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ABSTRACT
The prevalence of artificial light at night (ALAN) is increasing rapidly around the
world. The potential physiological costs of this night lighting are often evident in life
history shifts. We investigated the effects of chronic night-time exposure to
ecologically relevant levels of LED lighting on the life history traits of the nocturnal
Australian garden orb-web spider (Eriophora biapicata). We reared spiders under
a 12-h day and either a 12-h natural darkness (∼0 lux) or a 12-h dim light (∼20 lux)
night and assessed juvenile development, growth and mortality, and adult
reproductive success and survival. We found that exposure to ALAN accelerated
juvenile development, resulting in spiders progressing through fewer moults, and
maturing earlier and at a smaller size. There was a significant increase in daily
juvenile mortality for spiders reared under 20 lux, but the earlier maturation resulted
in a comparable number of 0 lux and 20 lux spiders reaching maturity. Exposure to
ALAN also considerably reduced the number of eggs produced by females, and
this was largely associated with ALAN-induced reductions in body size. Despite
previous observations of increased fitness for some orb-web spiders in urban areas
and near night lighting, it appears that exposure to artificial night lighting may lead
to considerable developmental costs. Future research will need to consider the
detrimental effects of ALAN combined with foraging benefits when studying
nocturnal insectivores that forage around artificial lights.
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INTRODUCTION
The spread of artificial light at night (ALAN) is increasing rapidly around the globe and its
presence has been linked to shifts in physiological and behavioural traits in animals
(Gaston et al., 2013; Longcore & Rich, 2004). Exposure to ALAN is directly linked to
changes in key life history traits, including variation in patterns of juvenile growth
(Brüning, Hölker & Wolter, 2011), reductions in immune function (Bedrosian et al., 2011;
Durrant et al., 2015), survival (Shah et al., 2011) and fecundity (McLay, Green & Jones,
2017), as well as shifts in reproductive behaviours (Firebaugh & Haynes, 2016; McLay,
Green & Jones, 2017; Van Geffen et al., 2014, 2015). Indirectly, where exposure to night
lighting stimulates earlier maturation and smaller adult size, there may be reproductive
costs due to poorer male performance (Elgar & Jones, 2008; Van Geffen et al., 2014)
and reduced female fecundity (Honěk, 1993; Van Geffen et al., 2014). Adults that emerge
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earlier may benefit if this extends their potential breeding period and thus increases
offspring production (Lowe, Wilder & Hochuli, 2014; Schneider & Elgar, 2002).
However, each sex may respond differently to the presence of ALAN, and maturation
time for males and females could desynchronise, potentially resulting in catastrophic
reductions in reproductive success (Dominoni, Quetting & Partecke, 2013;
Van Geffen et al., 2014).

A potential underlying mechanism for these life history shifts is that the presence of
ALAN may simulate a longer day and/or mask daily and seasonal patterns of light.
Changes in natural lighting drive a multitude of daily and seasonal biological rhythms,
including reproduction (Nelson, Denlinger & Somers, 2010; Tauber, Tauber & Masaki,
1986), and thus ALAN may have serious consequences for juvenile development and
reproductive maturation (McLay, Green & Jones, 2017; Shah et al., 2011; Van Geffen et al.,
2014). For species that exhibit seasonal diapause or overwintering (Schaefer, 1987; Shah
et al., 2011; Van Geffen et al., 2014), disruption by ALAN (simulating long-day
photoperiods that naturally suppress diapause; Nylin & Gotthard, 1998) can result in
earlier maturation (Van Geffen et al., 2014) and may increase mortality (Shah et al., 2011).
However, there is variation in these patterns across taxa, as development time may
also be shortened in vertebrate species that do not exhibit diapause (Brüning, Hölker &
Wolter, 2011; Dominoni, Quetting & Partecke, 2013). This suggests the effects of ALAN on
life history depend on species-specific physiological and life history traits.

The detrimental effects of ALAN are potentially exacerbated if animals are attracted to
artificial lights. Many species exhibit positive phototaxis (e.g. attraction towards natural
moonlight or light reflecting off water bodies), which is an adaptive trait facilitating
behaviours such as navigation (Minnaar et al., 2015; Van Langevelde et al., 2011) or
foraging site choice (Heiling, 1999; Rydell, 1992). For these species, ALAN may act as an
ecological trap (sensu, Hale & Swearer, 2016) resulting in individuals settling in poor
quality habitats (Eisenbeis & Hänel, 2009; Gaston et al., 2012; Longcore & Rich, 2004).
Conversely, nocturnal insectivores may gain direct benefits if they forage around artificial
lights because increased prey densities around these lights facilitate increased foraging
success (Adams, 2000;Heiling & Herberstein, 1999; Lacoeuilhe et al., 2014). However, while
research demonstrates that insectivores (in particular) may gain foraging benefits from the
presence of ALAN, the potential physiological costs of ALAN are largely unstudied.

Spiders are an ideal taxon for investigating the relative ecological costs and benefits of
the presence of ALAN. Simulated long-day photoperiods may induce shifts in a spider’s
maturation period, reducing the number of juvenile instars (Miyashita, 1987; Nylin &
Gotthard, 1998; Schaefer, 1987), a pattern that likely varies with species and life history
stage (Schaefer, 1987). Additionally, some species are urban exploiters, meaning they
perform well in urban habitats (Bolger et al., 2008; Lowe, Wilder & Hochuli, 2014;
Shochat et al., 2004). However, it is not always clear which urbanisation factors
(e.g., light, noise, temperature and habitat fragmentation) or which species traits drive
this urban exploitation (Trubl et al., 2012). Broadly, urbanisation drives shifts in
temperature, prey availability, and other correlated factors that potentially alter spider
development, including time to maturation and total growth (Bonaric, 1987;
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Lowe, Wilder & Hochuli, 2014;Mayntz, Toft & Vollrath, 2003; Vollrath, 1987). The specific
impact of artificial light is often omitted when investigating the effects of urbanisation
on spiders (Dahirel et al., 2017; Lowe, Wilder & Hochuli, 2014). This is a surprising
oversight, as many orb-web spiders preferentially construct their webs in open spaces and
so are likely to be attracted to artificial lighting during foraging site choice (Craig &
Bernard, 1990; Heiling, 1999), and importantly, artificial lights aggregate their nocturnal
insect prey (Heiling & Herberstein, 1999; Kreiter & Wise, 2001; Longcore & Rich, 2004).
Additionally, orb-web spiders are particularly immobile predators once they have
selected a foraging site, so compared to more mobile insectivores such as bats and geckos,
they are likely to be exposed to ALAN to a much greater extent.

We investigated the effects of lifetime exposure to ALAN on key life history traits (juvenile
development rate, total growth and survival, as well as adult reproductive output and
survival) in the Australian garden orb-web spider (Eriophora biapicata). These large
nocturnal spiders (body length up to 22mm in females and 18mm inmales) are prevalent in
urban and suburban habitats and often build their webs near or on artificial lights.
Additionally, they forage primarily on species of Lepidoptera, Coleoptera, and Diptera
(Herberstein & Elgar, 1994), many of which are highly attracted to lights (Eisenbeis & Hänel,
2009). In good quality foraging sites such as around street lights, which attract abundant
nocturnal invertebrate prey, E. biapicata juveniles demonstrate high foraging site persistence
(N. J. Willmott et al., 2016–2017, unpublished data). Hence, they are an ideal species for
investigating the life history consequences of ALAN exposure, as they are likely to be
chronically exposed to the effects of ALAN in urban areas.

MATERIALS AND METHODS
Collection and housing
Experimental spiders were obtained from eggsacs laid in the laboratory by 18 wild-caught
E. biapicata females, collected from sites ranging in light intensity from <0.1 to 40 lux
(Skye Instruments Lux Meter, Llandrindod Wells, Wales, UK) in an urban park in
Melbourne, Victoria (37.7911 S, 144.9515 E) in February 2016. Spiderlings from these
18 families were reared from hatching at 22 �C under a 12-h day (2000 lux; 12 V cool white
LED strip lighting; Fig. S1) and a 12-h night that was either darkness (0 lux treatment;
n = 215; 0–0.06 lux) or dim light at night (20 lux treatment; n = 235; 20–24.6 lux; 12 V cool
white LED strip lighting). We selected 20 lux as it sits in the middle of the range of
light intensities experienced by spiders in our collection site, and is comparable to other
laboratory studies mimicking the effects of street lighting (Durrant et al., 2018; McLay,
Green & Jones, 2017). Offspring from each family contributed equally to each of the two
light treatments. At 14.95 ± 1.47 (mean ± SE) days after emergence from the egg sac,
juvenile spiders were transferred to inverted, transparent plastic cups and maintained until
death under standard laboratory conditions (Henneken et al., 2015). To maintain
humidity, cups were lightly misted with water every two days. Young juveniles (hatching
until seventh instar) were provided with three to five Drosophila melanogaster per week;
older juveniles (seventh instar to penultimate instar) were fed three to five house flies
(Musca domestica) per week; and, adults were fed one juvenile cricket (Acheta domesticus)
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equal to their body size twice a week. All spiders were provided with equal food
appropriate to their size and life stage regardless of treatment group. The amount of food
provided to juveniles was based on observations of wild Eriophora. We did not provide ad
libitum food during development, which would have been unrealistic and may have
masked the effects of ALAN. Spiders were handfed where possible to minimise the effects
of lights on prey capture rates. Prey were rarely left completely uneaten regardless of
treatment group but adult spiders often discarded food suggesting that they were likely
provided ad libitum food.

Maturation time, survival, and body size
Spiders were checked every two to three days and any moults or deaths were noted, to
assess the effects of the presence of ALAN on development rates and survivorship.
The date of death after maturation was taken as a measure of adult lifespan. The age
(in days) at which a spider completed its final moult was defined as its age at maturation.
Once spiders reached maturity, we measured their body mass (mg) and the length of the
tibia (mm) on the front left leg, and used these to determine total life-time growth.

Reproductive success
We assessed whether exposure to ALAN during development affected reproductive success
by providing spiders with mating opportunities within their own light treatment groups
and measuring the number of offspring produced. Mating pairs were age-matched to
ensure senescence (days since maturation) differed as little as possible between
treatment groups (mean ± SEM senescence at mating: 0 lux males = 20.32 ± 2.36;
females = 8.14 ± 0.81; 20 lux males = 18.96 ± 2.56; females = 10.40 ± 2.17). Prior to each
mating trial, we allowed the female to build a web in a rectangular Perspex frame (58 � 58
� 15 cm) after ‘sunset’ in the laboratory. Following web construction, we placed
the male in the bottom corner of the frame furthest from the hub of the female’s web
to allow mating. Following mating, both males and females were returned to their normal
housing conditions. If a female failed to mate with a male, she was paired with consecutive
different males until she mated. For each mated female, we recorded the time between
mating and production of the first eggsac, the total number of eggsacs laid, the number
of spiderlings that emerged, and the average mass of individual spiderlings in the
first eggsac produced by each female; spiderling mass in subsequent eggsacs were not
measured due to time constraints. To measure reproductive costs of ALAN due to
physiological disruption, independent of reproductive costs due to shifts in body size,
we calculated the number of eggs produced per milligram of female body mass for each
mated female.

Statistical analysis
Statistical analyses were carried out using R version 3.4.2 (R Core Team, 2017). We used
linear mixed models to determine the effects of light treatment (fixed factor), sex
(fixed factor) and family (random factor) on age at maturation, length of the intermoult
period, and the number of recorded moults. We used a generalised linear mixed model
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(with an assumed logit link) to compare the proportion of juveniles in each treatment group
surviving to maturity, with family as a random factor. We used linear mixed models to
determine the effects of light treatment (fixed factor), sex (fixed factor) and family (random
factor) on body mass, and tibia length in adults. In the case of a significant treatment � sex
interaction, we used post hoc comparisons with a Bonferroni correction. Due to the
strong correlation between treatment group and age at maturation, relationships between
age at maturation and body mass, tibia length, or number of juvenile moults were analysed
separately for each treatment group. The marginal (Rm

2 ) and conditional (Rc
2) R2 values

are presented for these analyses. Survival curves (for entire lifespan and separately for adult
longevity only) for each treatment group were built using a Kaplan–Meier survival analysis
(lifespan or adult longevity as response, light treatment as fixed factor, family as random
factor; sex was a fixed factor for the analysis of adult longevity). Curves were compared
using a log-rank test (survival package in R; Therneau, 2015). Linear mixedmodels were used
to test the effects of light treatment (fixed factor) and family (random factor) on the number
of eggsacs produced, the number of spiderlings per eggsac, the time to the first eggsac,
and the mass of spiderlings in the first eggsac.

RESULTS
Maturation time and survival
The probability that a juvenile reached maturity was comparable for the two light
treatments (72 of 215 0 lux spiderlings; 64 of 235 20 lux spiderlings; GLMM: v2 = 2.54,
df = 1, P = 0.11). However, 20 lux spiders matured significantly earlier (Table 1A) and
required fewer moults to reach maturity (Table 1B) compared with 0 lux spiders, for
both males and females. The intermoult interval (days) was comparable for 20 lux and
0 lux spiders (Table 1C). There was a positive relationship between time to maturation and
the recorded number of moults (F(1, 131) = 109.1, P < 0.0001; Fig. 1). Overall, the total
number of days survived (from emergence from the egg to death) by 20 lux spiders was
fewer than 0 lux spiders (log-rank test: v2 = 10.90, df = 1, P < 0.001; Fig. 2) but adult
survival was comparable for the two light treatments (v2 = 0.001, df = 1, P = 0.97).
Regardless of lighting treatment, males matured earlier than females (Table 1A) and
required fewer moults to reach maturity (Table 1B). The intermoult interval (days) was
shorter for females compared to males (Table 1C) and adult females lived longer than
males (v2 = 41.85, df = 1, P < 0.0001; Fig. 3).

Body size
There was a significant interaction between light treatment and sex in their effect on body
mass at maturation (Table 1D). Post hoc analyses revealed that female body mass was
significantly greater than male body mass in the 0 lux group (estimate ± SE: 169.88 ± 19.05;
t130.6 = 8.92, P < 0.0001), but not in the 20 lux treatment group (estimate ± SE:
36.32 ± 19.98; t124.3 = 1.82, P = 0.29). Additionally, 20 lux spiders were significantly
smaller than 0 lux spiders, with a bigger effect in females (males: estimate ± SE:
158.40 ± 18.14; t131.4 = 8.73, P < 0.0001; females: estimate ± SE: 291.97 ± 20.70; t124.9 = 14.11,
P < 0.0001). There was also a significant treatment–sex interaction for tibia length
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Table 1 Effects of light treatment on development time and total growth.

Models 0 lux at night 20 lux at night Statistic P-value

Males Females Males Females

(a) Age at maturation (days)

Light treatment 300.28 ± 6.22 334.91 ± 7.12 262.03 ± 6.11 272.35 ± 5.38 F(1, 131) = 85.78 <0.0001

Sex F(1, 131) = 16.97 <0.0001

(b) Number of juvenile moults

Light treatment 11.61 ± 0.30 12.90 ± 0.36 10.33 ± 0.29 11.17 ± 0.34 F(1, 131) = 25.28 <0.0001

Sex F(1, 131) = 10.99 0.001

(c) Length of intermoult period (days)

Light treatment 31.30 ± 1.17 30.42 ± 0.80 33.05 ± 1.62 28.01 ± 1.01 F(1, 131) = 0.02 0.89

Sex F(1, 131) = 4.91 0.03

(d) Body mass (mg)

Light treatment 290.1 ± 14.44a 456.07 ± 19.78b 126.47 ± 8.70c 162.56 ± 7.99d F(1, 131) = 247.6 <0.0001

Sex F(1, 131) = 57.15 <0.0001

Light treatment � sex F(1, 131) = 23.32 <0.0001

(e) Tibia length (mm)

Light treatment 6.98 ± 0.14a 6.81 ± 0.11a 5.43 ± 0.11b 4.78 ± 0.10c F(1, 131) = 163.16 <0.0001

Sex F(1, 131) = 0.52 0.47

Light treatment � sex F(1, 131) = 10.71 0.001

Notes:
Measures (mean ± SE) of development time and total growth at maturity for males and females in the two lighting treatment groups—dark at night (0 lux) and light at
night (20 lux), and the full models for these effects. Non-significant (P > 0.1) interactions were dropped from models. Superscript letters above means and standard errors
denote significant differences (P < 0.05) in treatment-specific or sex-specific comparisons.
Significant P-values (P < 0.05) are shown in bold.

Figure 1 Relationship between number of moults and age at which spiders reached final moult.
The relationship between the number of recorded moults and age (in days) at which male and female spi-
ders reared in the dark at night (0 lux) and light at night (20 lux) treatments completed their final moult. The
black line represents the fitted regression line (y = 0.03x + 3.13; Rm

2 = 0.48 Rc
2 = 0.61) for the overall relationship

between number of moults and age at maturation. Full-size DOI: 10.7717/peerj.5599/fig-1
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(Table 1E). Post hoc analyses demonstrated that male tibia length was greater than female
tibia length for 20 lux spiders (estimate ± SE: 0.66 ± 0.17; t124.7 = 3.91, P < 0.001) but the sexes
were comparable in 0 lux spiders (estimate ± SE: 0.18 ± 10.16; t130.2 = 1.10, P = 1.00).
Tibia length was significantly greater in 0 lux compared to 20 lux spiders in both males
(estimate ± SE: 1.51 ± 0.15; t131.2 = 9.79, P < 0.0001) and females (estimate ± SE: 2.00 ± 0.18;
t125.4 = 11.37, P < 0.0001). There was a positive relationship between time to maturation
and adult body mass (F(1, 131) = 262.35, P < 0.0001; Fig. 4) and adult tibial length
(F(1, 131) = 40.55, P < 0.0001; Fig. 5).

Figure 2 Effect of light treatment on survival over the entire lifespan. Survivorship curve for dark at
night (0 lux) and light at night (20 lux) treatment group spiders over their entire lifespan. Day 0
represents 14.95 ± 1.47 (mean ± SE) days since hatching, at which point spiderlings were placed indi-
vidually into cups and subjected to their lighting conditions. Prior to this point, all spiderlings experi-
enced dark at night conditions. Shaded areas represent 95% confidence intervals from a Kaplan–Meier
survival analysis. Full-size DOI: 10.7717/peerj.5599/fig-2

Figure 3 Effect of light treatment on adult survival. Adult longevity (survival probabilities as adults)
curves for dark at night (0 lux) and light at night (20 lux) treatment males and females. Day 0 represents
the day at which each spider matured. Shaded areas represent 95% confidence intervals from a Kaplan–
Meier survival analysis. Full-size DOI: 10.7717/peerj.5599/fig-3
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Reproductive success
There was no effect of light treatment on the likelihood of a given pair mating (F(1, 79) = 1.34,
P = 0.25). The number of eggsacs laid per female was comparable across light treatments
(Table 2A), but 20 lux females produced fewer spiderlings overall (Table 2B). On average,
20 lux females produced 63.96% fewer spiderlings per eggsac (main effect: v2 = 218.35, df = 1,
P < 0.0001; Table 2C). The number of spiderlings per eggsac declined with eggsac
number (main effect: v2 = 30.07, df = 1, P < 0.0001), doing so faster in 0 lux females
(interaction: v2 = 8.42, df = 1, P < 0.004; Fig. 6). The egg to mass ratio (the ratio of the

Figure 4 Effect of light treatment and sex on the relationship between body mass and age at
maturity. The relationship between body mass (mg) at maturity (after final moult and before feeding
again) and age (in days) at which male and female spiders reared in the dark at night (0 lux) and light at
night (20 lux) treatments completed their final moults. The black line represents the fitted regression line
(y = 2.76x-560.33; Rm

2 = 0.61, Rc
2 = 0.75) for the overall relationship between body mass and age at

maturation. Full-size DOI: 10.7717/peerj.5599/fig-4

Figure 5 Effect of light treatment and sex on the relationship between tibial length and age at
maturity. The relationship between tibial length (mm) at maturity and age (in days) at which male
and female spiders reared in the dark at night (0 lux) and light at night (20 lux) treatments completed
their final moults. The black line represents the fitted regression line (y = 0.02x + 0.63; Rm

2 = 0.49, Rc
2 =

0.65) for the overall relationship between tibial length and age at maturation.
Full-size DOI: 10.7717/peerj.5599/fig-5
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number of eggs per eggsac to female body mass at maturity) was not significantly
different between treatment groups (0 lux = 2.11 ± 0.12; 20 lux = 1.84 ± 0.16 eggs per mg of
female; t45 = 1.33, P = 0.19). The time between mating and laying the first eggsac was
comparable between treatment groups (mean ± SEM days: 0 lux = 28.54 ± 2.54;
20 lux = 22.92 ± 2.15; F(1, 49) = 2.83, P = 0.1). There was no significant effect of light treatment
on the mass of individual spiderlings in the first eggsac (Table 2D).

DISCUSSION
Our study demonstrated dramatic shifts in key life history traits of E. biapicata resulting
from chronic exposure to ALAN. Exposure to ALAN reduced the number of juvenile
instars, which resulted in earlier maturation at a smaller body size and ultimately led to a
significant reduction in reproductive output. Mortality rates were higher in spiders
exposed to ALAN, although earlier maturation meant there was no significant difference

Table 2 Effects of light treatment on fecundity and offspring size.

Models 0 lux at night 20 lux at night Statistic P-value

(a) Eggsacs per female (count)

Light treatment 5.18 ± 0.47 5.40 ± 0.46 v2 = 0.11, df = 1 0.74

(b) Spiderlings per female (count)

Light treatment 4,367.92 ± 361.61 1,471.27 ± 234.37 v2 = 43.06, df = 1 <0.0001

(c) Spiderlings per eggsac (count)

Light treatment 895.07 ± 35.01 311.23 ± 22.33 v2 = 183.34, df = 1 <0.0001

(d) Individual spiderling mass (mg)

Light treatment 2.36 ± 0.05 2.33 ± 0.05 F(1, 45) = 0.16 0.70

Note:
Measures (mean ± SE) of fecundity and offspring size for spiders in the dark at night (0 lux) and light at night (20 lux)
treatments.
Significant P-values (P < 0.05) are shown in bold.

Figure 6 Effect of light treatment on the number of offspring produced by females. The relationship
between the number of spiderlings per eggsac and the eggsac number for females in the dark at night
(0 lux) and light at night (20 lux) treatments. Shaded areas represent 95% confidence bands.

Full-size DOI: 10.7717/peerj.5599/fig-6
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between treatment groups in the proportion that reached maturity. Here, we discuss
the consequences of these life history shifts in the context of increased foraging success for
spiders that build their webs near artificial lights, as we predict this may counter the
physiological costs observed.

Effects of ALAN on spider life history traits
Seasonal shifts in temperature and daily photoperiod regulate patterns of growth and
development in the majority of animals, through underlying effects on circadian and
circannual rhythms (Adkisson, 1966; Gaston et al., 2013; Fonken & Nelson, 2014; Navara &
Nelson, 2007). Spiders exposed to ALAN, which may emulate the longer photoperiod
normally associated with spring and summer, progressed through fewer juvenile moults
and matured earlier. This is consistent with similar observations of extended photoperiods
reducing instar number and stimulating earlier maturation in the house spider
Achaearanea tepidariorum Koch 1841 (Miyashita, 1987). Similarly, ALAN exposure
shortened seasonal diapause and caused earlier maturation in other arthropod species
(Shah et al., 2011; Van Geffen et al., 2014), and overwintering as early instar juveniles
has been documented for several spider species (Schaefer, 1987). One possible explanation
is that spiders exposed to ALAN may skip several winter moults as the nocturnal
photic cues they experience mimic spring and summer photoperiods. In our study, we did
not observe an overwintering period during which spiders did not moult for either
treatment group. Variation in the number of moults required to reach maturity in spiders
has been attributed to the photoperiod experienced (Miyashita, 1987). Spiders such as
Eriophora may exhibit this plasticity if the ultimate moult is related to when their sexual
organs are sufficiently developed, rather than moult number. Hence, perception of an
extended photoperiod (indicating the longer days typical of the reproductive season)
would stimulate faster sexual development and earlier maturation, potentially driven by a
fundamental shift in the biological clocks of the spiders. It is possible that moulting occurs
during natural overwintering, but these moults are likely associated with only small
increases in body mass. This shift in the rate of development may be related to a
documented physiological effect of ALAN: its suppression of the nocturnal synthesis of
melatonin (Jones et al., 2015). Melatonin is a highly evolutionarily conserved molecule
(Vivien-Roels & Pévet, 1993) that is linked to circadian and circannual rhythms and
appears to have a regulatory function for moulting in arthropods (Girish, Swetha & Reddy,
2015). However, the functions of melatonin in spiders remain largely untested.

Earlier maturation has potential consequences for body size, as a shorter development
time affords less time to accumulate body mass. Here, 20 lux spiders were smaller at
maturity, largely due to their earlier maturation. However, when maturation time was
statistically controlled spiders (particularly females) reared under light at night were also
smaller than 0 lux spiders, suggesting that ALAN may directly affect growth rate in this
species. This contrasts with a previous study in the cabbage moth which found no
evidence that exposure to ALAN affected rates of body mass growth (Van Geffen et al.,
2014), but such effects have received little attention across other invertebrate taxa.
The length of the intermoult period in spiders is largely determined by rates of energy
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accumulation and increases in body mass (Nijhout, 2003). ALAN may disrupt the body
mass threshold for moulting and maturation to occur, resulting in lower increases in
body mass and therefore a smaller body size at maturation. Further, artificial light
potentially impaired their ability to consume food, or to convert food into body mass.
Food consumption was kept as similar as possible between the two treatment groups,
so a physiological disruption is the most likely explanation. The biological clocks that
are regulated by melatonin in turn modulate feeding behaviours through effects on
hormones that regulate hunger and satiety (Challet, 2015; Fonken & Nelson, 2014).
These systems can also affect the physiological processing of food (Challet, 2015; Fonken &
Nelson, 2014; Fonken et al., 2010). Hence, the impacts of ALAN on melatonin can cascade
to fundamentally alter development and growth. To our knowledge, the effects of
ALAN on these hormones have not been explicitly tested in arthropods, but analogues
of some of these hormones have comparable physiological roles in insects
(Peri�c-Mataruga et al., 2009).

A major cost of exposure to ALAN is an increase in mortality (Eisenbeis & Hassel,
2000; Longcore & Rich, 2004). Spiders exposed to ALAN exhibited higher lifetime
mortality rates but, as ALAN also stimulated earlier maturation, the number of spiders
that reached maturity and adult longevity were both comparable across the two groups.
This increase in mortality may have been driven by increased oxidative stress, as is
suggested for other species (Jones et al., 2015). Alternatively, it may have resulted from
their accelerated development, as resources were diverted from growth and
maintenance into reproductive development (Boggs, 1992). In contrast to previous
studies (McLay, Green & Jones, 2017), there was no effect of ALAN on adult longevity.
This can be explained by a trade-off between the deleterious effects of aging and the
benefits of accruing more body reserves. Spiders in the 0 lux treatment aged more prior
to maturing, so their adult lifespan would be shortened; however, they also had
greater body reserves, prolonging their adult lifespan. The high mortality we observed in
both treatment groups may have been a result of the unnatural diet our spiders
experienced, particularly as their diet lacked moths. However, this unnatural diet
affected both treatment groups equally, so it is unlikely that it would dramatically alter
our conclusions.

The impact of ALAN on the viability of urban spider populations depends on its effects
on the reproductive fitness of individual spiders in a population. The 20 lux spiders
produced the same number of eggsacs but considerably fewer spiderlings compared to
0 lux spiders. The reduction in fecundity for 20 lux females was largely explained by ALAN
induced differences in body mass, as similarly sized females produced comparable
numbers of eggs regardless of light treatment. The lack of strong size-independent effects
of ALAN on fecundity is contrary to previous results inDrosophila (McLay, Green & Jones,
2017). Nonetheless, our results suggest that a smaller body size due to ALAN exposure will
lead to a reduction in reproductive fitness. There was no difference between treatment
groups in adult longevity, so both groups had an equal amount of time for egg production.
However, under natural conditions, predation and declining winter temperatures are
major sources of mortality, so earlier maturation may extend the breeding period
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(Dominoni, Quetting & Partecke, 2013; Schneider & Elgar, 2002). Hence, the
ALAN-induced trade-off between maturing earlier or maturing larger also implies a
trade-off between a longer breeding period or producing more spiderlings per eggsac for a
shorter period.

In this study, we tested the effects of light treatment with both groups provided with
the same amount of food, whereas spiders that build their webs near lights are likely to
receive considerable foraging benefits (Adams, 2000; Craig, 1987). If greater food
intake increases reproductive output (Kreiter & Wise, 2001; Reed, Nicholas & Stratton,
2007), the foraging benefits associated with artificial lights have the potential to at least
partially compensate for the reproductive costs of this trade-off (Lowe, Wilder &
Hochuli, 2014). This benefit may be tempered by observations of LED lights failing to
attract moths—25 webs over three nights failed to catch moths, despite the observed
presence of moths in the habitat (NJW, under review)—and decreasing moth capture
rates in other orb-web spiders (Yuen & Bonebrake, 2017). Hence, the potential for
foraging benefits to mask developmental costs depends on how ALAN affects the types
of prey available to insectivores foraging around lights. We found no effect of light
treatment on the mass of individual spiderlings. This has important potential fitness
implications, as offspring size is related to offspring performance, including starvation
tolerance and the ability to capture prey (Walker, Rypstra & Marshall, 2003).
However, intergenerational effects may not be evident without further measurements of
performance and development in subsequent generations.

CONCLUSIONS
The combined direct and indirect effects of ALAN on urban insect populations depends
on how shifts in life history patterns in these spiders affect predator–prey interactions
for these affected spiders. Increased mortality and smaller body size may reduce the
predation impact spiders exert on insect populations, counteracting increases in
predation due to mutual attraction of both predator and prey towards artificial lights.
ALAN is associated with high levels of urbanisation (Elvidge et al., 2001; Hansen et al.,
2001; Longcore & Rich, 2004; Ma et al., 2012) and spiders living in urban habitats
will experience not only the impacts of ALAN, but other environmental perturbations
due to urbanisation. Understanding the impacts of urbanisation more generally for
spider populations, and the likely consequences for insect communities, will require a
more integrated consideration of these factors. Future research into the effects of ALAN
on urban insectivores more generally should consider the impacts on both foraging
success and development in individuals, and how these impacts translate into
population-level effects.
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