3D[21] + bicubic, (d) Tikhonov,[22] (e) two‑dimensional‑sparsity‑based 
simultaneous denoising and interpolation,[12] (f) Weibull mixture model (WMM)‑Gaussian transform (GT)‑linear estimator with neighborhood patch clustering, 
(g) WMM‑GT‑spatially constraint Gaussian mixture model + bicubic, (h) the proposed method
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utilized either before or after the implementation of LINC 
algorithm,[17] resulting in more effective noise reduction 
and improved image quality. In Figure 5, a visual 
comparison is depicted between two entities, denoted as 
“WMM‑GT‑SCGMM‑LINC” and “WMM‑GT‑LINC.” 
Figure 5b highlights the impact of utilizing the denoising 
algorithm on the subsequent LINC.

Furthermore, another method based on statistical 
modeling uses a simple interpolation algorithm to 
reconstruct the missing A‑scans in OCT image. That is 
after reducing the noise of image with the algorithm, 
we use a simple interpolation method such as bicubic 
algorithm to reconstruct the missing A‑scans. The 
numerical and visual results were also satisfactory with the 

Table 2: Mean and confidence interval of 95% of the contrast‑to‑noise ratio, equivalent number of looks, and 
mean‑to‑standard deviation ratio for 60 retinal optical coherence tomography images (with 75% data missing) 
reconstructed with bicubic, block matching three‑dimensional+bicubic, Tikhonov, sparsity‑based simultaneous 

denoising and interpolation, Weibull mixture model‑Gaussian transform‑linear estimator with neighborhood patch 
clustering, Weibull mixture model‑Gaussian transform‑spatially constraint Gaussian mixture model‑Bicubic, and 

proposed method (Weibull mixture model‑Gaussian transform‑spatially constraint Gaussian mixture model‑expected 
patch log‑likelihood)

Original Bicubic BM3D + 
bicubic

Tikhonov SBSDI WMM‑GT‑LINC WMM‑GT‑SCGMM 
+ bicubic

Proposed 
method

CNR 3.19±0.23 3.51±0.26 5.73±0.78 2.69±0.18 11.19±1.33 6.81±0.61 7.9±1.34 9.6±1.9
ENL 27.45±0.48 30.33±0.9 50.79±9.63 5.9±0.18 11.45±0.78 94.66±18.37 47.82±21.24 142.05±67.65
MSR 5.13±0.15 5.45±0.19 5.26±0.37 3.25±0.09 7.57±0.76 7.52±0.57 7.06±0.96 7.78±1.21
TP 1±0.0 0.9±0.05 0.85±0.06 0.92±0.06 0.82±0.1 0.47±0.04 0.83±0.07 0.77±0.08
EP 1±0.0 0.79±0.01 0.79±0.01 0.66±0.02 0.79±0.01 0.81±0.01 0.8±0.01 0.82±0.01
BM3D: Block matching three‑dimensional, SBSDI: Sparsity‑based simultaneous denoising and interpolation, WMM: Weibull mixture 
model, GT: Gaussian transform, LINC: Linear estimator with neighborhood patch clustering, SCGMM: Spatially constraint Gaussian 
mixture model, CNR: Contrast‑to‑noise ratio, ENL: Equivalent number of looks, MSR: Mean‑to‑standard deviation ratio, TP: Texture 
preservation, EP: Edge preservation

Figure 3: Visual comparison of super‑resolution results on a sample low‑resolution retinal optical coherence tomography (OCT) B‑scan using the different 
algorithms: (a) A raw OCT image (X × 128) (with 75% data missing), (b) bicubic, (c) BM3D[21] + Bicubic, (d) Tikhonov[22] (e) Sparsity‑based simultaneous 
denoising and interpolation,[12] (f) Weibull mixture model (WMM)‑Gaussian transform (GT)‑linear estimator with neighborhood patch clustering, (g) WMM‑GT 
spatially constraint Gaussian mixture model + bicubic, (h) the proposed method
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WMM‑GT‑SCGMM+ bicubic. In the future, we want to 
combine the denoising and SR steps into a single module.
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