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Abstract: Mitochondria are dynamic organelles undergoing continuous fusion and fission with
Drp1, encoded by the DNM1L gene, required for mitochondrial fragmentation. DNM1L dominant
pathogenic variants lead to progressive neurological disorders with early exitus. Herein we report on
the case of a boy affected by epileptic encephalopathy carrying two heterozygous variants (in cis) of
the DNM1L gene: a pathogenic variant (PV) c.1085G>A (p.Gly362Asp) accompanied with a variant
of unknown significance (VUS) c.1535T>C (p.Ile512Thr). Amplicon sequencing of the mother’s DNA
revealed the presence of the PV and VUS in 5% of cells, with the remaining cells presenting only
VUS. Functional investigations performed on the patient and his mother’s cells unveiled altered
mitochondrial respiratory chain activities, network architecture and Ca2+ homeostasis as compared
with healthy unrelated subjects’ samples. Modelling Drp1 harbouring the two variants, separately or
in combination, resulted in structural changes as compared with Wt protein. Considering the clinical
history of the mother, PV transmission by a maternal germline mosaicism mechanism is proposed.
Altered Drp1 function leads to changes in the mitochondrial structure and bioenergetics as well as in
Ca2+ homeostasis. The novel VUS might be a modifier that synergistically worsens the phenotype
when associated with the PV.

Keywords: DNM1L; Drp1; mitochondrial fission; encephalopathy; genetic mosaicism

1. Introduction

The morphology of the cellular mitochondrial compartment is dictated by a dynamic
equilibrium between the fusion and fission of the organelle. The prevalence of fusion leads
to highly interconnected tubular mitochondria, whereas the prevalence of fission leads
to more fragmented isolated mitochondria [1,2]. In recent decades, the molecular details
of fusion/fission have been progressively identified, although some mechanistic features
remain to be clarified. The morphological status of mitochondria is reciprocally linked to
several fundamental cellular processes [3,4], therefore it is not surprising that defective
fusion/fission impacting on specific cell homeostasis has been linked to the development
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of diseases [5]. Different genetic variants have been described in several coding genes
involved in mitochondrial dynamics and most of them are associated with congenital
encephalopathies [5–7]. DNM1L (DYNAMIN 1 LIKE; OMIM 603850) is a gene coding for
the dynamin related protein 1 (Drp1), an essential component of the mitochondrial fission
machinery, associated with lethal encephalopathy (OMIM 614388). To date, 15 different
variants of DNM1L have been described that led to the loss of function of Drp1; they may
be inherited in a recessive or dominant manner, or arise de novo. For example, the variants
c.1184C-A (p. Ala395Asp) [8], c.1085G-A (p.Gly362Asp) [9], c.1084G-A (p.Gly362Ser) [10]
in the DNM1L gene acted in a dominant-negative manner. However, autosomal recessive
encephalopathy with compound heterozygous mutations in the DNM1L gene have also
been reported, i.e., c.261dup; p.Trp88MetfsTer9, and c.385_386del; p.Glu129LysfsTer6 [11],
just as reported in [12], c.346_347delGA (p.Glu116LysfsTer6) and a c.106A-G (p.Ser36Gly)
(see also https://www.omim.org/entry/603850, accessed on 29 January 2021). The clinical
phenotypes of patients harbouring variants of DNM1L are similar, with poor prognosis
leading to exitus within early childhood.

In this study we reassessed the case of a boy affected by epileptic encephalopathy
already described in the literature by an independent group [13] and harbouring a known
pathogenic variant of DNM1L and a novel variant of uncertain significance (VUS) on the
same allele (in cis). Integrating DNA sequence analyses on blood samples of the patient
and his mother and on cultured fibroblasts obtained from placenta (chorionic villus) of the
mother’s last interrupted pregnancy (see pedigree in Figure 1A), herein the hypothesis of a
matrilineal transmission of the DNM1L variant by germline mosaicism has been discussed.
Moreover, assessment of mitochondria-related functions and in silico modelling strongly
suggested that coexistence of the VUS in the DNM1L gene might be considered an additive
condition, worsening the phenotype associated with the pathogenic variant.

https://www.omim.org/entry/603850
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Figure 1. Mutational analysis of DNM1L. (A) Pedigree of the patient family. P*, patient; PM*, patient’s mother; PF*, pa-

tient’s father; PAS*, patient’s aborted sibling. Subjects whose biological samples were made available for this study are 

shown; the smaller square refers to a third conceived by PM deliberately aborted. (B) From the top down: positioning of 

the DNM1L gene on chromosome 12; gene structure with the two indicated nucleotide variants object of this study; protein 

domains in the Drp1 primary structure and their schematic assembly in the protein folded structure along with the back-

bone structure of Dpr1 (left side) modelled using the coordinates of the PDB ID: 3W6O and shown with the indicated 

domains and location of the variant residues (coloured space-filled rendering); electropherograms showing the DNM1L 
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Figure 1. Mutational analysis of DNM1L. (A) Pedigree of the patient family. P*, patient; PM*, patient’s
mother; PF*, patient’s father; PAS*, patient’s aborted sibling. Subjects whose biological samples
were made available for this study are shown; the smaller square refers to a third conceived by PM
deliberately aborted. (B) From the top down: positioning of the DNM1L gene on chromosome 12;
gene structure with the two indicated nucleotide variants object of this study; protein domains in
the Drp1 primary structure and their schematic assembly in the protein folded structure along with
the backbone structure of Dpr1 (left side) modelled using the coordinates of the PDB ID: 3W6O
and shown with the indicated domains and location of the variant residues (coloured space-filled
rendering); electropherograms showing the DNM1L variants of PBMC of the patient (P) and patient’s
mother (PM’), in the saliva of the patient’s mother (PM”) and in the chorionic villi fibroblast of the
patient’s aborted sibling (PAS); enlargements of the PM’ and PM” electropherograms are shown at
the side. (C) Immunoblotting of PBMC protein extract against anti-Drp1 and β-actin: P, PM as in
panel (B); PF, patient’s father; C1, C2, C3 unrelated healthy controls; the figures below each lane are
the averaged densitometric values (±SEM) normalized to P from three independent assays.

2. Materials and Methods
2.1. Samples

Cell samples were obtained from patients’ (a 10-year-old boy (P) and his mother (PM))
and healthy volunteers’ peripheral venous blood. Peripheral blood mononucleate cells
(PBMCs) were isolated by standard procedure in phosphate-buffered saline (PBS), counted
and immediately assayed or frozen at −80 ◦C. PM buccal mucosa cells were collected by
swab under sterile conditions and DNA isolated by QIAmp DNA Mini Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. Fibroblasts from chorionic villus
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of abortive sample were isolated and cultured as previously described [14]. The patient’s
mother provided written informed consent for the study and publication of this article in
agreement with the Declaration of Helsinki.

2.2. Measurement of Respiratory Activity

Freshly isolated PBMCs were resuspended in 10 mM KH2PO4, 27 mM KCl, 1 mM
MgCl2, 40 mM Hepes, 0.5 mM EGTA, pH 7.1 at 4× 106 cells/2 mL and immediately assayed
for O2 consumption by high resolution oxymetry (Oxygraph-2k, Oroboros Instruments) at
37 ◦C under continuous stirring; the oxygen consumption rate (OCR) was attained as a
negative derivative of the O2 content changes over time. See Supplemental Materials for
further details.

2.3. Measurement of Enzymatic Activities

Pelleted PBMCs were resuspended in 0.32 M sucrose, 40 mM KCl, 20 mM Tris-HCl,
2 mM EGTA, pH 7.2, frozen at −80 ◦C for 10 min, thawed at room temperature and sub-
jected to six cycles of 10 sec sonication (>20 kHz). The specific enzymatic activities of the
NADH: ubiquinone oxidoreductase (complex I), the ubiquinol: cytochrome c oxidoreduc-
tase (complex III), the cytochrome c oxidase (complex IV) and citrate synthase were assayed
spectrophotometrically in 10 mM Tris-HCl, 1 mg/mL BSA, pH 8.0 as described [15]. The
activities were normalized to the initial cell number or to cellular protein content.

2.4. Live Cell Imaging of ROS, Mitochondrial Membrane Potential, and Ca2+

PBMCs were incubated for 20 min at 37 ◦C with the following probes (Molecular
Probes): 2 µM tetramethylrhodamine, ethyl ester (TMRE) to monitor mitochondrial mem-
brane potential (mt∆Ψ); 10 µM 2′,7′-dichlorofluorescin diacetate (DCF-DA) for detection
of reactive oxidant species; 5 µM X-Rhod-1 AM for mitochondrial Ca2+. Stained cells
were examined by a Nikon TE 2000 microscope (images collected using a 60X objective
(1.4 NA)) coupled with a Radiance 2100 dual-laser confocal laser scanning microscopy
system (Biorad) (see Supplemental Materials for further details).

2.5. Reverse Transcription-Polymerase Chain Reaction

For real-time reverse transcriptase (RT)-PCR, total cellular RNA was isolated, reverse
transcribed by random hexamer primers and amplified as detailed in Supplemental Mate-
rials. mtDNA copy number quantification is also described in Supplemental Materials.

2.6. Western Blotting Analysis

A total of 40 µg of proteins from each cell lysate were subjected to SDS-PAGE, trans-
ferred to a polyvinylidene difluoride membrane and probed with primary and secondary
antibodies as detailed in the Supplemental Materials.

2.7. DNM1L Gene Sequencing

The variants of DNM1L gene (NM_012062.3) were analysed by polymerase chain
reaction (PCR)-generated amplicons of DNA extracted either from PBMCs, PM’s saliva
or chorionic fibroblasts [16] and processed by an automated DNA sequencing analyser as
specified in Supplemental Materials.

2.8. Structural Modelling of the Wt and Mutated Drp1

The monomer, homodimer and heterodimer structures of Wt and of Gly362Asp and/or
Ile512Thr Drp1 variants were modelled, using as a template the Drp1 crystal structure
(PDB ID: 3W6O), by Phyre2, GalaxyHomomer and GRAMM-X software, respectively; see
Supplemental Materials for further details.
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2.9. Statistical Analysis

All the experiments were carried out at least in triplicate. Data are shown as mean
± standard error mean (SEM) and compared by unpaired Student’s t-test or one-way
ANOVA, followed by Bonferroni post hoc test; a * p-Value < 0.05 was accepted as statistically
significant. All analyses were performed using Graph Pad Prism (Graph Pad software).

3. Results

We report on a 42 year old woman (patient mother—PM) who passed through our
Genetic Counselling due to positive anamnestic data regarding the presence of an intellec-
tual disability, transient ischemic episodes and myoclonic seizures in two sons generated
by different fathers. The first son died at the age of three years (DNA samples not avail-
able), the second son (patient—P) died at 11 years (DNA samples available). A third
pregnancy, by a still different father, was voluntarily terminated because of the unclear
familiar clinical history (DNA from abortive samples available) (Figure 1A). Multiple
clinical, genetic and metabolic investigations were undertaken in P reporting negative
results. Verrigni et al. [13] by next generation sequencing (NGS) analysis on a panel of
224 genes associated with mitochondrial diseases identified two heterozygous variants
of the DNM1L gene in P (Pt.4 in [6]): c.1085G>A (p.Gly362Asp)—PS1,PS3,PS4,PP3,PP4
and c.1535T>C (p.Ile512Thr)—BS2,BP2,BP4. The first variant (c.1085G>A) was already
described as pathogenic and associated with an autosomal dominant encephalopathy [9]
whereas the second (c.1535T>C), classified as VUS, has never been reported. When par-
ents segregation (Sanger sequencing) was performed, of the two DNM1L variants only
the VUS (c.1535T>C; p.Ile512Thr) was revealed in the mother’s DNA but neither in the
father’s DNA.

The occurrence in the PM’s firstborn of epileptic encephalopathy led us to suspect
matrilinear transmission of other variants of the mtDNA. X-linked transmission was
excluded based on performed genetic testing. However, sequencing of mtDNA in P resulted
in negative results. A number of already reported nucleotide base changes were observed
both in coding and non-coding regions of the mtDNA. In the former case, synonymous base
changes or variations leading to non-pathogenic aminoacid substitutions were detected
(Table S1).

Using an NGS approach, Verrigni et al. revealed the c.1085G>A (p.Gly362Asp) variant
in the PM blood sample DNA at very low levels (about 5%) and, by subcloning PCR
products from P cDNA, the occurrence of both the DNM1L variants (in cis) on the same
allele [13]. We verified and confirmed on selected DNM1L amplicons what had been
reported and extended the sequence analysis on DNA extracted from the PM buccal swap
and on the abortive tissue (chorionic villus fibroblasts) of the child conceived by PM with a
third father (Figure 1B). The result attained sequencing saliva DNA from PM substantially
confirmed what had been found in PM PBMCs (i.e., about 5% of the c.1085G>A variant
while the heterozygotic c.1535T>C VUS was clearly detected). In the case of the abortive
sample, no variants were observed in the DNM1L gene. As already performed genetic
testing excluded X-linked transmission, the obtained results would indicate the occurrence
of maternal somatic and germline mosaicism. It is noteworthy that Dpr1 expression was
not significantly affected in blood samples of P as compared with PM, his father (PF) and
three unrelated healthy subjects (Cs) (Figure 1C).

Blood samples from P and PM were available and completely independent analyses in
parallel to and unaware of the Verrigni study [13] were performed. Plasma lactate content,
under normal conditions, was almost three-fold higher in P as compared with PM and
three unrelated healthy subjects (Figure 2A). Next, we carried out a systematic analysis
of mitochondria-related functions. PBMCs were isolated and assayed by high resolution
oxymetry (Figure 2B). As shown in Figure 2C the basal resting oxygen consumption
rate (OCR) was significantly higher both in P and PM with respect to unrelated controls
(averaged activity of three healthy subjects). Addition of the H+-ATP synthase inhibitor
oligomycin depressed respiration, as expected, but more significantly in the control cells.
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Further addition of the protonophore uncoupler FCCP resulted in the maximal respiration
that was comparatively lower in PM PBMCs. Normalization to the basal or maximal
OCR, to compensate for inter-individual variability, confirmed a relatively higher proton
leak and a lower ATP-linked OCR in P and PM (Figure 2D). The reported activities were
corrected for the residual OCR after the combined addition of antimycin A and rotenone
and are, therefore, ascribable to the mitochondrial respiratory chain. Measurement of the
enzymatic activity of complexes I (NADH dehydrogenase), III (cytochrome c reductase),
and IV (cytochrome c oxidase) normalized to that of the citrate synthase, as an indirect
measure of the mitochondrial mass, resulted in higher values in all the complexes of P as
compared with PM and controls (Figure 2E); the differences reached the larger statistical
significance for complexes I and IV. Conversely, the citrate synthase activity did not show
significant differences.Genes 2021, 12, x FOR PEER REVIEW 7 of 19 
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Figure 2. Analysis of the metabolic phenotype in PBMCs. (A) Plasma lactate content in patient (P),
patient’s mother (PM) and the averaged value of four independent healthy controls (Cs). (B) Scheme
showing the protocol utilized to assay mitochondrial respiratory activity in intact PBMCs cells by
high resolution oxymetry; red trace, changes of oxygen content in the assay buffer under baseline
and following sequential addition of oligomycin, FCCP and rotenone plus antimycin A; black trace,
corresponding oxygen consumption rates (OCRs). (C) OCR/cell number under basal condition, in
the presence of oligomycin (proton leak) and in the presence of FCCP (maximum respiration); the
reported value are means ± SEM of three independent replicates and are corrected for the rotenone
plus antimycin A-insensitive OCR; * P < 0.05 vs. P. (D) Normalized OCRs calculated from the data
reported in panel (C); ** P < 0.01. (E) Activities of the respiratory chain complexes I, III and IV and
citrate synthase in PBMC cell lysates; the activities were assessed by spectrophotometric assay and
the reported values are means ± SEM of three independent replicates; * P < 0.05 vs. P. See Materials
and Methods and Results for further details.
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Next, we complemented the mitochondrial functional analysis with confocal mi-
croscopy imaging of the mitochondrial membrane potential (mt∆Ψ) using the mito-tropic
fluorescent probe TMRE (Figure 3A) in viable PBMCs. The results attained clearly showed
an intracellular compartmentalization of the fluorescent signal highlighting the mitochon-
drial network. However, no significant difference in the averaged fluorescence inten-
sity/cell was observed between P and PM and control samples (Figure 3B), indicating a
similar ability to maintain the respiration-driven mt∆Ψ.

1 
 

 
Figure 3. Morpho-functional analysis of the mitochondrial compartment. (A) Confocal microscopy
imaging of mt∆Ψ assessed by TMRE in PBMCs from patient (P), patient’s mother (PM) and a repre-
sentative healthy subject (CTRL); the tripartite images show representative images and progressive
digital magnifications of the squared details; images at the bottom are rendered as false colour. (B)
Quantitative analysis of the TMRE fluorescence/cell. (C) Morphometric evaluation of the TMRE
signal/cell with indicated statistical analysis. (D) Confocal microscopy imaging of mitochondrial
Ca2+ in PBMCs assessed by Rhod-1; the tripartite images show representative images and digital
magnifications of the squared details, and in the CTRL sample a further magnification is reported
to highlight the platelets. (E) Histogram showing quantification of the Rhod-1 fluorescence inten-
sity/cell. (F) Histogram showing quantification of the platelet count/optical field. In (B,C,E,F)
at least five different optical field/samples, each containing 40–50 cells, were examined and the
values averaged ± SD from three independent biological preparations with statistical indication
when significant.
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However, a closer analysis of the images showed a different morphology of the
mitochondrial compartment. In particular, mitochondria appeared more aggregated in
P and PM and perinuclearly located, whereas they were more fragmented in all controls
tested (Figure 3A). Morphometric analysis of the imaged mitochondria per cell confirmed a
significantly higher interconnectivity index in P as compared with control samples with that
of PM, displaying an intermediate value (Figure 3C); higher scores of this morphometric
parameter signify that mitochondria have more physical connections, while lower scores
signify that mitochondria are more fragmented.

Of note, in P-PBMCs the mtDNA copy number/cell was significantly lower (almost
halved) than that of PM and controls (Figure S1A). Accordingly, the expression of PGC1-
α, a master transcription factor controlling mitochondrial biogenesis, was significantly
down-regulated in P as compared with PM and controls (Figure S1B).

Furthermore, we evaluated by the probe DCF the cellular redox state, as mitochondria
are a major source of reactive oxygen species with their production frequently increased
under conditions of mitochondrial respiratory chain dysfunction [17]. Additionally, in this
case no significant change in the constitutive level of reactive species was observed among
the different PBMC samples tested (Figure S2).

In addition to control ATP production by the oxidative phosphorylation, mitochondria
are involved in the cellular Ca2+ homeostasis and signalling [18]. To investigate this
function, we used the fluorescent probe Rhod-1, specifically detecting intra-mitochondrial
Ca2+. As shown in Figure 3D,E the Rhod-1-related signal/cell resulted in significantly
lower P-PBMCs as compared with both PM and control samples indicating a reduced ability
of P mitochondria to uptake/retain Ca2+ under steady state condition. Notably, a closer
inspection of the optical fields of Rhod-1-loaded PBMC in controls unveiled the presence
of extracellular signals in smaller organelles, likely attributable to platelet mitochondria.
The presence of Rhod-1-loaded platelet mitochondria was much more scarce in P and PM
and had a more aggregated appearance therein (Figure 3D,F).

Multiple sequence alignment of Drp1 showed that the G362 residue was totally
conserved among all eukaryotes, whereas the I512 residue was conserved only in chordate
(Figure S3). Mapping of the two residues in the crystal structure of Drp1 localizes G362 in
a portion of the protein shown to be involved in binding of mitochondrial receptors as well
as in the inter-monomer interactions governing the dimer/oligomer geometry [4]. The I512
residue was located in an unstructured mobile domain of the protein (illustrated in Figure
1B as a modelled structure) that was shown to inhibit the assembly of the monomers by
capping the interface where G362 is located [19]. Substitution of I512 with T512 did not
apparently generate a putative threonine-phosphorylation site (assessed by the NetPhos
3.1 server—http://www.cbs.dtu.dk/services/NetPhos/, accessed on 29 January 2021).

The structural effects of the variants 362Asp and 512Thr, separately and in combina-
tion, were modelled using the 3D-structure of the Wt-Dpr1 as a starting template (PDB
ID: 3W6O) (Figure 4). Comparison of the modelled proteins unveiled variations in the
structure of the GSK3β-interaction domain (aa 448–685), which could affect the GTPase
activity; indeed, interference with the GSK3β-mediated phosphorylation of Ser693 inhibits
mitochondria fragmentation [20]. Most notably, the larger change in the GSK3β-binding
domain was observed in the modelled structure of Drp1 harbouring both the 362D and the
512T variants with a complete delocalization of the 512Thr residue. The large dislocation
of 512T was not observed in the modelled protein harbouring the single variants, pointing
to a combined effect. Variations in the length of the protein variants were also observed
(Figure 4).

http://www.cbs.dtu.dk/services/NetPhos/
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Figure 4. Modelling of the monomeric structure of Wt Drp1 and 362D, 512T variants. The mixed
rendered structures were modelled using the coordinates of the PDB ID: 3W6O; two projections
rotated by 180◦ on the X axis are shown. Light blue, residues contributing to the GTP binding
site; violet, middle domain (aa 344–489); light green, GSK3β-interaction domain (aa 448–685); blue,
homodimerization domain (aa 654–668). The tagged Wt residues 362G and 512I are arrowed in orange
and white, respectively; the variants 362D and 512T are arrowed in red and yellow, respectively.

Afterward, formation of homodimeric (wt–wt, 362Asp/512Thr-362Asp/512Thr, 362Asp-
362Asp and 512Thr-512Thr) and heterodimeric (wt-362Asp/512Thr, wt-362Asp and wt-
512Thr) complexes was evaluated (Figure 5). Modelling of Drp1 homodimers resulted
in different dimer lengths, likely caused by changes in the intermonomer surface interac-
tion (aa 654–668) necessary for dimerization [21]. The length changes in the homodimers
362Asp/512Thr-362Asp/512Thr (occurring in P) and 512Thr-512Thr (occurring in PM) as
compared with the Wt–Wt dimer, could affect the stability of the Drp1 spiral hetero-oligomeric
structures. The proficiency of Wt Drp1 protein to form heterodimer with that harbouring the
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two variants, singularly or combined, resulted completely or largely hindered (i.e., 0% for
Wt-362Asp/512Thr, 4% for Wt-362Asp, 2% for Wt-512Thr) with shortening of the heterodimer
length when formed (Figure 5). No substantial changes were observed in the conformation of
the GTPase domain.

Genes 2021, 12, x FOR PEER REVIEW 12 of 19 
 

 

with that harbouring the two variants, singularly or combined, resulted completely or 
largely hindered (i.e., 0% for Wt-362Asp/512Thr, 4% for Wt-362Asp, 2% for Wt-512Thr) 
with shortening of the heterodimer length when formed (Figure 5). No substantial 
changes were observed in the conformation of the GTPase domain. 

 
Figure 5. Modelling of the dimeric structure of Wt Drp1 and 362D, 512T variants. The mixed ren-
dered dimeric structures were modelled starting from the monomeric coordinates of the PDB ID: 
3W6O. The modelled dimers were constructed using identical monomers (homodimers) or a com-
bination of a Wt monomer and a mutant monomer carrying one or the other of the single variants 
or a combination of both (heterodimers). The domain essential for dimerization is shown in blue (aa 
654–668); residues at position 362 (G or D) and 512 (I or T) are show in red and yellow, respectively. 

4. Discussion 
In addition to the 37 mtDNA encoded genes, about 2000 mitochondria-related nu-

clear genes exist and many of their variants have been identified and linked to diseases 
indirectly linked to bioenergetic failure [22,23] with the highest energy-demanding tis-
sues/organs, such as the brain, being more affected, particularly during development 
[24,25]. 

The mitochondrial compartment is shaped by a continuous flux of organelle fusion 
and fission, orchestrated by interactive signalling pathways adapting the cell to internal 

Figure 5. Modelling of the dimeric structure of Wt Drp1 and 362D, 512T variants. The mixed
rendered dimeric structures were modelled starting from the monomeric coordinates of the PDB
ID: 3W6O. The modelled dimers were constructed using identical monomers (homodimers) or a
combination of a Wt monomer and a mutant monomer carrying one or the other of the single variants
or a combination of both (heterodimers). The domain essential for dimerization is shown in blue (aa
654–668); residues at position 362 (G or D) and 512 (I or T) are show in red and yellow, respectively.

4. Discussion

In addition to the 37 mtDNA encoded genes, about 2000 mitochondria-related nuclear
genes exist and many of their variants have been identified and linked to diseases indirectly
linked to bioenergetic failure [22,23] with the highest energy-demanding tissues/organs,
such as the brain, being more affected, particularly during development [24,25].

The mitochondrial compartment is shaped by a continuous flux of organelle fusion
and fission, orchestrated by interactive signalling pathways adapting the cell to internal and
external cues. In particular, proper mitochondrial fission has been linked to cell division,
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organelle biogenesis, quality control via mitophagy or apoptosis, oxidative metabolism,
ageing and senescence, immunity, inter-organelle interaction/signalling, and differentia-
tion [1,4]. The DNM1L-encoded GTPase Drp1 is the major executioner of the mitochondrial
fission; it exists as dimer/tetramer in the cytosol and once recruited to the outer mitochon-
drial membrane forms helical oligomers that induce membrane constriction and severing
with the mechano-chemical driving force provided by GTP hydrolysis.

In this study, we re-appraised the reported case of a boy affected by epileptic en-
cephalopathy carrying heterozygotic variants of the DNM1L gene [13] and provide addi-
tional evidence about (a) the modality of hereditary transmission, (b) the impact of the vari-
ants on mitochondria-related functions, and (c) predictive models of the protein structure.

Sequence analysis carried out on PBMC DNA amplicons from P and PM confirmed
the presence in DNM1L of the two heterozygotic variants c.1085G>A (p.Gly362Asp) and
c.1535T>C (p.Ile512Thr). The first variant (PV) was present in all the patient’s blood cells
(100%) and only in about 5% of the mother’s PBMCs and saliva; the second (VUS) was
present in both P and PM PBMCs and in PM saliva, confirming what was reported for the
dermal fibroblast [13]. An analysis of an abortive sample of a third conceived of the mother,
with a different father, showed the presence of Wt DNM1L. Considering the medical
history of the apparently unaffected mother who had a first son—with a yet different
father—exhibiting an encephalopathic syndrome as in P, it is reasonable to hypothesize
a condition of germline mosaicism. In this scenario, the ensuing haploid oocytes should
result in three subpopulations: one with both the c.1085G>A p.Gly362Asp and c.1535T>C
p.Ile512Thr variants of DNML1; one with only the c.1535T>C p.Ile512Thr variant; and
one with a Wt DNML1. The percentage of the three oocyte subsets has to be considered
unknown/unpredictable (Figure 6A).

Mosaicism can complicate clinical diagnosis and genetic counselling. Regardless of
mosaicism type in parents, whether germline or somatic, the risk of recurrence of another
conceived with the disease exists and has to be taken into account [26]. Probabilistic
modelling of gametogenesis predicts that mutations in parental blood increases recurrence
risk substantially more than parental mutations confined to the germline [26]. Mosaic
phenotypes may have incomplete or even unnoticed syndromic features and mutational
load in the material tested does not necessarily correlate with the severity of the disease [27].
Moreover, somatic mutations can possibly affect the epigenetic patterns and levels of gene
expression contributing to the pathogenesis of certain disorders [28,29]. Taking all of this
into consideration, along with what is here reported, long time follow-up of subjects such
as the patient’s mother is recommended.

In the studies reporting one or the other of the fifteen Drp1 pathogenic variants so far
identified, only in a few has their impact on the mitochondrial respiratory activity been
assessed, mainly in cultured patients’ fibroblasts or muscle homogenate, with contrasting
results. To the best of our knowledge, this is the first study where measurement of the
mitochondrial respiratory activity in intact primary cells of a Drp1-mutated patient is
reported. Surprisingly, the mitochondria-related OCR in patient PBMCs resulted in almost
twice that measured in control cells. Accordingly, the enzymatic activities of the respiratory
chain complexes I, III and IV appeared to be significantly higher in patient PBMCs.

Mitochondrial morphology might influence the respiratory chain activity [30,31]. This
appears to be linked to the remodelling of the inner mitochondrial membrane cristae
where the respiratory chain complexes are mainly localized [2]. A shift toward a more
fused mitochondria appears to promote nutrient utilization and to enhance mitochondrial
oxidative phosphorylation; on the contrary, fragmented mitochondria are associated with
reduced respiratory activity. However, it must be considered that mitochondrial fission is
also a precondition for the organelle quality control whereby damaged mitochondria are
segregated from the network and booted to mitophagic degradation [32]. While in non-
dividing cells, such as neurons or myocytes, reduced fission would result in progressive
accumulation of dysfunctional mitochondria [33], other cell types with a relatively short
lifespan, such as PBMCs, might be less affected. Therefore, in the context of reduced Drp1
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activity, such as in the patient’s PBMCs, the hyperfused-mitochondria, observed in the
present study, would elicit higher respiratory competence, overcoming the presence of
non-fully functional units in the organelle network. However, the relatively high level of
plasma lactate in the patient would indicate the occurrence of more generalized systemic
metabolic alterations.
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Figure 6. Schematic representation of the proposed pathogenic mechanism linked to the Drp1
variants that are the object of the present study. (A) Model of the mosaicism-based hereditary (AD—
autosomic dominant) transmission of the pathogenic variant (PV) and VUS DNM1L in cis variants;
mosaicism refers to the presence in an individual of genotipycally distint cells derived from a single
zygote (post zygotic event). (B) Model of the impact of the Drp1 variants on the dimer conformations
equilibrium and oligomeric assembly and binding to the outer mitochondrial membrane (OMM). See
Discussion for further explanation.
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In addition to providing energy, mitochondria contribute to regulating Ca2+ home-
ostasis and an interplay between mitochondrial dynamics and Ca2+ signalling is emerging
in the playground of cell death and survival modulation [34]. In this report, we show
that patient’s PBMCs displayed a much lower intra-mitochondrial basal Ca2+ content. A
major source of mitochondrial Ca2+ is provided by the ER store via specialized contact sites
(known as mitochondrial-associated membranes, MAMs) [35]. Since the site of fission is
primed by the wrapping of ER around mitochondrial tubules [36], it is possible that dys-
function of the mitochondrial division machinery might indirectly affect the Ca2+-related
cross-talk between the two compartments.

Incidentally, confocal microscopy imaging of the PBMCs, utilizing the mitochondrial
Ca2+ probe, unveiled fewer platelets in P and PM samples. This is not surprising since
proper mitochondrial fission is expected during maturation of megakaryocytes. Indeed, it
has been reported that transgenic mice conditionally Drp1-knocked out in megakaryocytes
resulted in reduced platelet count and altered functions [37].

The fission of mitochondria appears to be coordinated with mtDNA replication and
the Drp1-mediated constriction sites co-localize at sites adjacent to replicating mitochon-
drial nucleoids [38]. Dysregulation of mitochondrial fission affects mtDNA replication,
resulting in loss of mtDNA integrity and copy number and in its altered distribution in
the mitochondrial network [39]. Consistently, we found a ≈50% reduction in the mtDNA
copy number in the patient’s PBMCs in agreement with the reported higher frequency of
petite clones in yeast strains harbouring the Drp1-homologous Dnm1 mutated in amino
acids corresponding to the human G362D and/or I512T variants [13]. Accordingly, the
expression of PGC1-α, the master positive regulator of mitochondrial biogenesis [40], also
resulted in reduced PBMCs.

Crystallographic analysis of the Drp1 protein defines four regions in the molecule [21]:
the head (GTPase/G domain), the neck (formed by three bundle-signalling elements (BSE)
helices coming together), the middle (formed by two stalk helices coming together) and a
foot formed by the variable domain (substituting the pleckstrin homology domain present
in the prototype dynamin 1). In the stalk domain three interfaces have been identified
regulating self-assembly and interaction with receptors anchored to the mitochondrial
outer membrane: mitochondrial fission factor (MFF) and mitochondrial dynamics proteins
(MID49 and MID51) [4,21,41,42].

Notably, the majority of the pathogenic variants of Drp1 fall into the stalk/bundle
domain of the protein. Gly362 is part of an invariantly conserved stretch of residues forming
a loop in the stalk near the foot and appears essential both for the inter-stalk interaction
of Drp1 in the oligomer and in the Drp1 assembly with MID49. Indeed, substitution of
Gly362 with Asp resulted in failure to co-assemble with MID49 and altered conformational
properties of the oligomer [42].

Location of Ile512Thr falls in the variable domain close to the C-terminus of the first
stalk segment within a stretch of residues, which is conserved in all chordates. The variable
domain is an unstructured portion of Drp1 that likely undergoes conformational changes
affecting self-assembly of Drp1 as well as binding to cardiolipin at the mitochondrial
membranes [19,43]. The variable domain is also the site of several post-translational
modifications, including sumoylation and serine-phosphorylation [44].

Our in silico modelling of the monomeric Drp1 variants 362D or 512T resulted in
subtle conformational changes in the stalk/variable domain as compared with the Wt Drp1
but in a much larger conformation change in the combined 362D/512T mutant manifested
by extended displacement of the 512T and distancing from the 362D. Notably, all the
mutants were able to form homodimers, though with distorted geometry compared with
the Wt dimer, but practically no heterodimers with the Wt monomer.

On this basis, we are tempted to suggest a pathogenic model whereby in the het-
erozygotic patient (362D-512T/G362-I512), the mutant Drp1, although able to form ho-
modimers/tetramers, does not bind mitochondrial receptors nor assemble in functional
oligomers around the organelle. Likely, the co-presence of the VUS I512T with the
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pathogenic G362D variant affects the flexibility of the variable domain that might be
blocked in a conformation capping the interface site of the stalk needed for oligomer assem-
bly [19]. This would reduce the overall ability of the cell to perform efficient mitochondrial
fission (Figure 6B). The increasingly widespread genetic approach to identifying primary
disease-causing variants is highlighting that no genetic variant acts alone. Other variants
on the same gene or elsewhere in the genome may alleviate or exacerbate the severity of
the disease, determining the variability of the phenotypic outcomes [45].

Concerning the impact of the sole VUS I512T—the condition predominantly occurring
in PM—our conclusions are more tentative. Although PM did not show clinical signs
of disease, her mitochondrial respiratory activity in PBMCs was as high as in P, her
mitochondrial interconnected profile was intermediate between P and unrelated healthy
controls, and her platelet count in the PBMCs was as low as in P. The in silico modelling
of the VUS I512T homodimer resulted in altered geometry and in negligible proficiency
to form heterodimers with the Wt Drp1. Noteworthy, in yeast mutant alleles of the
DNM1L-ortholog DNM1 carrying the two corresponding human variants (singularly and
in combination), the strain carrying both variants showed a phenotype more severely
affected than in that carrying the sole variant corresponding to G362D [13]. Moreover, the
strain carrying the variant corresponding to I512T also showed some slight changes in the
respiratory activity and in the number of petite colonies formed as compared with the Wt
allele. Take together, these observations would suggest that the I512T variant is a phenotype
modifier that, in combination with the G362D mutants, exacerbates its pathogenic effects.
Mechanistically, we can speculate that substitution of the non-polar aliphatic Ile362 with the
hydrophilic threonine in a flexible region of Dpr1 could change the intrinsic dynamics of
the variable domain, influencing, though not completely hampering, the interaction of the
VUS-harbouring Drp1 homodimer/homotetramer with the Wt homodimer/homotetramer,
thereby resulting in a milder effect on mitochondrial fission.

5. Conclusions

In summary, by reassesing the case of a child affected by epileptic encephalopathy and
harbouring in his DNML1 gene the heterozygotic occurrence in cis of a pathogenic variant
and of a VUS, we contributed to the spectrum of gene mutations linked to mitochondrial
dynamics-related diseases and provides two further warnings. On one hand, it is called
attention to the need of deepening genetic analysis by sensitive sequencing technics to
eventually point out in patients’ parents low level of the gene variant harboured by the
affected progeny; this would indicate hereditary transmission by a parental germline
mosaicism mechanism thus contributing to improve genetic counselling. On the other hand,
it is highlighted that the co-existence of pathogenic gene variants with apparently harmless
variants, acting as modifiers, may influence the phenotypic outcome of the disease.
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10.3390/genes12091295/s1, Supplemental Material and methods; Table S1: Mitochondrial DNA se-
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